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Female infertility and reproductive disorders represent a significant global
health challenge, with complex etiologies often linked to impaired cellular
communication, inflammation, and tissue dysfunction. Exosomes (EXOs),
nanosized extracellular vesicles laden with bioactive molecules, have
become recognized as significant transmitters of intercellular signaling
in reproductive physiology and pathology. This review comprehensively
discusses the dual diagnostic and therapeutic potential of EXOs in
addressing female infertility disorders, such as endometriosis, polycystic
ovary syndrome (PCOS), primary ovarian insufficiency (POI), Asherman
syndrome, and gynecological cancers. We investigate the strategies
whereby EXOs govern important activities like endometrial regeneration,
folliculogenesis, immune modulation, and angiogenesis, while highlighting
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their role in restoring ovarian and uterine homeostasis. Advances in exosome
isolation techniques, bioengineering strategies (e.g., cargo loading, surface
modification), and scaffold-based delivery systems are critically evaluated for
their capacity to enhance therapeutic precision and efficacy. Notwithstanding
their potential, issues include standardization of isolation protocols, scalability,
and long-term safety, which necessitate further research. By integrating
molecular insights with translational innovations, this review underscores
the clinical implementation of exosome-based therapeutics in revolutionizing
reproductive medicine, offering new hope for personalized, non-invasive
treatments in female fertility restoration.

KEYWORDS

nanomedicine, gynecological cancers, extracellular vesicles, stem cell, tissue
engineering, regenerative medicine

1 Introduction

Infertility can be described as the inability of a woman to
get pregnant following at least 1year of periodic, unprotected
sexual activity (Ara et al., 2022). Infertility is caused by a variety
of clinical disorders, anatomical malformations, and ecological
and genetic variables, which makes it a complex condition
(Bala et al,, 2021). Despite the presence of several variables that
contribute to infertility conditions, female related infertility issues
are the most common factors (Alesi et al.,, 2024). These illnesses
involve ovulatory dysfunction, ovarian cancer, and endometrial
disorders (Bhardwaj et al., 2021). While female infertility impacts
millions of women throughout the world, there have been few
recent advancements in theranostics (Wang et al., 2024c). During
implantation, embryo-maternal crosstalk takes place, and structural
and functional alteration of the endometrium and uterine space
result in an optimal embryo implantation (Andreescu, 2023).
Any disruption in any of the above procedures might result in
infertility (Berdiaki et al., 2024).

Tissue engineering uses a mix of cells, biomaterials, and
engineering technologies to fix and substitute damaged tissues, as well
as preserve and restore the functionality of tissues following injury
(Taymour et al., 2024). It provides a unique approach for prompt
therapy and repair that aims to enhance long-lasting outcomes (Han
and Du, 2020). Stem cell-based treatments have developed as the
major method because of their distinctive capabilities of self-renewal
and transformation (Jahanbani et al., 2020). Nevertheless, allogenic
cells, often utilized in regenerative therapies, have intrinsic limits and
obstacles, including immunological reactivity, tumorigenic potentials,
and ethical issues. While endogenous cells provide a safer and more
affordable alternative, they have diminished cellular metabolism and
functionality in old or sick individuals (Pourakbari et al., 2020).
As a result, maintaining endogenous cell activity is critical for
improving tissue regeneration effectiveness in aged or sick populations.
Cells release numerous extracellular vesicles (EVs) under both
healthy and pathological situations, as components of their regular
functioning after acquired disorders (Cervello et al., 2015). EVs may
be characterized depending on their biogenetic process, physical
properties, and composition (Miron and Zhang, 2024). EVs are
typically classified into three types depending on their biosynthesis and
dimensions: microvesicles, EXOs, and apoptosomes (Lu et al., 2021a).
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EXOs have been extracted from numerous tissues and fluids.
EXOs are currently gaining popularity as a viable possibility
for repairing and increasing endogenous cell activity while also
facilitating tissue healing (Li et al., 2024c). EXOs are essential
transmitters of paracrine signals and transport a variety of
bioactive cargos. As cell-to-cell transmitters, their contents
transfer commands from original cells to targeted cells, effectively
controlling physiological processes such as immunological
reactions, aging, neural communication, inﬂammatory processes,
and disease promotion/inhibition (Rodriguez-Eguren et al., 2022).
Their function in intercellular communication is complicated by the
unique and little-understood processes and procedures of exosome
intake by receptor cells. Following absorption, EXOs are either
broken down by lysosomes or join with the endosomal membrane to
expel EXOs cargos into the cytoplasm (Patel et al., 2021). However,
EXOS can be returned to the plasma membrane and re-secreted
outside of cells. After being consumed by endogenous cells and
reversing their pathogenic changes, natural or synthetic EXOs
interacting with them may offer therapeutic benefits (Si et al., 2023).

Furthermore, compared to standard cell treatment, EXOs have
lower immunogenicity, improved storage and distribution stability,
and less ethical debate (Kim et al., 2022a; Zhu et al., 2024). The
present article aims to offer insights into the functioning of EXOs
and how they can be enhanced to improve endogenous cell activity
in the management of different types of female infertility disorders.

2 Mechanism of actions of exosomes
in pathophysiological conditions

2.1 EXO cargo and intercellular
communication

Cell metabolites are secreted into the surrounding environment
by diffusion, membrane channels, and active secretion. EXOs
have been identified to facilitate the transport of metabolites or
across cells (Desdin-Mico et al., 2017). EXOs have been discovered
as transmitters of signals between cells in both normal and
pathologic conditions (Bowers et al., 2020). EXOs can carry RNA,
proteins, enzymes, and lipids, influencing numerous biological
mechanisms in numerous disorders such as cancer, neurological
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diseases, infections, and autoimmune diseases. Consequently,
they serve vital functions in numerous biological processes, like
angiogenic activities, antigen presentation, apoptosis, coagulation,
cellular equilibrium, inflammatory processes, and interactions
between cells (Zhang et al., 2023d).

EXOs can transport misfolded proteins, prions, and neurotoxic
proteins, such as amyloid B (Shetgaonkar et al., 2022). EXOs
may transport building materials between cells, like amino
acids and lipids, and transport them to numerous locations
throughout the body (O'Brien et al, 2020). These structures
also influence the uterine microenvironment by enhancing the
bioavailability of chemicals for energy synthesis. EXOs are thought
to engage with endocrine and paracrine systems that regulate
homeostasis (Xiong et al., 2023).

2.2 EXOs in immune regulation and
inflammation

EXOs miRNA release provides a quick way to control gene
expression. EXOs release miR-23 and miR-182 when muscles
are forced to atrophy. The discharge of these cargoes may
alleviate cellular stress (Zhang et al., 2022b). EXOs also have
a role in blood vessel development, cellular transformation,
immune regulation, metabolism, the elimination of outdated
molecules, and antigen presentation (Ahmadieh-Yazdi et al., 2024).
Trophoblast cells secrete EXOs that can control angiogenesis, or
placenta development, via the matrix metalloproteinase inducer
(EMMPRIM) (Gohner et al., 2017).

Progenitor cells can produce EXOs that play an essential
role in the movement of endothelial cells in blood arteries,
as well as cell division and angiogenesis (Liang et al, 2016).
Exosome content during inflammatory processes may serve as
a novel biomarker for inflammatory illnesses and disorders
(Chen et al., 2021; Umair et al., 2022).

Neoplastic EXOs have been reported to contain an elevated
miRNA content, suppress T-cell division and transformation, and
trigger apoptosis via the FasL and MARKI pathways, hence
enhancing the tumor’s ability to fight against immune-mediated
responses (Bernardi and Farina, 2021).

Fabbri et al. discovered that cancer miR-21 and miR-29a-loaded
EXOs trigger inflammation and cytokine discharge by attaching to
the Toll-like 8 receptor and activating it in immunological cells,
resulting in NF-kB activity (Fabbri et al., 2012).

2.3 EXOs in cancer and aging

The role of the senescence-associated secretory phenotype
(SASP) in aging is intricate and multidimensional. Although it can
aid in tissue healing and the immune system’s removal of damaged
cells, its ongoing activation leads to age-related illnesses and chronic
inflammation. With regard to the situation, the SASP, a group of
substances released by senescent cells, may possess both positive and
negative consequences (Tanaka and Takahashi, 2021).

EXOs contain an abundance of the Wnt system, which is
imperative for the maintenance of physiological equilibrium and
performs functions in aging. Consequently, EXOs are thought to
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function as SASP messengers. They get liberated by aged fibroblasts
and epithelial cells. Composition of EXOs from elderly individuals
is altered; for example, levels of galectin-3, important for bone cell
development, are significantly reduced (D’Anca et al.,, 2019).

In a healthy person, these mechanisms are controlled to perform
the changes essential for healthy reproductive adjustments to take
place. As a result of their actions in cell signaling and modulation
at various stages of the reproductive cycle, EXOs play a crucial
part in preserving a regulated reproductive condition (Tong et al.,
2016; Fazeli and Godakumara, 2024). Grange etal. discovered
that microvesicles from tumors have a role in metastasis and
angiogenesis. Human kidney cancer has a subpopulation of cells that
express the CD105 antigen, which is a hallmark of mesenchymal
stem cells (MSCs). Furthermore, CD105-positive cells possess the
capability to change the tumor’s surrounding environment and
induce revascularization (Grange et al., 2011).

2.4 EXOs in reproductive physiology

EXOs perform several functions during the reproductive cycle
by activating multiple regulatory processes triggered by fetal-
maternal communications and cellular control (Natali et al.,
2023), therefore giving the body adaptation capacities for a
variety of physiological alterations (Morales-Prieto et al., 2020).
These pathways may be linked to immune responses, signals of
inflammation, and metabolic adjustments required to nurture a
developing fetus (Chiarello et al., 2018).

3 Origin and separation of exosomes

In the realm of exosome investigation, several methodologies

have been used to isolate and purify them such as
ultracentrifugation,  precipitation, immunoaffinity  capture,
and microfluidic approaches (Lin et al, 202la). These

methods offer advantages such as high yield and accessibility
(Johnstone, 2020). Mammalian-derived EXOs are commonly
extracted from physiological secretions, whereas plant
EXOs are obtained from apoplastic washing solution, with
differential centrifugation remaining the primary extraction
technique for both (Stanly et al., 2016).

Scientists have developed numerous centrifugation technique
combinations to boost the efficiency of separation and solve some
of the limitations of traditional centrifugation procedures. One
extensively used technique mixes differential centrifugation with
sucrose density gradient centrifugation (Kim et al, 2022b). This
approach is widespread because it is simple to use, inexpensive, and
capable of producing exceptional extracting efficiency. Employing
this method, EXOs frequently stay in the intermediary layer
of a 30%-45% sucrose solution. In addition, there are various
other extraction strategies, like Immunoaffinity capture, ultra-
filtering or size-exclusion chromatography (SEC), co-precipitation
methods, and microfluidic advancements, that have been effectively
utilized in the case of mammalian EXOs (Le Gall et al., 2020).
For example, immunoaffinity capture, which involves the creation
of immunological systems that target extracellular vesicle surface
antigens, has features such as quick separation, straightforwardness,
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and excellent specificity, rendering it a suitable approach for the
purification of extracellular vesicles (Song et al., 2020).

Furthermore, various developing methodologies have made
effective EXOs separation in trials possible, making future studies
and applications more convenient. It is worth noting that there is
far more variety between plants than between animals, resulting
in considerable changes in dimensions, shape, productivity, purity,
and dispersion of EXOs generated by various cells. Furthermore,
the composition of EXOs derived from diverse sources varies
significantly. Precipitation kits/polymer and ultracentrifugation
are two typical ways of obtaining EXOs. These procedures can
give solutions with outstanding recovery percentages, but limited
specificity (Hendijani, 2017). Size filtration and flow cytometry can
be used to extract EXOs with a high degree of specificity. Meanwhile,
the last two procedures have inadequate recuperation rates and
are susceptible to damaging vesicle architecture; hence, they are
seldom used. EXOs are tiny and heterogeneous, and the number
of carriers transported inside an individual exosome is limited.
Abundant inactive components in Exos may diminish therapeutic
effectiveness and raise therapeutic dosage (Xin et al., 2020).

Polymer precipitating methods may differentiate EXOs from
bodily fluids by reducing their ability to dissolve. The combination
of ultracentrifugation and the ExoQuick polymer precipitation
technology enhances the integrity and extraction efficiency of plant
EXOs, particularly those derived from ginseng (Jokhio et al., 2024).

Musante etal. proposed a strategy for isolating EXOs from
urine samples using hydrostatic filtration dialysis. The most
significant benefits of this technology are the elimination of the
ultracentrifugation stage and the ability to isolate EXOs from much
diluted liquids. Furthermore, the authors ensured that this strategy
prevents EXOs™ loss (Musante et al., 2014). The specimens were
centrifuged at 2,000 x g to exclude any contaminants and some
of the Tamm-Horsfall protein (THP) aggregates. The resulting
liquid is passed to a separator with a dialysis membrane that can
permeate particulates up to 1,000 kDa. This procedure removes
undesired ingredients from the specimen and reduces its volume.
They centrifuged the EXOs at 40,000 x g to sediment them.
The authors successfully isolated EXOs measuring 50-90 nm and
containing a EXOs biomarker, TSG101. This approach combines
the quantity, volume, and electrolytic content of the sample; thus,
the researchers recommend it to handle specimens designated for
preservation in biobanks (Barreiro et al., 2020). This procedure is
essentially ultrafiltration in situations where the sample is subjected
to a modest amount of pressure, similar to the fluid column in a
dialysis unit (Musante, 2024).

Kim et al. described an innovative strategy for EXOs separation
using a two-stage process with ATPS, which is presented to solve
the issue of protein infiltration in the EXOs portion. Under specific
conditions, these two macromolecules dissolve simultaneously in
aqueous solution and generate two distinct phases. In this procedure,
tailored biochemical properties of the chemical reactions between
polymer molecules and EXOs trigger the latter to accumulate
preferentially in the dextran (DEX) phase. In contrast, other
ingredients traveled between the phases, accumulating preferentially
in the polyethylene glycol (PEG) phase. This study established a
straightforward and rapid separation procedure from a tiny sample
volume utilizing a PEG/DEX ATPS that did not require any specific
equipment. The ATPS isolation approach demonstrated a sevenfold
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greater recovery performance than the standard ultra-centrifugation
technique, and when paired with a batch process, the integrity of
the isolated EXOs increased. The reliability of the ATPS approach
was proven using Western blot and RT-PCR. This simple and
quick separation procedure may aid scientists in isolating and
analyzing EXOs (Kim et al., 2015).

Asaresult of these attempts, newly created, user-friendly, polymer-
based kits like ExoQuickTM and Total Exosome IsolationTM Kits are
now commercially available (Yamada et al., 2012). These kits are now
extensively utilized since they do not involve costly gadgets. They
need long overnight incubations, though, and operators complain of
non-EXOs contaminants, which cause notable variations in outcomes
(Taylor and Shah, 2015). In general, Van Deun et al. found that EXOs
separated with commercially available kits had lower purity than
those obtained by centrifugation techniques (Van Deun et al., 2014).
Given the drawbacks of current conventional techniques, a quick,
affordable, easy-to-use exosome separation approach with high purity
has not yet been created.

EXOs are often characterized by utilizing antibodies that bind to
particular receptors, such as MHC antigens (Liu et al., 2025). Naturally,
similar antibodies may be employed for separating EXOs; antibodies
that are covalently linked to the fixed phase are commonly utilized for
this function (Xin et al., 2020). Magnetic beads, extremely permeable
monolithic silica columns, the surface of plastic dishes, cellulose filters,
and membranes are all useful for achieving this goal (Lee et al., 2024;
Yanetal.,2023). The broad spectrum of antibodies and fixed phases has
resulted in a huge range of EXOs isolation techniques. As an instance,
Clayton et al. suggested an immunomagnetic method to separate B-
lymphocyte EXOs from cultured cellular supernatants. The researchers
employed 4.5 um paramagnetic beads labeled with antibodies and
cultured them in prepared media for 24 h at ambient temperature.
They then separated the EXOs clusters with magnetic granules using a
magnet. EXOs with an average diameter of 70 nm contributed to 71.6%
ofall EVs, whereas those with a dimension of 100 nm or bigger made up
29.4%. In terms of time and functionality, the procedure is equivalent to
older strategies. When examining an extensive number of biomarkers
and cells for exosome separation, typical ultracentrifugation followed
by immunoblotting might take a few days to a week. Flow cytometry
study of magnetic bead-exosome complexes necessitates 1 day and
utilizes 1 x 10° cells (Clayton et al., 2001).

Microfluidics was developed in the latter part of the twentieth
century as a result of breakthroughs in the field of semiconductors.
The emergence of microfluidic technology began in the 1980s,
coinciding with rapid advances in microelectronics, materials,
and systems (Convery and Gadegaard, 2019).

EXOs may be captured and isolated using a variety of
dielectrophoretic (DEP) force-based microfluidic devices. In
dielectrophoretic separation, polarized dielectric particles are
transported in an erratic electric field. DEP forces can be
either repulsive or attractive, determined by the polarization
actions, but they both cause electrically polarizable particles to
migrate (Kwizera et al., 2021). Particle size, volume, used field
intensity and frequency, dielectric characteristics, medium pH, and
texture all affect this transport process. Systems that adopt these
approaches have proven to be more cost-effective, portable, scalable,
and process-time-efficient than traditional exosome separation
techniques. It has also been claimed that this method makes it
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possible to analyze EXOs in tiny samples without the need for
specialized reagents or costly equipment (Bhadra and Sachan, 2024).

Cho etal. isolated EXOs from the blood plasma by a
high-yield electrophoretic migration technique. Compared to the
ultracentrifugation approach, this gadget produced eight times as
many EXOs. In contrast to traditional methods, the electrophoretic
technique may remove up to 83.6% of proteins while recapturing 65%
of EXOs. This was accomplished in around 30 min, which is nine times
quicker than the traditional ultracentrifugation method (Cho et al,
2016). The most widely utilized isolation technique is the selective
capturing of EXOs by antibodies anchored on solid surfaces, albeit each
microfluidic substrate has distinct properties and performs differently.

Chen et al. presented a groundbreaking immunological affinity
technique for capturing EXOs within a microfluidic chip. The
separation concept is based on ligands on the exosome’s external
surface, which permit particular gathering based on source and
functionality while isolating them from other dispersed membrane
components. The gadget has a flat design with herringbone carvings
to improve mixing. Following many rinsing processes, captured
EXOs are either digested for DNA extraction or characterized in situ.
Chen et al. showed a speedier approach (~1 h) with fewer volumes
of chemicals (100-400 uL), compared to established methods.
EXOs collected on-chip utilizing CD63 antibodies from 400 uL
blood samples yielded roughly 30 ng of total RNA for non-small
cellular lung carcinoma patients, which demonstrated sufficient
integrity (Chen et al., 2010).

Kanwar etal. applied the same idea, adapting the previous
approach to perform “on-chip” exosome measurement using a
fluorescence assay technique on a typical read-out plate analyzer.
The gadget, known as Exochip, consists of numerous circular wells
linked by small tubes to improve mixing. Furthermore, the longer
duration of retention promotes a greater contact between EXOs
and the customized surface. Aside from being specifically designed
for additional examination, the gadget can be readily expanded by
simply introducing additional rows of wells to the same chip. The
ExoChip EXOs produced 15-18 pg of entire protein and 10-15 ng
of overall nucleic acid from 400 pL blood specimens. EXOs from
pancreatic cancer patients fluoresced more on the chip than those
from healthy individuals. This was consistent with the increased
protein levels of CD63 and Rab5 detected in cancer patients’ EXOs
(Western blot). A collection of miRNAs found in isolated EXOs
was also effective in discriminating between carcinoma patients and
healthy controls (Kanwar et al., 2014).

Davies et al. pioneered a novel isolation way, by sieving EXOs
directly from whole blood via a membrane and controlling filtration
using pressure or electrophoresis. The scientists believe that the
device’s non-selectivity with regard to vesicle species is a benefit over
the ultra-specific capture afforded by immune-affinity-associated
approaches that may give rise to prejudicial data processing. A
key disadvantage is the poor exosome restoration, notwithstanding
the gadget seems to operate effectively with regard to of isolation
duration. The apparatus attained saturation after extracting 3—4 uL
of filtrate using pressure guided filtering. Electrical based filtering
yielded 79 ng RNA per 100 pug protein from a 100 uL specimen,
whereas centrifugation yielded 187 ng per 100 ug protein from a
5 mL sample (Davies et al, 2012). This contributes to a quicker
separation duration, while the electrical current provides a greater
purity of the isolated vesicles (Zhang et al., 2020d).
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Urine is a promising source of EXOs called urinary EXOs,
which may be acquired non-invasively (Atia et al., 2025). Yet, the
resulting amount of EXOs from urine specimens may be inadequate
for some investigations because of EXOs immobilization by the
THP meshwork. In this context, Puhka etal. designed a simple
dilution approach to improve the urine EXOs output by breaking
the bond between THP filaments and EXOs using alkaline pH
and reduced ionic intensity. The average EXOs production from
the dilution process was 2-7 times that of the undiluted control,
increasing by 130%-624%. The productivity rose the greatest in
samples with an elevated THP to EV ratio. The treatment made no
changes to the EXOs’ shape or size spectrum. The KeepEX dilution
approach offers a straightforward and effective way to avoid EXOs
loss, hence improving urine production. Because KeepEX needs no
particular modification of specimen pH or additional centrifugation
processes, it might be employed on its own or in conjunction with
existing EXOs purification techniques to increase EXOs separation,
especially with tiny urine quantities (Puhka et al., 2017).

Yet, the reliability of EXOs’ separation from urine specimens is
greatlyimpacted by the varied composition of urine caused by variables
such as hydration, nutrition, and illness. As a biofluid, urine naturally
varies in volume, pH, osmolality, and solute concentration over time
as well as between people (Zhou et al., 2021). Standardizing pre-
analytical urine handling practices is essential since these variations
may influence the content and purity of isolated EXOs. This entails
standardizing the thawing and subsequent processing procedures,
employing protease inhibitors, freezing urine at suitable temperatures
(such as —80°C), and accounting for the time spent voiding
(Staub et al., 2025). Hydration levels directly impact urine volume
and concentration. While extremely concentrated urine may result in
greater quantities of certain compounds that obstruct EXOs’ isolation,
very diluted urine can include lesser amounts of EXOs or render their
separation more difficult (Tong et al., 2023).

Balaj et al. present an innovative strategy for EXOs separation
centered around heparin’s capacity for binding EXOs. EXOs
were recovered from conditioned cell media utilizing an agarose
sorbent with heparin, Affi-Gel® Heparin Gel (Bio-Rad), which
was contrasted to the effectiveness of ultracentrifugation and the
ExoQuick-TC commercial kit. After at least 12 h of incubation at
4 °C, the resin was rinsed with normal saline solution to remove any
loose agarose beads. The EXOs extracted from heparinized agarose
were architecturally comparable to those produced after normal
ultracentrifugation. However, this procedure is fairly extensive, and
the biological fluids include a variety of heparin-binding proteins.
To enhance EXOs’ productivity while utilizing heparinized sorbents,
concentrate the EV portions after separation by ultrafiltration
via a 100-kDa filter. However, this prolongs and complicates the
separation process (Balaj et al., 2015).

In contrast to animal EXOs, plant EXOs have a wider size range
(50-500 nm) (Kumar et al., 2023b), which makes it challenging to
extract a homogeneous population utilizing size-based separation
methods like size exclusion chromatography or differential
centrifugation (Tian et al., 2023). Because a consistent dimension is
essential for constant drug loading and targeted delivery, this size
variance affects downstream usage, particularly when employing
EXOs as pharmaceutical delivery carriers (Han et al., 2022).

However, when it comes to plant EXOs, the collected specimens
are first cleaned and then physically treated by mixing, crushing, and
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squeezing them in buffer solutions. Since plant EXOs are likely to
have certain metabolites in common with their parent plants, such
as cell walls, chloroplasts, and other membrane vesicles (Yang et al.,
2023). Furthermore, exosome formulations may get contaminated
by the complex variety of biological substances found in plant cells,
such as cell walls, chloroplasts, and other membrane vesicles. These
impurities may impair the quality of separated EXOs and impede
further studies (Wang et al., 2020).

As a result, each species of plant should be thoroughly
screened. For example, blending is a better approach for
extracting more bioactive ingredients from grapefruits than juicing
or crushing (Li et al., 2022b).

There is no set procedure or set of rules for the development of
plant EXOs. Even when the same techniques were used, there were
significant differences in procedures as well as the different approach
choices across the research we gathered. Specifications like time,
velocity, and buffer were among these variations (Garaeva et al,
2021). For example, Regente et al. found that the 40,000xg pellet
had a greater density of sunflower seed apoplastic vesicles than the
100,000xg fraction (Regente et al., 2009).

Zeng etal. suggested that 10-20 min of centrifugation at
100,000xg was suitable for extracting Aloe vera EXOs. On the
other hand, centrifugation at the same velocity for 60 min produced
a very different population with a polydispersity value of 0.59
and a swelling size exceeding 500 nm (Zeng et al, 2021).
Actually, the centrifugation process may be challenging since
it may be ineffective to pellet the targeted vesicles at low
speeds, and prolonged ultracentrifugation may produce impurities
that are not vesicles and distort the size profiles (Rutter and
Innes, 2020). Additionally, when creating a strategy for the
creation of plant EXOs, pH should be taken into account.
According to a study, separating ginger-derived EXOs by the
PEG-precipitation technique in low pH settings (pH 4 and 5)
produced a 4- to 5-fold increase in vesicle production and
polyphenolic load in comparison with neutral and alkaline pH
environments (Suresh et al., 2021).

For optimal outcomes, the separation and purification
processes should be carefully tailored to a variety of criteria,
including research objectives, controlled targeting, and laboratory
circumstances.

4 Characteristics of exosomes

EXOs were first recognized as undesirable cell-based waste;
nevertheless, subsequent studies have revealed that EXOs serve
as essential biological mediators in interactions between cells,
given their capacity to carry biological molecules across the body
(Figure 1; Liu et al., 2020d).

4.1 Cytocompatibility

Biological compatibility is a critical consideration in the medical
use of EXOs. They have shown good biosafety and cytocompatibility
when tested (Fordjour et al., 2022). Their cytotoxic properties in vitro
are assessed by determining the longevity of cells exposed to various
exosome doses (Marchante et al., 2023).
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According to the kind of host cell, the EXOs protein
composition changes and indicates their origin. All EXOs
from different cell types share a few groups of proteins
(Vaiciuleviciute et al., 2025; Chen et al., 2025).

Numerous studies have shown that EXOs contain mRNAs,
miRNAs, and other noncoding RNAs (El Fekih et al, 2025;
Cheng et al, 2025). When EXOs circulate, they can be
ingested, which ultimately changes the biological functionality
of the cells that receive them. Pathological or physiological
circumstances may modify the synthesis of EXOs miRNA
(Zhu et al., 2025; Ju et al., 2025).

Some lipids that are carried by EXOs are crucial for preserving
biological activity. Cholesterol, saturated fatty acid chains,
phosphoglycerides, ceramides, and sphingolipids are all transported
by EXOs (Palmulli et al., 2024). Crucially, EXOs become stiffer and
stable in terms of lipid, which aids in the internalization process
(Donoso-Quezada et al.,, 2021a). However, the host cell is not
represented by the lipid composition of EXOs (Elmallah et al., 2022).

Additionally, preclinical testing is required prior to clinical
deployment as a vehicle or therapeutic component of the
pharmaceutical delivery system (Hajipour et al., 2021).

First of all, the pharmacokinetics, action pathway, target, and
mechanism of action of EXOs in vivo remain unclear despite their
complex biological properties and roles (He et al, 2023). The
scientists also noted that a number of critical issues, including
pharmacokinetics and targeting, safety assessment, quantification
and characterization, and manufacturing techniques, must be
resolved before EXOs may be successfully converted into clinical
application (Qin et al., 2025).

4.2 Immune-modulating effects

The immune system’s function is responsible for producing
immunological responses that protect the human body from an
attack by harmful organisms. Along with the immune-related
organs, the immune system consists of many different immune
cells and immunological molecules (He et al., 2021). The immune-
modulating capabilities of EXOs such as regulating immune cell
behavior and modulating reactions to inflammation, are critical
for encouraging tissue regeneration while minimizing unfavorable
immunological reactions (Bai et al., 2021).

Additionally, EXOs have the potential to influence immune
cell polarization, promoting an anti-inflammatory phenotype. This
capability to generate a beneficial microenvironment is essential
for tissue regeneration because it reduces excessive inflammation,
which can delay the recovery process (Bjork et al., 2024). Initial
investigations have found that syncytiotrophoblast EXOs suppress
the levels of activating markers, generation of cytokines, and
lymphocyte and endothelial cell proliferation (Gohner et al., 2017).
EXOs generated by B cells and DCs include functional peptide-
bound MHC II, in addition to co-stimulatory components CD80
and CD86, which enhance T cell multiplication (Kowal et al., 2019).
Administration of endometrial stem cell EXOs (EnSCs-EXOs) could
polarize macrophages into an M2-like phenotype and reduce their
mediated phagocytosis (Sun et al., 2019).

Xin etal. created a collagen scaffold and exosome construct
(CS/Exos) for endometrial regeneration and studied its potential
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FIGURE 1
Characteristics of exosomes.

in the management of endometriosis in vivo. Endometrial
regeneration, collagen remodeling, enhanced expression of the
a/progesterone receptor, and fertility restoration were all powerfully
stimulated by the CS/Exos transplantation via promotion of CD163+
M2 macrophage polarization (Xin et al., 2020). EXOs play key
roles in the pathogenesis of infertility and have a major impact
on reproductive health. By transporting different substances, such
as proteins, lipids, and RNA that affect follicle growth, oocyte
maturation, fertilization, and embryo implantation, EXOs act as
messengers for interactions between cells. Through the disruption
of these vital reproductive processes, dysregulation or aberrant
exosome activity can lead to infertility (Liu et al., 2024b).

Neoplastic EXOs have been demonstrated to contain an
increased miRNA content, impede T-cell differentiation and
division, and induce apoptosis (Bernardi and Farina, 2021) through
the FasL and MARKI1 pathways, all of which help the tumor dodge
the immune system (Abusamra et al., 2005; Ye et al., 2014).

EXOs from plants can penetrate and control cellular processes
in mammals. According to a recent study, intestinal macrophages
may absorb plant EXOs and use them to control immunological
response (Mu et al, 2014). Macrophages can absorb ginger
EXOs, which increase the production of heme oxygenase-1 (HO-
1), IL-6, and IL-10. Ginger EXOs produced from carrots cause
macrophages to express IL-10. Ginger EXOs produced from
grapefruit, carrot, and ginger stimulate macrophages to produce
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nuclear factor (erythroid-derived 2)-like-2 (Nrf2) (Mu et al., 2014).
Ginger EXOs prevent macrophages’ NLRP3 inflammasome from
assembling (Chen et al., 2019).

In a different study, Ou etal. investigated C. roseus leaves
and their apoplastic fluid, a new plant-based chemotherapeutic
immune modifier. In vitro, 60-240 ug/mL of C. roseus EXOs
stimulated lymphocyte division and macrophage polarization
and phagocytosis. In immunocompromised mice given
cyclophosphamide, administration of 20 mg/kg and 60 mg/kg of C.
roseus EXOs prevented bone marrow cell cycle disruption and white
blood cell decrease. In vitro and in vivo, C. roseus EXOs significantly
boosted TNF-a production, triggered the NF-«B signal pathway,
and elevated the expression of the transcription factor PU.1, which
is linked to hematopoietic function. Plant cell cultivation methods of
C. roseus were developed to produce C. roseus EXOs with comparable
physical characteristics and biological activity in order to guarantee
a consistent supply of these organisms. The growth medium was
effectively converted into gram-level EXOs, and the yield was three
times more than the initial amount (Ou et al., 2023).

In conclusion, EXOs have a significant impact on female fertility
and are essential components of the reproductive system. They are
the focus of research with the goal of comprehending and treating
infertility because of their function in intercellular communication,
autoimmune disease, and

controlling enhancing wound

healing.
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4.3 Antioxidative properties

Oxidative stress arises when the equilibrium of free radicals
and antioxidant defenses in cells is disrupted. It is linked to several
ailments, including diabetes and neurological disorders. Oxidative
stress causes cell death via apoptosis (Shaoyong et al., 2022).

Human follicular fluid contains EXOs, which vary in
concentration and molecular makeup according to the size of
the follicle, the hormonal milieu, and the pathological condition
(Pan et al., 2024b). The EXOs miRNA profile in follicular fluid has
been shown in several studies to be correlated with the development
of embryos, the quality of oocytes, and the success of fertilization.
For instance, developed oocytes and high-quality embryos have
been favorably connected with miR-21, which is known for its
anti-apoptotic and pro-survival functions (Martinez et al., 2018).
Bioactive lipids, including sphingomyelin, phosphatidylserine,
and ceramide, are transported by EXOs and improve membrane
integrity, promote vesicle formation, and affect follicular cell survival
and oocyte integrity (Yanez-Mo et al.,, 2015).

In addition, EXOs miRNA-21 has been demonstrated to control
zygote advancement and growth while suppressing embryonic
mortality (Lv et al., 2018). By controlling the MSX1 activity, miR-21
prevents granulosa cell death and enhances hormone production,
offering a promising option for the management of autoimmune
premature ovarian insufficiency (POI) (Yang et al., 2024b).

According to Xiong etal, hPMSCs-Exo can reduce the
senescence of CD4" T cells by delivering miRNA-21 and triggering
exogenous antioxidant responses coordinated by the PTEN/PI3K-
Nrf2 axis (Xiong et al., 2021). EXOs made from human umbilical
cord mesenchymal stem cells (HUCMSCs-EXOs) can maintain
homeostasis via modulation of two important effector molecules,
manganese-containing superoxide dismutase (MnSOD) and
glutathione peroxidase 1 (GPX1) (Yao et al., 2019a; Yan et al., 2017).
Interestingly, hUC-MSC-EXOs had greater MnSOD levels than
BMMSCs-EXOs (Yao et al., 2019a).

According to de Godoy et al.,, BMMSCs-EXOs transmit catalase
(CAT), which fully restores the baseline neuronal ROS level that was
raised by the generation of ABOs (de Godoy et al., 2018). After being
treated with H202, BMMSCs-exos decrease internal mitochondrial
ROS generation, hence exhibiting a mitochondrial-protective
function in nucleus pulposus (NP) cells. The mitochondrial proteins
that are transported from the EXOs to the NP cells determine the
effectiveness (Xia et al., 2019).

However, several miRNAs found in EXOs have been linked to
controlling steroidogenesis, atresia, and follicular development.
MSCs-EXOs can enhance the production of anti-Miillerian
hormone (AMH) and facilitate the shift from primordial to
primary follicles. EXOs have the potential to assist in reestablishing
homeostasis in the injured ovarian milieu by providing a mix
of advantageous chemicals (Yu et al, 2016; Dalmizrak and
Dalmizrak, 2022).

Following myocardial infarction and hypoxia, MSCs-EXOs
can alleviate cardiac dysfunction. Myocardial ischemia-reperfusion
(I/R) damage can be treated by miR-182-5p, which is transported
by MSCs-EXOs, according to studies. Comparable to miR-182-5p in
rat myocardial cells’ reaction to I/R, miR-199a-3p and miR-214 may
both increase myocardial cell viability and hence cure myocardial
ischemia-reperfusion damage (Yue et al., 2022).
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MSCs-EXOs can mitigate the cytotoxicity of LPS-induced
astrocytes by blocking the expression of inflammatory astrocyte
proliferation biomarkers like GFAP, C3, and CD81, while
increasing Ki67. Furthermore, it can lower the production of
cytokines associated with inflammation, including TNF-a and IL-
1P (Xian et al., 2019).

Xiang et al. create milk-derived EXOs as a unique, effective, and
non-toxic siRNA carrier in order to investigate therapeutic delivery
techniques. After siRNA-Keapl (siKeapl) was sonicated into milk
EXOs, it was shown that the resulting mEXOs-siKeapl relieved
oxidative stress in MGO-treated HUVECs and promoted HUVECs
movement and multiplication. In contrast, mILK EXOs-siKeapl
injection drastically sped up diabetic wound healing in a mouse
model of diabetic wounds by promoting collagen production and
neovascularization. When combined, these findings show that milk
EXOs may be used as an adaptable, biocompatible, and economical
siRNA delivery technology and promote the advancement of Keap1
knockdown as a possible therapeutic approach for diabetic wounds
(Xiang et al, 2023). As possible cargo molecules involved in
intracellular communication and post-translational gene activity,
EXOs microRNAs (ExomiRs) are essential in diagnostics. For
example, exomir-122-5p can be employed as a prognostic biomarker
for detecting gestational diabetes mellitus (GDM), since it inhibits
the proper function of genes such as Glucose-6-Phosphate Catalytic
Subunit 3 (G6PC3), which is necessary for the hydrolysis of
glucose 6-phosphate in glycolysis, resulting in insulin resistance and,
ultimately, GDM in patients (Ye et al., 2022).

4.4 Encouraging the inter-cellular
communication

4.4.1 Embryonic/implantation role

By carrying regulatory molecules like miRNA from donor to
recipient cells, EXOs help cells communicate with one another.
For instance, miR-21-5p and miR-30d encourage placentation
(Zhang et al., 2024). The blastocyst communicates with and controls
the endometrium during embryo implantation, and the embryo
is nurtured by endometrial fluid generated by the endometrial
epithelium (Bai et al., 2023; Vilella et al., 2015).

EXOs miRNAs and EXOs proteins both play key roles in
embryo implantation. Research found that Hsa-miR-30d, released
by EXOs secreted by human endometrial cells, is absorbed by the
mouse embryo (Vilella et al., 2015).

By specifically targeting histone deacetylase 9, miRNA-30d-5p
from placenta-derived EXOs mechanistically caused macrophage
polarization to the M2 phenotype. Additionally, they stimulated
trophoblast invasion and migration. In contrast, the conditioned
media hindered the transfer and development of endothelial cell
tubes. T-cell proliferation was unaffected by macrophages treated
with placenta-derived EXOs. In conclusion, EXOs produced from
the placenta polarize macrophages to take on the characteristics
of decidua-like macrophages, which in turn alter the activities of
trophoblasts and endothelial cells (Bai et al., 2023).

In vitro, amniotic epithelial cells (AEC) EXOs activated NF-
kB and COX-2, contracting proteins, causing uterine myometrial
cells to contract. The same mouse study demonstrated that dye-
labeled EXOs administered intra-amniotically into pregnant mice
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traveled into the mother mice’s bloodstream and kidneys. EXOs have
been shown to pass the placenta and disseminate throughout the
bloodstream (Sheller-Miller et al., 2016).

4.4.2 Aging related roles

The age-related decline is connected with the development of
the SASP, which may aid in phagocytosis-mediated clearance of
aging cells. EXOs contain a high concentration of the Wnt signals,
which are crucial for the preservation of homeostatic balance and
are implicated in the aging process (Zhang et al., 2020b). As a
consequence, it has been suggested that EXOs are SASP messengers.
They are secreted by aged fibroblasts and epithelial cells. The aged
also have an abnormal EXOs composition; for example, galectin-
3, which is required for bone cell development, is drastically
diminished. EXOs recovered from old individuals may arise from
a lack of bone stemness (D’Anca et al., 2019).

Numerous physiological processes and illnesses are linked to the
Wnt/B-catenin signaling system, which is home to a large number
of glycoproteins with distinctive properties. It can take part in
tissue reconditioning, physiological homeostasis, and growth and
development (Jung and Suh, 2015). According to several studies,
MSCs and their EXOs use the Wnt/p-catenin signaling pathway to
help cure disorders of the skin, cardiovascular system, neurological
system, and other areas. BMMSCs-EXOs at a dose of 100 mg/mL,
and the results demonstrated that BMMSCs-EXOs could raise the
levels of Bcl-2, B-catenin, and TCF-4 while drastically lowering the
degree of protein expression of Bax, cleaved caspase-9, and cleaved
caspase-3 (Hromadnikova et al., 2015).

Additionally, by lowering oxidative stress, encouraging DNA
repair, restoring BMMSCs’ activity, stimulating the Wnt/p-catenin
cascade, and reestablishing the lipogenic-osteogenic equilibrium,
BMMSCs-EXOs can help alleviate osteoporosis (Zuo et al., 2019).

4.5 Promoting cellular differentiation

The development of cells is an intricate procedure that involves
the anatomical and functional modification of cells, leading to the
production of diverse cell types (Zakrzewski et al., 2019). This
mechanism is predominantly connected with embryonic growth,
but it also promotes the renewal and repair of tissues. Repair
of damaged organs requires directing specific cell differentiation
pathways of cells (Yin et al., 2020).

The EXOs cargo consists of various proteins, lipids, and
nucleic acids (DNA, mRNA, and short RNAs. Noncoding,
endogenous, single-stranded RNAs with a length of 18-25 bases,
microRNAs (miRNAs) mostly inhibit their target genes at the
post-transcriptional phase (Wang et al., 2018). There is growing
evidence that miRNA-regulated epigenetic modifications are linked
to various illnesses, such as osteoporosis and metabolic disorders. By
encouraging the proliferation and migration of pig trophoblast cells
(PTr2) through its target gene phosphofructokinase-M (PFKM),
miR-92b-3p can regulate embryo implantation (Wang et al., 2022c¢).

Furthermore, recent research in pigs has shown that miR-92b-
3p, an EXOs generated from pigs’ endometrium, could control the
division, movement, and adherence of trophoblasts (Hua et al.,
2022). Additionally, EXOs have been linked to the formation
of oocytes. Previous research has shown that bovine follicular
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EXOs can improve oocyte maturation by enhancing cumulus cell
expansion (Hung et al., 2015).

The process by which tiny primordial follicles develop into
giant preovulatory follicles, which partly takes place throughout the
oestrus cycle, is known as folliculogenesis. Most follicles commit
to atresia during folliculogenesis, but a small percentage become
Graafian follicles. Peroxisome proliferator-activated receptor
gamma (PPARy), the target of miR-27b, is essential for the
maturation of pig oocytes, whereas miR-202 is gonad-specific and
may help avoid premature ovarian failure (POF) (Song et al., 2016).
In humans, miR-15a may control BCL2 and cell division cycle
25A (CDC25A) to control oocyte development and maturation
(Xu et al, 2011), while miR-335-5p regulates developing spindles
and cytoskeleton activity in mice oocytes through MAPK signaling
(Cui et al.,, 2013). Through the Notch2/TIM3/mTORCI axis, EXOs
miR-18b improves trophoblast recruitment and division, hence
alleviating preeclampsia (Yang et al., 2021b).

4.6 Exosomes as pharmaceutical carriers

The emergence of EXOs-tailored delivery methods has created
new avenues of optimism for targeted pharmaceutical delivery
(Ogunnaike et al,, 2021). According to research, the potency and
purity of EXOs, in addition to their number, possess a tremendous
influence on the success of treatment approaches (Machtinger et al.,
2021; Andronico etal., 2019). Creating a consistent and reproducible
strategy for obtaining high-quality EXOs is crucial (Liang et al.,
2021). EXOs” unique qualities, such as intrinsic stability, minimal
antigenicity, and high infiltration capability, have made them a
popular choice for building tailored delivery devices (Taravat et al.,
2024). Despite developing EXOs as drug transporters presenting
several obstacles, it is moving quickly. EXOs administration
technologies have fundamental challenges in entering clinical trials
due to swift elimination from the circulatory system and insufficient
targeting capabilities (Zhang et al., 2022a). In fact, other engineering
procedures have been devised to produce modified EXOs with
greater effectiveness. EXOs can be customized in two ways: 1
interior adjustments, which include integrating drugs and bioactive
ingredients, and 2 external changes, which customize the exosome’s
surface to target specific cells or tissues (Li et al., 2024a).

4.6.1 Cargo packaging into exosomes

Endogenous and exogenous cargo loading techniques are the
two primary groups into which exosome cargo packing techniques
fall (Gul et al., 2024). Exogenous cargo loading involves directly
loading medications into the retrieved MSCs EXOs, whereas
endogenous cargo loading involves modifying parental cells using
viral vectors and plasmids (Kumar et al., 2023a). Viral vectors and
plasmids are examples of genetic engineering tools that may be used
to modify the expression levels of endogenous molecules in stem
cells (Farzanehpour et al., 2023). Exogenous cargo loading strategies
for managing illnesses include saponin permeabilization, freeze-
thaw cycles, and room temperature incubation (Ahmed et al., 2024).

4.6.2 Surface modification

Notwithstanding their natural origin, EXOs may be easily
surface-changed. Genetic engineering and chemical modification
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are two types of modification techniques. Genetic engineering
entails integrating the genetic sequencing of a directing protein or
polypeptide with that of a EXOs membrane protein. This approach
functions effectively for expressing peptides and proteins on the
surface; however, it is limited to targeting arrangements that are
genetically programmed (Cheng et al., 2022).

Chemical modification enables a vast variety of ligands to
be demonstrated via conjugation methods or lipid assembly.
Conjugation processes can covalently and stably change EXOs
surface proteins, although the complicated nature of the exosome
surface can impair reaction efficiency, and site specificity
is frequently lost (Chu et al, 2022; Sengupta et al., 2020).
Covalent alteration may potentially threaten the vehicle’s
structural and functional integrity and may increase the
toxicity of EXOs (Smyth et al., 2014).

Notwithstanding encouraging existing accomplishments, there
are only a few investigations that reveal EXOs to be superior
to FDA-authorized nanomedicines (e.g., liposomes); therefore,
further research into EXOs as carriers of medication is unavoidable
(Lu et al.,, 2018; Zhang et al., 2023b).

EXOs are more bioactive and antigenic than liposomes
which
improves their stability in the circulation and increases their

because they are primarily generated by cells,
absorption capacity and medicinal efficacy in vitro and in vivo
(Bethi et al., 2025; Aare et al., 2024).

Liposomes, on the other hand, have three key drawbacks that
drastically limit their therapeutic use. First, liposomes may be unable
to endure shear pressures or variations in environmental factors
or diluent content. Second, liposomes are exceedingly sensitive to
environmental stimuli and reactions, making them unsuitable for
widespread application in medication administration. Third, it is
challenging to precisely transport substances within liposomes to

specific locations in vivo (Smyth et al., 2015).

5 Formulation of exosome agents

To enhance their therapeutic effects, exosome preparation
three
delivery modalities, and therapeutic enhancement (Figure 2;
Table 1; Donoso-Quezada et al., 2021b).

studies should focus on critical aspects: storage,

5.1 Storage

EXOs are a potential cell-free treatment; nevertheless, they
cannot attain activity for very long. As a result, studies on exosome
storage technologies are necessary to maintain their biological
activity while also making them easier to carry and apply in
therapeutic settings (Levy et al, 2023). At present, the most
common protective strategy is the storage in freezers, freeze-
drying, and spray-drying (Song et al., 2020). Traditionally, EXOs
are preserved at 4 °C, —20 °C, and —80 °C (Levy et al., 2023). Despite
notable variations in conclusions, several studies have evaluated
the influence of temperature on storage (Klymiuk et al., 2024;
Rashidi et al., 2022). For example, Levy et al. proposed that EXOs
stored at —20 °C and prolonged freeze-thawing resulted in EXOs
aggregation. Wu et al. supported this result by seeing a drop in both
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the overall protein quantity and general RNA concentration at more
elevated storage temperatures (RT, 4 °C) and following repeated
intervals of freeze-thawing (Wu et al., 2021a). Furthermore, Van De
Wakker et al. revealed that bioactivity of BMMSCs-EXOs is reduced
after storage at room temperature and 4 °C, but storage at —20 °C,
-80°C, or lyophilization typically retains bioactivity for up to
4 weeks (Van De Wakker et al.,, 2022). Maroto etal. found that
keeping EXOs for more than 4 days, whether at 4 °C or —80 °C,
had a negative impact on their proteomic composition
(Maroto et al,, 2017). Yuana etal. obtained cell-free pee and
kept it in freezing conditions for a year before collecting the
EXOs and comparing them to those recovered from fresh
urine. The quantity of EXOs extracted from a fresh urine
sample was 109-1,010/mL, which reduced twofold following
a single freeze-thaw cycle. EXOs’ diameter rose by 17% after
storage. However, no morphological alterations were seen
during storage (Yuana et al., 2015). In general, research suggests
that storing EXOs-containing urine samples at —80 °C with protease
inhibitors is effective for long-term preservation.

Spray drying begins by atomizing the EXOs solution, then, when
exposed to a hot gas, the droplets are swiftly changed into a dry
powder. When compared to freeze drying, spray drying is quicker,
requires only one stage, and serves as an ongoing drying procedure,
making it more cost-effective (Chernyshev et al., 2015). Spray drying
is recommended for heat-sensitive ingredients (Singh et al., 2023).
Furthermore, water retention can worsen chemical fragility by
lowering the glass transition temperature of solid fragments. Further
research is needed to bring this technology to the development of
EXO-based therapeutics (Emami et al., 2023).

Lyophilization has recently emerged as a viable alternative to
standard 80 °C storage. Lyophilization not only increases exosome
storage time by allowing direct room temperature preservation, but
it also lowers preservation expenses. Lyophilized substances can
be kept at room temperature and quickly reproduced in water or
a physiological solution (Liu et al., 2021). Although lyophilization
has storage advantages, it also has substantial drawbacks like ice
crystallization, dehydration, and osmosis, which may jeopardize
the dimensional stability and composition of EXOs cargos and
membranes. Lyophilized EXOs using lyoprotectants such trehalose
and sucrose show superior diversity in sizes, structural reliability,
particle amount, and protein/RNA content preservation than those
held at —80 °C (Arte et al., 2025).

Investigators conducted trials with the inclusion of several
lyoprotectants to prevent lyophilization damage while maintaining
exosome integrity and size. Before getting freeze-dried, these
compounds may bond with phospholipid motifs, dislodging
moisture and producing a glassy lattice of sugar (Chen T.-
Y. et al, 2024). This matrix inhibits ice crystal formation,
minimizing vesicle damage and aggregation (Abla and Mehanna,
2022). In this procedure, effectiveness may be influenced by the
application of various cell origins as well as initial separation
techniques (Merivaara et al., 2021).

5.2 Administration

EXOs" research has made significant progress in cell-free
medical applications around the world (Moghadasi et al., 2021).
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FIGURE 2
Formulation of exosome agents.
TABLE 1 Pitfalls in EV studies.
EV-related procedures Pitfalls Reference
Gathering The optimum methodology depends on the kind of fluid, and cellular origin of the EVs, along with 0

downstream assessment.

Different isolation methods Consistency in EXOs separation techniques is necessary to avoid variations in EXOs content and size

throughout the analysis.

Konoshenko et al. (2018)

Storage To prevent vesicle breakdown, freeze samples at 80 °C. Additionally, it is recommended to prevent Lee et al. (2016)
repetitive Freezing-thawing of the portions before testing.
Purity Sample duplicates and adjustment of outcomes for numerous evaluations are critical. Rupert et al. (2017)

Several techniques for targeted exosome delivery have been
studied,
intraperitoneal swallowing,

of exosome treatment. EXOs rapidly leave the circulation and
aggregate in parenchymal tissues, with a plasma half-life of only
2-4 min (Driedonks et al, 2022). Local delivery can be more

infusion,
and hydrogel-based

including direct application, intravenous

injection,

encapsulation (Moss et al., 2021).
Direct administration can be administered via intravenous
injection or topically in tissues, which is a typical method
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beneficial in terms of enhancing the amount and sustainability of
their effects (Sanz-Ros et al., 2022). Intranasal administration is
more successful, especially in avoiding the difficulties associated
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with transporting medications across the blood-brain barrier
(BBB). The intranasal approach reduces exosome loss by bypassing
intestinal and hepatic routes (Guo et al, 2019). According to
investigations, intranasal injection of EXOs containing curcumin
and cucurbitacin led to fast transport to the mouse brain.
This platform can boost tumor apoptosis and reduce metastasis.
Curcumin-loaded EXOs demonstrated a substantial decrease in
microglial cell count (Zhuang et al., 2011).

Exosome injections without scaffolds have disadvantages,
including systemic uptake and lower efficiency at the defect location,
prompting the usage of exosome-loaded scaffolds. This exosome-
delivery technology has the potential to be highly successful in
tissue healing. Meanwhile, certain kinds of mesenchymal stem cells
(MSCs)-EXOs aggregate in damaged tissues, causing inflammatory
responses and other pathological alterations (Ghafouri-Fard et al.,
2021). EXOs from adipose tissue-derived MSCs have been
shown to increase the expression of miR-122. Increased levels
of miR-122 inhibited LX2 cell growth by targeting the P4HA1
gene. This miRNA has been demonstrated to inhibit collagen
maturation and extracellular matrix formation (Li et al., 2013). Asa
consequence, the invention and utilization of EXOs-loaded scaffolds
for effective and controlled release have arisen as a captivating study
subject in regenerative medicine (Li et al., 2023a). Non-invasive
intracavitary injection is an excellent treatment for uterine and
vaginal damage (Lv et al., 2020).

The development of ways to extend the half-life and local
longevity of EXOs is a critical challenge for their therapeutic
use. According to the research, mixing EXOs with biomaterials
may be the most appropriate answer to this difficulty (Zhu Y.-
G. et al, 2022). A desirable biomaterial should be capable of
maintaining exosome biological stability while also regulating
release kinetics in accordance with a favorable release schedule
(Akhlaghpasand et al., 2024). Lin etal. discovered that AMSCs-
|[EXOs loaded into injectable PEG hydrogels provide antimicrobial
capacity for the endometrial environment, promote endometrium
regeneration, and fertility reconstruction (Lin et al., 2021b).

5.3 Therapeutic enhancement

When establishing EXOs as biological therapies, simply
addressing storage issues is insufficient for EXOs to engage in
important therapeutic transformations. The limited extraction
amount and longevity of EXOs have led investigators to focus on
exosome modification (Zhou C. et al., 2023). Repeated injections
are not viable in the clinic, necessitating the development of
improved delivery methods with high tissue intake, biosafety, and
simplicity of application (Wang et al., 2022b). While topical exosome
administration seems promising, there are some drawbacks, such
as limited skin penetration, variability in exosome creation and
characterization, and a lack of established techniques. EXOs may
have a limited half-life in vivo, necessitating several doses or
sustained-release preparations to obtain the desired therapeutic
effects While efforts have been made to address these concerns,
there is still a need for simple and efficient solutions (Wan et al.,
2023). An increasing amount of research suggests that providing
medium conditioned with mesenchymal stem cells might be a
viable option for live cell treatment. MSCs have an excellent safety
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profile and may be preserved without losing their regenerative
potential (Lin et al., 2021b). It is adaptable enough to be used in a
variety of delivery vehicles, improving engraftment and controlling
therapeutic administration.

Hydrogels are a potential way to regulate exosome delivery,
but they have significant disadvantages (Zhang et al., 2023a). These
include obstacles in ensuring continuous release, possible concerns
with the hydrogel’s mechanical strength and stability, and challenges
associated with large-scale manufacture (Zhang et al, 2023a).
Furthermore, chemical and physical interactions between EXOs and
the hydrogel matrix can influence exosome release and therapeutic
effectiveness (Ghahremani-Nasab et al., 2025).

Liu et al. discovered that hydrogel cross-linking may lengthen
the releasing duration of EXOs in rats from 4 to 7 days, resulting in
a stronger therapeutic efficacy at the same dosage. The hydrogel’s 3-
D matrix allows a wide range of medicines to cross-link, increasing
the therapeutic value (Liu et al., 2019).

6 Medicinal advantages of EXOs in
female infertility conditions

EXOs have been shown to be a promising therapeutic device for
carrying payloads in the treatment of female infertility (Teng et al.,
2024; Tuscharoenporn et al., 2025; Bhat et al., 2022). However,
the pathophysiological processes of EXOs in female infertility
have not been fully understood. More studies must be conducted
to determine the cause and give proof for potential therapeutic
treatments (Liu et al., 2024a).

6.1 Treatment of endometriosis

Endometriosis is a multifaceted illness associated with
inflammatory processes, blood vessel development, and apoptosis
tolerance. Eutopic endometrium (EUE) in endometriosis patients
contributes to the disease’s development and promotes ectopic
endometrium (EE) survival by regulating many molecular pathways
(Zhu et al., 2023). Endometriosis can manifest in a variety of ways,
ranging from asymptomatic lesions discovered by chance to a severe
condition that is unrelated to the extent of the disease. Most typically,
the initial symptoms appear before the age of 20 (Wang et al., 2023).
Manifestations of endometriosis include persistent pelvic
discomfort, extremely excruciating periods, painful intercourse,
urination, and/or painful bowel movements. It could also raise the
chance of behavioral wellness concerns, like anxiety and sadness.
Endometriosis can also cause infertility without accompanying
other manifestations (Lin et al., 2021b). Endometriosis can
affect fertility through a variety of mechanisms, including
deformed pelvic cavity morphology, adherence development,
fallopian tube fibrosis, localized inflammation of pelvic systems,
dysfunction, in the
homeostasis within the uterus, and/or deficient
implantation (Neto et al., 2024; Dabi et al., 2024).
Furthermore, the condition has a substantial negative influence

immunological alterations hormonal

embryo

on the standard of living and emotional health because of discomfort
and other complaints such as exhaustion, excessive bleeding, or
erratic emotions. Women may be unable to attend school or
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work, and may avoid sexual activity (Qin et al, 2024). One
of the primary processes involved in disorders characterized by
cell division and penetration is inflammation, which is produced
by immunological dysregulation. Endometrial lesions are formed
and further developed by immunological cells. In the case of
endometriosis, proinflammatory mechanisms inhibit apoptotic
processes, causing potentially dangerous cells to cling to distant
regions, which demonstrates the benefits of EXOs in endometriosis
management (Figure 3; Moghaddam et al., 2022).

Lin etal. discovered that intra-uterine injection of poly-e-I-
lysine hydrogel-loaded with human umbilical cord mesenchymal
stem cells EXOs (HUCMSCs-EXOs) and spermidine prenatally
increased pregnancy frequency in mice with a weak endometrial
lining. This platform demonstrated much higher expression
of integrin-p3, LIF, and VEGF proteins. These characteristics
enhance and extend endometrial function (Lin et al, 2024).
EXOs produced from ectopic embryonic stem cells were shown
to induce M2 macrophage transition by releasing miR-146a-
5p, via TRAF6 (Ji et al.,, 2024). Frequent abortion, curettage, or
intrauterine infection can cause serious harm to the endometrium,
potentially leading to pathological disorders and sabotaging fertility
(Fernandez et al, 2021). The primary goal of uterine infertility
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therapies is to promote endometrial regeneration (Zou et al., 2025).
Traditional treatments have limited effectiveness, highlighting
the need for new therapies to enhance endometrial regeneration
(Table 2; Feng et al., 2021).

Intrauterine adhesion (IUA) induced by endometrial damage
is one of the most common causes of infertility in women
of reproductive age and needs sophisticated therapeutic options
(Huang et al., 2022b). Zhao et al. investigated adipose stem cells
(ADSCs)/EXOs and evaluated the possibility of their use in
intra-uterine adhesions (IUA) in rats. Following ADSCs-EXOs
administration, the uterine cavity grew, the endometrium’s surface
recovered epithelialization, and endometrial glands increased, along
with fewer fibrotic regions (Zhao et al., 2020). In this regard, Jin
et al. created an extracellular matrix (ECM)/ADSCs-EXOs scaffold
that was cytocompatible and could enhance cellular division,
motility, and revascularization in vitro. In addition, when implanted
in rats, they enhanced endometrium regeneration, increased
local angiogenesis, encouraged myometrium rejuvenation, and,
ultimately, retained fertility (Jin et al., 2023).

Moreover, Lin et al. developed thermally sensitive poloxamer
hydrogel loaded with EXOs to enhance EXOs’ bioavailability in the
uterus. In the TUA model, this platform significantly repaired the
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TABLE 2 Exosomes in the management of endometriosis.

Type of

exosomes

Preparation
method

Outcomes

10.3389/fcell.2025.1605174

Reference

ADSC-EXOs

Precipitation

30-200 nm

In vivo: Rats

Improved uterine
structure, endometrial
regeneration, collagen
reorganization

Zhao et al. (2020)

peritoneal macrophages
(pMg) exosomes

Differential
centrifugation

105 + 3.9 nm

In vitro: Ectopic ESCs)

Enhanced cell division,
immigration, and
penetration.

Zhang et al. (2020a)

EMS pMg -EXOs

Gradient centrifugation

100 nm

In vitro: macrophages
In vivo: Mice

Increased the amount
and weight of
endometriosic implants
and increased MII pMg
counts.

EXOs were absorbed by
pMg, resulting in MI
and MII polarizing were
changed, and phagocytic
function was reduced.

Sun et al. (2019)

EXOs-HP

Differential
centrifugation

72.34 nm

In vitro: HEnSCs and
glandular cells
In vivo: Mice

Reduced fibrotic
progression markers and
restored the
endometrium
physiologic activities.

Lin et al. (2023)

CTF1-modified
BMSCs-EXOs

Differential
centrifugation

60-120 nm

In vitro: HUVECs
In vivo: Rats

In vitro: better
neovascularization,
including increased
multiplication,
movement, and tube
genesis.

In vivo: promote tissue
regeneration,
neovascularization, and
inhibit localized tissue
fibrosis.

Zhu et al. (2022a)

Endometriotic EXOs

Sucrose gradient
ultracentrifugation

120 nm

In vitro cytotoxicity:
PBMCs and the
erythroid cell line K562.

Endometriotic
protection from
cytotoxic attacks
apoptosis in activated
immune cells.

Bjork et al. (2024)

EMS -EOXGs-
miR-301a-3p

Differential
centrifugation

80 nm

In vitro: Human
mononuclear cell line
THP-1

Induced M2
transformation in
macrophages

Huang et al. (2022b)

EECs-EXOs

Ultrafiltration

80 nm

In vitro: Ectopic ECs and
normal ECs
In vivo: Mice

Inhibited infiltration and
migration capacity of
ectopic nodules.

Zhang et al. (2022a)

UC-MSC EXOs/CS

Differential
centrifugation

136 nm

In vitro: Peritoneal
macrophages from
SD rats

In vivo: Rats

Significantly improved
endometrial
regeneration, collagen
remodeling, lowering
inflammation and
increased
anti-inflammatory
mechanisms.

Xin et al. (2020)

ADSC-EXOs, exosomes derived from adipose-derived mesenchymal stem cells; BMSCs, BMSCs; CS, collagen scaffold; CTF1,Cardiotrophin-1; ESCs, Embypnic stem cells; EMS, endometriosis;
EMS, exosomes from endometriosis; EXOs, Exosomes; EXOs-HP, mesenchymal stem cell-derived exosomes encapsulated in heparin-poloxamer hydrogel; HEnSCs, human endometrial stromal
cells; HUVECs, human umbilical vein endothelial cells; PBMCs, Peripheral Blood Mononuclear Cells; pMg, peritoneal macrophages; UC-MSC, Umbilical cord-derived mesenchymal stem cell.
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activity and morphology of the endometrium by inhibiting fibrotic
advancement markers (Lin et al., 2023). EXOs released by peritoneal
macrophages (pM¢) can effectively transfer to endometrial stromal
cells (EnSCs). EXOs from EMS containing pM¢ increased EnSCs
proliferation, migration, and invasion rates. MiR-22-3p levels were
considerably elevated in pMg-derived EXOs from EMS, which were
then transferred to EnSCs via EXOs. EXOs miR-22-3p from pM¢
increased EnSCs division, movement, and penetration by engaging
SIRT1 and stimulating the NF-«xB pathway (Zhang et al., 2020a).

EXOs from endometrial epithelial cells enhance embryo
advancement, growth, and placement, whereas the SS performs a
selective function in mouse embryo development (Gurung et al.,
2020). HUVECs treated with canine bone marrow stem cells
(C-BMMSCs)-EXOs showed better cellular division, migration,
and tube formation, indicating increased neovascularization
(Zhu Q. 2022). EMS-originated EXOs miR-301a-3p
regulate the polarization of macrophages via the PTEN-
PI3K system (Huang et al., 2022b).

Abnormal accumulation of extracellular matrix in endometrial

et al,

glands causes endometrial fibrosis, which impairs uterine function.
Thus, it is critical to investigate endometriosis fibrosis therapy.
Two distinct study groups found that EXOs miR-214 or miR-
214-3p produced from ectopic endometriosis stromal cells
prevented fibrosis by targeting cellular communication network-
2 (CCN2), which is strongly associated with fibrogenesis (Wu et al.,
2018; Zhang et al, 2021c). Furthermore, Zhang and colleagues
demonstrated that EXOs played a critical role in the delivery of
miR-214-3p for fibrosis therapy (Zhang et al., 2021c¢).

MiR-30c-loaded EXOs from ectopic endometrial cells (EECs)
reduced the metastatic development of ectopic EEC nodules.
EEC-derived EXOs supplied miR-30c, which blocked BCL9
transcription and suppressed the Wnt/B-catenin system, reducing
tumor-like characteristics of ectopic ECs in EMS (Zhang et al,
2022a). Previous research has shown that UCMSCs-EXOs, as
regenerative nano-conveyors, perform a comparable function
to their parent cells in easing fibrosis, boosting division, and
immune-modulation (Pu et al., 2023).

Xin etal. blended UCMSCs EXOs and collagen scaffold
(CS/EXOs) construct for endometrium rejuvenation in rats. The
CS/UC-MSC-EXOs
endometrial regeneration, collagen reconstruction, hormonal

transplantation considerably encouraged
activity, and fertility restoration. Moreover, it promoted CD163+M2
macrophage polarization and decreased inflammatory reactions
(Xin et al, 2020). UCMSCs-EXOs combine the benefits of
hUCMSCs pluripotency with nanoscale dimensions, improving
their therapeutic potential through longer circulation half-
life. Notwithstanding these intriguing traits,
concerning their immunological toxicity are yet
(Dehghani L. et al., 2024; Mao et al., 2024).

investigations
limited

6.2 Management of polycystic ovary
syndrome (PCOS)

PCOS is a neglected, underdiagnosed, and understudied illness
that impacts a significant percentage of the female population
worldwide, particularly in developing countries (Alesi et al,
2022). Women with PCOS remain undiagnosed in early care. As
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a result, it puts an economic burden on healthcare providers.
It is also marked by ovulation problems, which can result
in fertility issues (Siddiqui et al, 2023). The pathophysiology
of PCOS is complex and influenced by the combination of
reproductive and metabolic diseases (Koike et al., 2023). PCOS is
characterized by hyperandrogenism and insulin resistance, which
are further exacerbated by hypothalamic-pituitary-ovarian axis
dysfunction (Liao et al., 2021).

It has been suggested that the oocyte and its adjacent
cumulus cells (CCs) exhibit a mutually advantageous connection
in the initial phase of developing follicles, of which CCs are
primarily accountable for releasing growth hormones and ovarian
steroid hormones, demonstrating that CCs perform essential
functions in oocyte development (Sun et al, 2023). However,
atresia is brought on by oocyte dysfunction brought on by
aberrant CC cell division or apoptosis, which is in line with
research showing that CCs abnormal cell functions are linked
to infertility, anovulation, and collapse in follicle maturation—all
of which are manifestations that PCOS patients also experience
(Yang et al.,, 2021a).

Exosome-based medicines were investigated as a viable
therapeutic technique for treating PCOS (Figure 4; Hadidi et al.,
2023; Fang et al., 2024; Jiang et al., 2023; Mansoori et al., 2024). Cao
et al. proved that amniotic mesenchymal stem cells (AMSCs)/EXOs
can provide protection against metabolic abnormalities, alleviate
dehydroepiandrosterone (DHEA)-induced PCOS in rats, while
increasing their fertility. After 3 weeks, injecting AMSCs-EXOs
into PCOS rats can improve hepatic malfunction, ovarian cysts, and
infertility caused by DHEA. Moreover, there was a noticeable decline
in T levels. Adiponectin secretion was also enhanced by AMSCs-
EXOs therapy (Cao et al, 2022). Exosome treatment increased
cell division and inhibited apoptosis in CCs via upregulating miR-
323-3p (Mehravar et al., 2025). Based on the outcomes of an
investigation conducted by Zhou et al., EXOs derived from ovarian
follicular fluid reduced PTEN transcription and lowered apoptosis.
In rats with PCOS, these EXOs increase estradiol (E2) levels while
decreasing LH and FSH concentrations, indicating that they may
help follicular fluid (FF) ameliorate the condition (Zhou et al., 2022).
HUCMSCs/EXOs could increase anti-inflammatory mediator IL-
10 while suppressing inflammation-related mediators. Moreover,
they could suppress apoptosis while increasing progesterone
synthesis. Antral follicle count (AFC), testosterone (T), body mass
index (BMI), and baseline levels of LH were all considerably
greater in the PCOS group than in the healthy control group (P
< 0.01). Nonetheless, the PCOS group’s baseline FSH level was
much lower than that of the healthy control group (P = 0.033)
(Zhao et al., 2022).

EXOs have shown promise in the treatment of PCOS,
although there may be concerns to take into account. These
include the possibility that EXOs might worsen pre-existing
problems by carrying hazardous cargo, as well as dangers
related to the EXOs’ source (such as human biologics or disease
transmission). In particular, miRNAs that stimulate granulosa
cell death or cancer cell migration may be present in EXOs from
PCOS patients (Bai etal., 2022). In addition, further study is required
to completely understand the long-term benefits and potential
negative outcomes of EXOs, as their usage in PCOS therapy is still
relatively new.
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6.3 Exosomes in primary ovarian
insufficiency (POI)

Sex hormones are generally known they regulate the
development of eggs and the functioning of reproduction. They have
been shown to have pleiotropic effects in both men and women.
Furthermore, alongside their transcription in typically targeted
tissues, such as the ovaries and the uterus, their receptors have been
discovered in other tissues, such as the bone and the circulatory
system (Yan et al., 2022a). POI is an impairment of normal ovarian
functionality taking place before reaching the age of forty. Menstrual
irregularities in the absence of pregnancy indicate a physiological
or pathological disturbance of this well-organized mechanism.
Although the actual cause of POI is uncertain, the involvement
of environmental and genetic variables in this condition has been
demonstrated (Liu et al., 2023a).

POI is distinct from menopause in that it is a reversible ovarian
syndrome that affects around 50% of POI patients. Furthermore,
roughly 5%-10% of individuals with POI get pregnant and give
birth to a healthy child following therapy (Nelson, 2009). There
have been no reports of successful treatment yet. Hormonal
treatment can only give brief relief for E2 deficiency. Other
options, including egg transfer, are sometimes unfeasible owing
2022a).
Higher E2 levels and enhanced follicle growth, as well as an

to financial and ethical considerations (Huang et al,

expanded population of antral follicles, indicate proper ovarian
function, which eventually leads to a healthy pregnancy. Cellular
differentiation, better vascular remodeling, decreased apoptosis,
and upregulation of antioxidant molecules all contribute to the

Frontiers in Cell and Developmental Biology

16

recovery of ovarian tissue structure and function (Yan et al., 2022a).
Numerous investigations demonstrate that EXOs have therapeutic
advantages in POI (Table 3; Tesarik et al., 2021). Exosome therapy
with MSCs prior to chemotherapy can maintain ovarian health
and safeguard fertility by overexpressing ATP synthase-binding
cassette carriers, including ABCBI1b (Park et al., 2024). As key
players in folliculogenesis, oocyte maturation, steroidogenesis, and
ovulation, microRNAs (miRNAs) are essential regulators of ovarian
function (Ghasroldasht et al., 2025; Nazdikbin Yamchi et al., 2023).
EXOs affect several ovarian functions, including tissue remodeling,
apoptosis, and division of cells. PCOS, POFE, and gynecological
cancers have all been related to dysregulation of miRNAs
(Nouri et al., 2022).

HUCMSCs-EXOs stimulate primordial follicles by transporting
functioning microRNAs. Intrabursal injection of HUC-MSCs-EXOs
into elderly female mice resulted in enhanced oocytic synthesis and
better performance, reversing impaired fertility (Yang et al., 2020b).
In vitro, MSCs-EXOs dramatically increased cell proliferation and
estrogen release while inhibiting apoptosis and pyroptosis. EXO’s
therapy corrected erratic estrous cycles, reversed apoptosis of the
follicles, and raised the conception rate and quantity of pups
in POI mice (Xie et al., 2024).

Human amniotic epithelial cells-EXOs may recapture ovarian
functioning in chemotherapy-triggered POF mice by transporting
miRNAs (Zhang et al., 2019a). MiR-21 transported by HUCMSCs-
derived EXOs might suppress LATS1, lowering phosphorylated
LOXL2 and YAP, and, as a result, increasing estrogen release in
ovarian granulosa cells (Cai et al, 2022). Human endometrial
stem cells (EnSCs)-EXOs dramatically increased ovarian granulosa
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TABLE 3 Investigation of exosomes therapeutic actions in POI.

10.3389/fcell.2025.1605174

Type of Preparation Outcomes Reference
exosomes method
ESCs-EXOS Differential 50-75 nm In vivo: Mice Enhanced granulosa cell Liu et al. (2020c)
centrifugation and proliferation and
ultracentrifugation increased
phosphorylated PI3K
and AKT expression.
miR-126-3p-HucMSCs- Ultracentrifugation 10-100 nm In vitro: Rat OGCs Displayed both Qu et al. (2022)
EXOs pro-angiogenic and
anti-apoptotic effects
HucMSC-Exos Differential In vitro: Mice OGCs Re-established hormone Lietal. (2021b)
centrifugation and In vivo: Mice levels for the ovaries,
ultracentrifugation leading to enhanced
functionality and
multiplication.
MenSCs-EXOs Ultracentrifugation In vivo: Rats Increased the activity Song et al. (2023)
and reduced the death of
VCD-induced granulosa
cells in vitro. improved
POI prognosis, restored
ovaries bioactivities, and
increased GCs activity.
HUC-MSCs EXOs Differential 141.6 nm diameter In vivo: Mice Restored ovarian Ding et al. (2020)
centrifugation and phenotype and function,
ultracentrifugation increased proliferation
MenSCs-EXOs Ultracentrifugation and 128 nm diameter In vivo: Rats MenSCs-EXOs exposure Zhang et al. (2021b)
ultrafiltration boosted granulosa cell
proliferation in
primordial and primary
follicles
MSC-derived EXOs Centrifugation NA In vivo: Mice Restored estrous cycle Park et al. (2023)
and serum hormone
levels
BMSCS EXOs- Differential NA In vivo: Rats Effectively prevented Yang et al. (2020a)
miR-144-5p centrifugation CTX-induced POF and
improved repair by
inhibiting GC apoptosis
through PTEN targeting.

BMSCs, Bone marrow mesenchymal stem cells; CTX, cyclophosphamide; ESCs, embryonic stem cells; HueMSC-EXOs, Human umbilical cord mesenchymal stem cell-derived-exosomes;

HucMSCs, human umbilical cord mesenchymal stem cells; MenSCs, Menstrual blood stromal cells; MSCs, Mesenchymal stem cells; OGCs, ovarian granulosa cells; PI3K,

phosphoinositide-3-kinase.

cells (OGCs) proliferation and function via modulating the Hippo
signaling system. These results add to our comprehension of EnSC-
EXOs role in ovarian function recovery (Wang et al., 2024b).
Serum sex hormone levels returned to normal following embryonic
stem cell (ESCs)/EXOs transplantation. Furthermore, the number
of follicles grew dramatically, while the amount of apoptotic cells
dropped (Figure 5). The in vitro tests showed that ESCs-EXOs could
dramatically boost granulosa cell proliferation and phosphorylated
PI3K and AKT expression levels. Additionally, the beneficial impact
on multiplication and the antagonistic influence on apoptosis found
in GCs were clearly reduced when the PI3K/AKT system was
blocked (Liu et al., 2020c). In a rat POF model, application of miR-
126-3p-hUCMSCs- EXOs elevated E2 and AMH concentrations,
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raised body and female reproductive organs masses and follicle
numbers, and decreased FSH (Qu et al., 2022).

In vitro, EXOs administration dramatically increased the activity
of granulosa cells caused by 4-vinylcyclohexene diepoxide (VCD)
while inhibiting apoptosis (Song et al, 2023). Menstrual stem
cells (MenSCs) stimulated the division of granulosa cells, as well
as prevented follicle apoptosis. In a rat model of POI, MenSCs-
EXOs transplantation successfully increased follicle formation and
augmented estrous cycle and normal levels of sex hormones, leading
to a better live birth outcome (Zhang et al., 2021b).

Regarding the assessment of long-lasting impacts, MSCs-
administered mice revealed that 60%-80% of the samples
became pregnant in the second cycle of breeding. In contrast,
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mice that received EXOs became impotent again in the
second cycle of reproduction (Park et al, 2023). BMMSCs-
derived EXOs suppress degeneration of ovarian follicles in
cyclophosphamide (CTX)-administered rats by transporting miR-
144-5p, which could be transported to CTX-affected OGCs and
reduce GC death (Yang et al., 2020a).

In POI rats, amniotic fluid EXOs transplantation may help
ovarian function via activating the TGF-B/Smads signaling system
(Nazdikbin Yamchi et al., 2023). In order to compare the fertility
restoration, parallel breeding studies were also carried out.
Comparing the MSCs-treated and EXOs-treated groups to the
untreated POI mice, the former showed restored blood hormone
levels and estrous cycles. After treatment, the group treated with
MSCs had a pregnancy rate of 60%—100%, whereas the group treated
with EXOs had a pregnancy rate of 30%-50%. Remarkably, in terms
of long-term impacts, the mice that received MSCs continuously
maintained a 60%-80% conception rate over a second breeding
cycle, whereas the group treated with EXOs relapsed into infertility
during the same period (Park et al., 2023).

Thirty women with reduced ovarian reserve who refused the
egg donation process participated in a prospective, randomized,
comparative research by Navarro et al. There were three trial groups,
each with ten patients: the first received saline solution, the second
PRP, and the third platelet-derived autologous EXOs. Women in
the autologous Exosome group showed improvements in female
reproductive factors such as FSH, LH, Estradiol, Anti-Miillerian
hormone, and antral follicle count, in addition to edema of more
oocytes acquired in Metaphase II, higher fertilization percentage,
frozen embryos, and confirmed pregnancies. Autologous EXOs for
ovarian biostimulation may provide a safe and effective treatment
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for lowering indicators of poor ovarian reserve (Navarro et al,
2025). In conclusion, research has shown the clear advantages of
exosome therapies for the management of POI and in regenerative
medicine. Nevertheless, there are not enough preclinical studies
showing exosome therapy’s effectiveness and safety for POI.

6.4 Ashermann syndrome (AS)

It is a gynecological illness that was originally reported by
Israeli physician Joseph Asherman in 1948 (Khan, 2023). It is
a complex illness that involves the partial or total loss of the
uterus and/or cervical canals. It is a hotly debated issue due to its
significant impact on both reproductive outcomes and gynecological
disorders (Liu et al., 2020a). According to recent findings, damage
to the endometrium is the primary driver of intrauterine adhesion
development (He et al, 2022; Dong et al., 2025). If neglected,
these adhesions can produce several manifestations, from mild to
catastrophic (Tarafdari et al., 2023).

Recovering the uterine cavity’s dimensions and form, limiting
adhesion recurrence, encouraging the endometrium’s regeneration
and repair, and reestablishing regular reproductive processes
are the goals of treatment for Asherman syndrome. Numerous
surgical procedures have been described within the past century
(Saribas et al., 2020; Khan, 2023). Following surgery, the uterine
cavity can be restored and the endometrium can be regenerated,
allowing all three patients to resume regular menstruation (Tan etal.,
2021). However, patients’ postoperative hysterosalpingography
(HSG) findings showed persistent endometrial scarring. In
situations when the uterus is completely obliterated and there
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are no markers to help the surgeons separate the cavity walls, the
researchers concluded that this procedure has shown promising
outcomes in restoring the integrity of the uterus (Katre et al,
2024). However, to confirm the effectiveness of this method, many
patients must undergo longer-term follow-up evaluations. This
therapy should only be used in the most severe circumstances,
and patients should have received counseling on the risks of
scar rupture during subsequent pregnancies, the chance for
bleeding with a hysterectomy, and the difficulties of a laparotomy
(Zhang et al., 2023c; Tsiampa et al., 2024).

Newton et al. (1989) and Chapman and Chapman (1996) have
reported on laser vaporization surgery, employing Nd-YAG and
KTP lasers. In the latter technique, the necrosis depth has been
reported to be low, ranging from 1 to 2 mm. Although the technique
has been employed in outpatient settings with CO2 distension,
it is only applicable to individuals who have filmy intrauterine
adhesions. Nowadays, hysteroscopic adhesiolysis seldom ever uses
this technique (Echeng et al., 2024). While Asherman’s syndrome
was first recorded over a century ago, and several preventative
measures have been developed, a viable non-invasive treatment
for preventing adhesion recurrence must be presented and proven
(Table 4; Ghajari et al., 2023).

Numerous paracrine factors involved in angiogenesis and
regeneration are found in EXOs. EXOs are very interesting in
the field of regenerative medicine since they include a wide
range of materials, including non-immunogenicity (Mansouri-
Kivaj et al, 2023; Hou et al, 2025). EXOs miR-122 can
boost endometrium rejuvenation and repair of conceiving
capability in mice (Chen et al., 2023).

Although there are EV20K and EV110K subpopulations,
EV110K populations are in fact often smaller than EV20K
populations (Hosseinkhani et al, 2020). Mansouri-Kivaj et al.
mechanically damaged adult rat uteri to construct an AS model.
A homogenous population of BMMSCs, MSCs, or MSCs-derived
EXOs subpopulations (EV20K and EV110K) was then administered
to the mice right away. MSCs and EXOs transplantation helped to
heal the endometrium and promote female fertility, most likely by
inhibiting extensive fibrotic and inflammatory reactions, increasing
endometrial cell division, and regulating mediators associated with
endometrial receptivity. BMMSCs outperformed traditional MSCs
in terms of reproductive functionality restoration. Furthermore,
EV20K is more affordable and viable for the avoidance of AS than
traditional EXOs (EV110K) (Mansouri-Kivaj et al., 2023).

MSCs and exosome therapies improved uterine tissue growth
and vascularization. MSCs and EXOs treatment raised MMP-2 and
MMP-9 transcription, but TIMP-2 concentrations dropped. MSCs
and exosome treatments boosted multiplication and vascularization
while decreasing fibrosis in the uterus, with better results in EXOs-
treated groups (Saribas et al., 2020). BMMSCs-derived EXOs, like
BMMSCs, can heal wounded endometrium and could counteract
EMT in rabbit epithelial ECs generated by TGF-B1. BMMSCs-
EXOs may stimulate endometrial healing via the TGF-f1/Smad
system (Yao et al, 2019b). ADSCs-EXOs Laden PEG Hydrogel
has a remarkable neovascularization-promoting impact, increasing
HUVECs division and tube formation by 1.87 and 2.2 times.
This platform enhanced vascularity and tissue regeneration while
blocking fibrosis in vitro and in vivo (Lin et al., 2021b).
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Adipose stem cells EXOs (ADSC-EXOs) therapy in the
IUA model preserved typical uterine morphology, accelerated
endometrial rejuvenation and restructuring of collagen, increased
levels of integrin-p3, LIF, and VEGE, and increased responsiveness
of the rejuvenated endometrium (Zhao et al., 2020). Umbilical cord
stem cells EXOs (UCMSCs-EXOs) can stop endometrial cell fibrosis
via modulating the miR-145-5p/ZEB2 axis, suggesting a possible
innovative method to enhance endometrial healing (Li et al., 2023b).

Tan et al. extracted BMSC-Exo using the magnetic bead affinity
technique and examined its biological makeup. In this study, the
exosome-specific proteins CD9, CD63, and CD81 were expressed
by BMMSCs-EXOs. The contents may be transported into the
target cells by BMMSCs-Exo. Both in vitro and in vivo, BMMSCs-
Exo can support endometrial healing. Overexpression of miR-
29a in BMMSCs-Exo may decrease aSMA, Collagen I, SMAD?2,
and SMAD?3 (Tan et al., 2020).

6.5 Preeclampsia

Preeclampsia is one of the “enigmatic obstetrical syndromes”
in which several, sometimes interconnecting pathologic events
activate a similar pathway that includes endothelial cell stimulation,
intravascular inflammatory processes, and syncytiotrophoblast
stress (MacDonald et al., 2022). Preeclampsia is a hypertensive
pregnancy condition that, if detected and treated early, can
significantly reduce the risk of fetal mortality (Lin et al., 2022).

Nowadays, invasive laboratory testing and clinical signs like
proteinuria and hypertension are used to diagnose preeclampsia.
Establishing preventative measures to lower the incidence and
severity of preeclampsia (PE) and its related consequences requires
the development of methods for earlier identification of people who
are susceptible to PE (Verlohren and Droge, 2022).

Kim et al. used maternal urine and urinary EXOs to study the
function of soluble proteins and EXOs in noninvasively detecting
preeclampsia. They found that urine as-is had larger quantities of
soluble proteins than urinary EXOs, including placental growth
factor (PIGF) and fms-like tyrosine kinase-1 (sFlt-1). The sensitivity
of the sFlt-1/PIGF ratio proved to be 1.5 times greater in tests
using urine-derived EXOs and 4.0-fold greater in urine testing when
compared with commercial blood tests. Their research presents
encouraging opportunities for the early and non-invasive detection
of high-risk patients who may develop preeclampsia, enabling all-
encompassing preventative care (Kim et al., 2024).

Salomon proposed that measuring the amount of placenta-
derived EXOs in maternal blood, as well as the expression
of hsa-miR-486-1-5p and hsa-miR-486-2-5p, might help us
monitor asymptomatic women who are at risk of developing PE
(Salomon et al., 2017). Because placental protein 13 is essential
for initial placental growth and the modulation of maternal
immunoreaction via T-cell and macrophage apoptosis, low
quantities of this protein in EXOs may be significant for confirming
the diagnosis of PE (Pillay et al., 2017). Additionally, syncytin-2, an
immunosuppression protein generated from EXOs, can prevent T
lymphocyte and NK cell activation via the Fas ligand and PD-L1
(Mincheva-Nilsson and Baranov, 2014). STBs often use exocytosis
to create placenta-derived EXOs, which are then released into the
mother’s bloodstream. By activating maternal lymphocytes (which
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TABLE 4 Exosomes benefit in Ashermann syndrome therapy.

Type of EXOs

Cargo Preparation

technique

10.3389/fcell.2025.1605174

Outcomes Reference

MSCs/MSCs-EXOs Ultra-centrifugation

diameter

120-400 nm in

In vivo: Rats Minimized Mansouri-Kivaj et al.

concentrations of (2023)
proinflammatory
TNFa and boosted
the release of
anti-inflammatory
1L-10, as well as
endometrial
receptivity cytokines
VEGF and LIE

uterine-derived 40-100 nm

MSCs-EXOS

Immunoprecipitation

Enhanced
vascularization and

In vivo: Rats Saribas et al. (2020)
proliferation in
uterine tissue, as well
as reduced fibrosis
faster than MSCs.

BMSCs-EXOs Immunoprecipitation

130 + 11 nm.

In vivo: Rabbits TGF-bl can reverse
the endothelial-
mesenchymal
transition (EMT) in
rabbits.

Yao et al. (2019b)

Differential
centrifugation

ADSC-EXOs-
loaded PEG-Ag
hydrogel

ADSC-EXOs

50-100 nm in size

In vitro: HUVEC
In vivo: Rats

In vitro: improved Lin et al. (2021b)
their angiogenic
potential.

In vivo: promoted
endometrial

regeneration

ADSC-EXOs Differential

ultracentrifugation

30-200 nm

In vitro Restoring Zhao et al. (2020)

In vivo: Rats endometrium to
normal shape,
decreasing fibrotic

mediators.

UCMSC-EXOs Differential

ultracentrifugation

50-150 nm

Alleviated
TGFp1-induced
endometrial fibrosis.

In vitro: Li et al. (2023b)
endometrial stromal

cells (ESC)

ADSC-EXOs, Adipose stem cell-derived exosomes; BMSC, bone marrow mesenchymal stem cell; ESC, endometrial stromal cells; IL, interleukin; LIF, leukemia inhibitory factor; MSCs,
Mesenchymal stem cells; PEG, poly ethylene glycol; TGE, transforming growth factor; UCMSC-EXOs, umbilical cord mesenchymal stem cell-derived exosomes; VEGE, vascular endothelial

growth factor.

leads to the detection of paternal placental antigens) and inducing
the apoptosis of trophoblasts through exosome-driven secretion
of FasL, STB-derived EXOs play a role in immunoregulation
during pregnancy and contribute to the pathophysiology of PE
(Mincheva-Nilsson, 2021; Jaremek et al., 2021; Yu et al., 2022).

EXOs play a critical part in fetoplacental development in
normal pregnancies (Figure 6; Tantengco et al, 2021). In this
regard, Tang etal. effectively collected HucMSCs-EXOs which
could partly reverse Soluble fms-like tyrosine kinase-1 (sFlt-
1) triggered HUVECs dysfunction in vitro. The addition of
HUCMSCs-EXOs partially restored the reduced eNOS protein
expression seen in OV-sFlt-1-HUVECs. Endothelium cellular
migration may be facilitated by MSCs-EXO’s delivery of matrix
metalloproteinase 2 (MMP2). It has been shown that EXOs MMP2
stimulates endothelial angiogenesis through the VEGF/Erkl/2
signaling system (Tang et al., 2019).
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Versican (VCAN), which is abundantly expressed in tissues
with metabolic activity, can drive angiogenesis and may rely on
interactions with VEGF to affect the ECM’s assembly (Sagae et al.,
2023). These proteins deposited in HUC-MSCs-EXOs were taken
up by the vascular endothelium and stimulated angiogenesis,
relocation, and cell division to repair compromised vascular tissues
in animals that resembled preeclampsia. In mice, HUCMSCs-
EXOs alleviated hypertension and improved fetal birth weight;
furthermore, preeclamptic dams injected with these regenerated
extensive placental vascularity (Chang et al., 2023).

In a different investigation, it was shown that EXOs miR-
139-5p from HUCMSCs-EXOs accelerated trophoblast invasion
and migration, activated the ERK/MMP-2 pathway, and blocked
trophoblast apoptosis by decreasing protein tyrosine phosphatase
expression, all of which improved PE manifestations in rats
(Liu et al., 2020b). Furthermore, research found that the placenta of
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PE patients had greater amounts of Notch2, TIM3, and mTORC1
and decreased expression of miR-18b. By releasing microRNA-
18b, which inhibits trophoblasts’ production of Notch2, HUC-
MSCs-EXOs stimulated trophoblast motility. They also used
HUCMSCs-EXOs in a rat model of PE and discovered that it
helped pregnant animals with PE symptoms (Yang et al., 2021b).
Additionally, it was discovered that by delivering miR-101 to
trophoblasts and suppressing BRD4 expression, HUCMSCs-
EXOs stimulated trophoblast recruitment and penetration. Under
hypoxic MSCs-EXOs trophoblast
migration and invasion as well as autophagy and trophoblast
2020).
trophoblast inflammation in hypoxic circumstances, Jiang et al.
found that HUC-MSCs-EXOs enhanced the growth, migration, and
spreading of hypoxic trophoblasts and decreased FSTL3 expression
via transferring miR140-5p (Jiang et al., 2022). Amniotic MSCs-
derived EXOs promote trophoblast proliferation by blocking the
EZH2/mTOR signaling pathway, which in turn enhances autophagy
in trophoblasts (Chu et al., 2020).

Even though EXOs have much promise for therapeutic

circumstances, stimulated

multiplication (Cui et al, In addition to suppressing

uses, their restricted capacity to target in animal trials results
in issues such as short half-lives and decreased therapeutic
effectiveness. By directly altering EXOs without requiring cell
modification, biochemical engineering provides a quicker,
easier, and more efficient method to increase certain exosome
secretion (Xu et al., 2021).

King etal. investigated the possibilities of tumor-homing
peptide iRGD, which attaches to the placental surface in mice
and humans in a selective manner without obstructing normal

development. As a result, iRDG-EXOs may have essential proteins
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or genes that target the placenta preferentially and are essential
for treating PE (King et al, 2016). In addition to improving
our knowledge of the pathophysiology of preeclampsia, additional
investigation into particular chemicals found in EXOs makes it
possible to find more sensitive and precise biomarkers for the start of

the condition. It has potential as a therapy for preeclampsia as well.

6.6 Gynecological cancers

of the
reproductive tract, which includes the uterus, ovary, fallopian

Gynecological carcinomas are cancers female

tube, and placenta (Kataki et al., 2023). These illnesses constitute
2024).
Gynecological malignancies are predicted to cause around 17

an international health concern for women (Sun et al.,

million disability-adjusted life years (DALYs), accounting for one-
sixth of all cancer-related DALYs in women (Kocarnik et al., 2022).

Ganesh etal. treated HeLa cells with Allyl Isothiocyanate
(AITC) and looked at the effect of miR16-enriched EXOs on
human fibrosarcoma HT1080 cells. When EXOs were grown with
fibroblasts, miR-16 transcription rose within the cells. AITC-
exposed HeLa EXOs raised the Bax/Bcl2 ratio while decreasing
PCNA, HIF-la, SDF-la, IL-6, and p22phox expression in
fibroblasts. Knocking down miR16 in fibroblasts reduced AITC-
induced increases in the Bax/Bcl2 ratio while restoring production
of VEGE, PCNA, HIF-la, SDF-1a, IL-6, and p22phox. These
findings highlight the promise of AITC-mediated EXOs miR16
enrichment as an efficient strategy to suppress cancer growth
and progression, as well as a novel possibility for the treatment
of cancer (Ganesh et al., 2025).
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6.6.1 Ovarian cancer (OC)

OC s the primary cause of mortality among females who receive
a diagnosis of gynecological cancer (Menon et al., 2021). In addition,
it is the seventh leading cause of death among women worldwide
(Gaona-Luviano et al, 2020). EXOs have also been found to
influence the tumor immunological milieu and subsequent immune
responses, including presenting antigens, movement, metastasis,
and tumor infiltration (Guo et al., 2022). Despite accurate diagnosis
and early treatment approaches, the outcome for OC patients
remains poor since chemotherapy’s efficiency is restricted by
resistance and off-site effects (Cabasag et al., 2022). EXOs are widely
regarded as reliable carriers thanks to their capacity to circumvent
current pharmacokinetic issues. EXOs, unlike other nano vectors,
may bypass the endosomal and lysosomal routes and transfer their
cargos straight into the cytoplasm of target cells (Figure 7; Table 5; Li
and Wang, 2017).

The majority of OC patients respond sensitively to the
(PTX)
Regretfully, the majority of patients die from increasingly

recommended platinum and paclitaxel treatment.
chemotherapy-resistant illness and relapse within 6-12 months
(Cho and Shih, 2009). In pharmaceutical-resistant human
ovarian cancer cells, the lysosomal proteins ATPase copper-
transporting alpha and beta (ATP7A and ATP7B), which are
potential CIS-export carriers, can increase the EXOs transfer

of platinum (Safaei et al.,, 2005).
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Berry bioactive agents show potential for cancer prevention
and treatment. Aqil etal. investigated the inhibitory actions of
berry anthocyanidins (Anthos) on the division of ovarian cancer
cells. EXOs Anthos (EXOs Anthos) had a much higher anti-
proliferative efficacy against ovarian cancerous cell growth and
reduced tumor development more effectively than other groups.
Paclitaxel (PAC) is often effective in treating patients with cisplatin-
resistant cancers. Finally, they found that the amalgamation of
Anthos and PAC lowered PgP levels in OVCA432 cells in a
dosage-dependent way. The amalgamation of ECOs@PAC and EXOs
@Anthos demonstrated considerably increased anticancer efficacy
against A2780 tumor xenografts (Aqil et al., 2017).

MiR-199a-3p-Exo significantly reduced peritoneal spread in
the OC mouse model and decreased c-Met transcription, ERK
phosphorylation, and MMP2 levels in cancers (Kobayashi et al.,
2020). Pisano etal. presented immunologically derived EXOs,
Mimetics (IDEM) from monocytic cells as an innovative technique
for targeting and killing ovarian cancerous cells. Drug uptake by
IDEM was better than natural EXOs, revealing IDEM’s advantage
in decreasing negative reactions while increasing cytotoxicity
in the targeted tissues by administering a lesser dose of the
chemotherapy (Pisano et al., 2020). Moreover, eNK-EXOs can be
selectively absorbed by SKOV3 cells and are cytotoxic to OC cells.
Additionally, eNK-EXOs loaded with cisplatin enhance OC cells’
responsiveness to cisplatin’s anti-proliferative impact. In addition,
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TABLE 5 Exosomes in management of ovarian cancer.

10.3389/fcell.2025.1605174

Type of Preparation Dimensions Outcomes Reference
exosomes metho
miR-199a-3p-EXOs Ultracentrifugation 100 nm In vitro: OC cell Inhibited cell Kobayashi et al.
and density gradient lines (CaOV3; proliferation and (2020)
ultracentrifugation SKOV3; OVCAR3) invasion
significantly reduced
peritoneal spread
ThP-1 cells DOXO Ultracentrifugation EXOs: 112 + 14 nm In vitro: SKOV-3 Targeted cytoxicity Pisano et al. (2020)
EXOs/IDEM IDEM 177 + 19 nm. ovarian cancer cells
eNK-EXOs Differential ~80 nm In vitro: SKOV3 cells Selective cytotoxicity Luo et al. (2023a)
ultracentrifugation and
anti-proliferative
impact.
HENPs TP and miR497 Ultracentrifugation 104 + 11 nm In vitro: SKOV3 cells Significantly Li et al. (2022¢)
and Ultrafiltration In vivo: Mice enhancing tumor
cell apoptosis
without any negative
effects in vivo.
OCSCs-EXOS- Ultra-high- 30-150 nm In vitro: Pan et al. (2024a)
miR-4516 speed centrifugation SKOV3/DDP
In vivo: mice
MSCs-EXOs miR-424 High-speed 30-120 nm In vitro: SKOV-3, Blocked ovarian Lietal. (2021a)
centrifugation HO8910, A2780 and cancer cell growth,
HUVECs. immigration, and
infiltration.
hUC-MSC-derived Differential ultra ~100 nm In vitro: A2780 and Reduced ovarian Qiu et al. (2020)
EXOs miR-146a centrifugation SKOV3 cancer cell
proliferation and
resistance to
chemotherapy.
ADSCs -EXOs Immuno 70 nm and 100 nm In vitro: A2780 and Reduced in viability Reza et al. (2016)
precipitation SKOV-3 and proliferation.

ADSCs, Adipose stem cells; eNK-EXOs, exosomes derived from expanded natural killer cells; EXOs, Exosomes; HENPs, Hybrid exosomes nanoparticles; HucMSCs, human umbilical cord
mesenchymal stem cells; HUVECs, Human umbilical vein endothelial cells; IDEM, immune derived exosome mimetics; MiRNAs, Micro ribonucleic acids; MSCs, Mesenchymal stem cells; OV,

ovarian cancer; OCSCs, ovarian cancer stem cells; TP, triptolide.

they could stimulate NK cells from the inhibitory tumor micro-
environment (Luo et al., 2023a).

MSCs-derived EXOs transport miR-424, which downregulates
MYB, hence
angiogenesis. Thus, this work provides a possible predictive

inhibiting ovarian cancer development and
indicator and treatment approach for ovarian carcinoma (Li et al.,
2021a). HUCMSCs-EXOs inhibited cell proliferation and chemo
resistance in OC (Qiu et al, 2020). In addition, hAMSCs-
derived EXOs increased apoptosis signaling by increasing
several pro-apoptotic mediators, while minimizing the anti-
apoptotic protein BCL2. More precisely, cancerous cells showed
decreased survivability after being treated with fresh or protease-
digested EXOs (Reza et al., 2016).

EXOs have lately been exploited as medication delivery vehicles
due to their inherent benefits. To enhance patient outcomes with
platinum-resistant ovarian cancer, innovative medication delivery
strategies are required. Sonication disrupted the EXOs’ membrane,
allowing for great loading efficiency. Loading cisplatin into M2
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EXOs significantly improved its cytotoxicity in chemo-resistant
A2780/DDP cells (1.7x) and pharmaceutical-responsive A2780
cells (1.4x) (Zhang et al., 2020c).

More studies are needed to ascertain the diagnostic sensitivity
and selectivity of exosome analysis and miRNA expression profiling
in early-stage ovarian cancer, despite some studies suggesting
its diagnostic promise (Berkel and Cacan, 2021). For instance,
Todeschini et al. examined two cohorts of 168 patients with stage
II-IV HGSOC and 65 healthy controls. They showed that miR-
1246 has clinical potential as a diagnostic biomarker for High-
grade serous ovarian carcinoma (HGSOC), as evidenced by the
significantly higher expression of miR-1246 in serum samples
of HGSOC patients than in healthy individuals. In order to
find potential diagnostic miRNAs, this work employed a unique
microarray data normalization technique. RT-qPCR was then
utilized to validate the signatures. According to the study, HGSOC
patients had considerable overexpression of miR-1246, miR-595,
and miR-2278. MiR-1246 had the best detection capability, with
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an 87% diagnostic sensitivity, 77% specificity, 84% accuracy,
and 0.89 AUC (Todeschini et al., 2017).

Likewise, there have been suggestions regarding the clinical
potential of EXOs in ovarian cancer. Zhang et al. examined the
function of four exosome proteins Lipopolysaccharide Binding
Protein (LPB), Fibrinogen Gamma Chain (FGG), Fibrinogen Alpha
Chain (FGA), and Gelsolin (GSN) as diagnostic biomarkers by
comparing plasma samples from 40 stage IIT or IV EOC patients to
40 healthy controls (Zhang et al., 2019b). According to this study, the
ovarian cancer group had considerably lower levels of FGG and LBP
and significantly higher levels of FGA and GSN. With an AUC of
0.8459, FGA had the best diagnostic sensitivity of the four choices. In
a different research, Schwich et al. found that the plasma circulating
EXOs of 78 EOC patients (63 stage ITII-IV and 7 stage I-II) had seven
times higher HLA-G levels (mean 14.3 ng/mL) than healthy controls
(1.9 ng/mL) (Schwich et al., 2019). As a result, research on miRNA
and exosome analysis has been focused on patients with advanced
ovarian cancer thus far; further studies are required to clarify their
diagnostic value for early-stage illness.

Since EXOs cannot reproduce and are not mutagenic, they
are a safer option for biological carriers than viral vectors or cell
therapy. Therefore, there are not many regulatory worries about
toxicity or the emergence of neoplasia. Experiments using in vivo
EXOs therapy have shown little to no harm (Elsharkasy et al,
2020). EXOs generated from HEK293T cells are not harmful
when given to mice systemically (Zhu et al., 2017), while siRNA-
engineered EXOs remain non-toxic even after being given to animals
repeatedly (Kamerkar et al., 2017). Exosome safety is demonstrated
by these investigations as well as several other tests. Nonetheless,
there are major differences between complement activation-related
pseudoallergy (CARPA) in big animals and small animals (rodents)
(Dézsi et al, 2014), Exosome safety is demonstrated by these
investigations as well as several other tests. However, safety trials in
rodents require cautious interpretation since the CARPA in small
animals (rodents) differs fundamentally from that in big mammals.
When administered as an intramuscular vaccination, serum-derived
EXOs from virus-infected pigs do not exhibit any CARPA-related
toxicities (Montaner-Tarbes et al., 2018).

6.6.2 Cervical cancer

Cervical cancer is one of the most frequent female carcinomas
and the leading cause of cancer-associated mortality in females
globally (Castle et al., 2021). As a prominent therapeutic technique
in cervical cancer, chemotherapy can increase the survival rate
of patients by forcing cancerous cells to undergo apoptosis
(Shelley et al., 2021). However, due to the action of chemotherapy
medications, cancerous cells eventually develop resistance against
chemotherapy (Sherer et al., 2022).

Numerous processes enable cancer cells to withstand the
cytostatic and cytotoxic effects of medications, which leads to
drug resistance in these cells. The primary cause of this is the
membrane protein of the ATP-binding cartridges, which can extract
harmful substances from the intracellular medium (Chen et al.,
2020). The varied activity of cytochrome P450, which is brought on
by different genetic variations of the CYP gene family, is another
factor contributing to drug resistance (Ding et al., 2018). These
genetic variations are connected to cancer cells’ efficient drug
metabolism, which lessens the cytotoxic effects of medications

Frontiers in Cell and Developmental Biology

24

10.3389/fcell.2025.1605174

(Abbas et al., 2022). Furthermore, the majority of anticancer
medications target DNA impairment, which is repaired via various
cancer’s efficient mechanisms. Vesicles have been implicated in the
failure of cytostatic therapies, according to studies (Bhuia et al.,
2023; Shi et al., 2024). The microenvironment of cancerous lesions
is rich in EXOs, which have a role in the invasion, metastasis,
angiogenesis, and treatment resistance of these malignancies
(Mashouri et al., 2019; Sahebi et al., 2020). EXOs miR-651, produced
from cancer, specifically targeted ATG3 and inhibited cisplatin
resistance, suggesting that it may be an effective therapy.

Initiation of cancer cell ferroptosis has been advocated as
a therapy for a variety of types of cancers. Tumor-associated
macrophages (TAMs) serve an essential function in increasing
tumor malignancy and therapeutic resistance (Deng et al.,, 2022).
Luo et al. observed that TAMs-derived EXOs carrying miR-660-5p
into cervical cancer cells might inhibit arachidonate 15-lipoxygenase
(ALOX15) transcription and hence attenuate ferroptosis. The
process is then hampered by this miR-660-5p, which suppresses the
production of ALOXI15 in cancer cells, a crucial enzyme involved
in ferroptosis. The paper also emphasizes the findings’ clinical
significance, indicating that modifying the expression of miR-660-
5p or focusing on TAMs may be viable treatment approaches for
cervical cancer (Luo et al., 2023b).

It is well known that microRNAs (miRNAs) play a significant
role in the development of CC. It was discovered that the
plasma EXOs of CC patients had decreased levels of MiR-423-
3p. EXOs have been linked to macrophage polarization, and exo-
miRNAs have been shown to be putative modulators of cancer
development. EXOs miR-423-3p can reduce tumor growth and
CC cell development by blocking macrophage M2 polarization.
By targeting cyclin-dependent kinase 4 (CDK4) mRNA, miR-423-
3p can control macrophage M2 polarization. It also suppresses
the phosphorylation of the signal transduction and activation of
transcription 3 (STAT3) via CDK4 to reduce the production of
interleukin 6 (IL-6) (Yan et al., 2022b).

6.6.3 Endometrial cancer

As stated by Global Cancer Statistics 2020, endometrial cancer
(EC) is the second most prevalent malignancy of the female
genital tract and the sixth most prevalent female cancer, with
significantly greater rates of incidence in developed countries
than in developing countries (Sung et al, 2021). EC is mostly
an illness of postmenopausal women, with an average age of
onset of 65 (Karkia et al., 2025).

Through EXOs, endometrial cancer cells can transfer short
regulatory RNAs to endometrial fibroblasts (Bian et al., 2024). EXOs
produced from endometrial cancer cells contained EXOs miR-133a,
which was transferable to normal endometrial cells (Shi et al.,
2020). By controlling the miR-381-3p/E2F transcription factor
3 (E2F3) axis, EXOs IncRNA deleted in lymphocytic leukemial
(DLEU1) generated from endometrial malignancies enhanced the
migrative and invasive capabilities of endometrial cancerous cells
(Jia et al., 2020). However, the MSCs EXOs miR-499 decreased
tumor development and angiogenesis in vivo and prevented the
division of endometrial cancer cells and tube development of
endothelial cells in vitro (Jing et al., 2020).

Cancer-associated fibroblasts’ EXOs IncRNA NEAT1 promotes
the growth of endometrial cancer through the STAT3/YKL-40
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signaling pathway controlled by miR-26a/b-5p (Fan et al., 2021).
In conclusion, the impact of EXOs released by various cell types
on the development of endometrial cancer is diverse. EXOs,
which demonstrated promise in cancer treatment since they act
as drug delivery vehicles and may influence tumor growth. They
can transport therapeutic materials, including RNA, proteins, and
medicines, targeting endometrial cancerous cells and potentially
improving the efficacy of current treatments while reducing adverse
effects (Figure 8; Song et al., 2021).

HUCMSCs-derived EXOs are regarded as ideal instruments for
target-based treatments. HUCMSCs can convey engineered EXOs
overexpressing tumor-suppressor miRNAs to EC cells, inhibiting
their growth. Utilizing this technique, Li etal. targeted EC cells
with miR-302a overexpressing EXOs, which inhibited their division
and migration by lowering cyclin D1 levels and deactivating the
AKT signaling (Li et al., 2019). Additionally, these EXOs decreased
the levels of mesoderm-specific transcript (MEST) in EC cells,
inhibiting tumor formation (Pan et al., 2022).
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The most common cause of death from endometrial cancer
(EC) is still metastasis. EXOs have been used in treatment
plans due to their biological role and regenerative qualities.
Numerous malignancies have reduced SERPINAS expression, which
is associated with invasion and migration of tumor cells (Fan et al.,
2022; Yang et al, 2024a). Exogenous SERPINA5 loading of
EXOs may be a unique treatment method for metastatic EC,
according to Song etal., who also observed that low levels of
SERPINAS transcription are associated with decreased survival
outcomes in EC (Song et al., 2022).

The lining of the uterus is impacted by endometrial cancer.
EXOs are a promising option for treating cancer because of their
endogenous action, intrinsic targeting, and capacity to interact with
the host defense system (Rodolakis et al., 2023). These advantages
suggest that MSCs’ EXOs laden with paclitaxel and carboplatin may
function similarly to immune cells in the fight against cancer.

In comparison to normal endometrium, Ma et al. discovered
that carboplatin (Car)/paclitaxel (Pac)@MSCs EXOs downregulated
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endometrial cancer (EC) cells. The effects of varying dosages of Car-
Pac@EXOs on ECC-1 and HEC-1A EC cells were investigated in
vitro. EXOs from Car-Pac@ MSCs caused apoptosis in EC cells. By
decreasing MMP-2 expression through Racl/NF-kB signaling, the
formulation of Car-Pac@ MSCs EXOs decreased EC cell migration
and invasion. The findings suggested that Car-Pac@ MSCs EXOs
might be a useful tool for EC diagnosis and therapy (Ma et al., 2024).

/ Limitations in contemporary
exosomes investigations

Notwithstanding the growing technological focus in the field of
EXOs, investigations on EXOs in female reproductive health vary
with regard to accuracy and systematic aspects (Yu et al., 2021;
Liu et al., 2023b; Shen et al., 2023).

7.1 Isolation techniques

Isolation approaches differ in terms of their capacity to
distinguish soluble elements from EXOs and the dimensions of
the EXOs they can isolate (Le Gall et al., 2020). The use of
varied methodologies resulted in inconsistencies in the size and
components of EXOs evaluated in numerous EXOs investigations
to date (Zhang et al., 2018). The viscosity and protein content of
various fluids differ, requiring particular procedures depending on
the biofluid or tissue under examination (Zebrowska et al., 2022).
While a variety of solutions exist for harmonizing reconstruction
and selectivity, research has thus far been impeded by a lack of
approach standardization, which is crucial for reducing artifacts
(Li et al., 2022d; Lopez de las Hazas et al., 2021). While differential
ultracentrifugation is generally regarded as the hallmark of
exosome separation, it has an enormous burden and frequently
contains proteins and lipoproteins (Kverneland et al., 2023).
While advances may be made by hyphenating distinct approaches
of separation, such as ultracentrifugation and immunoaffinity
capture, which draw on the capabilities of both the physical
and biological worlds, it is important to consider the added
workload and expense (Ciftci et al., 2023; Jang et al., 2023).
Similarly, ultrafiltration has limits, despite being a common exosome
separation method. For example, ultrafiltration is susceptible to
obstruction and blockage, resulting in a shorter membrane lifespan
and worse separation efficiency (Gao et al.,, 2022). EXOs can also
bind to the membranes and become inaccessible for subsequent
analyses, leading to decreased productivity and occasionally
misinterpretation of outcomes from tests (Gao et al., 2022).

Furthermore, size-based separation of EXOs is complicated
by the existence of a significant amount of nanoparticles (some
non-vesicular) that are identical in dimensions to EXOs. SEC can
produce extremely pure EXOs, but it requires specially designed
machinery and is not easily scaled (Lu et al., 2021b). Since SEC
is commonly conducted utilizing gravitational flow, vesicle shape
and functionality are essentially intact, as is exosome biological
activity. Furthermore, the SEC has remarkable repeatability.
Nevertheless, its long run time restricts its capacity for large-scale
scenarios (Shu et al., 2021).
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Immunoaffinity capture is a powerful tool for separating EXOs
of a given source as well as subpopulations of EXOs. However,
as a fledgling area, the finest EXOs tags have yet to be developed
(Pei et al., 2024). Given that only a portion of EXOs encoding
the antibody-recognized protein is collected, yields are typically
lower but considerably greater in purity than those separated using
exosome physical features (Zhang et al., 2021a).

Underestimations and inaccurate findings may also result from
disparities in antigen expression and regulation as the disease grows.
Furthermore, the antigenic epitope can be inhibited or disguised.
Although exosome precipitation is simple and exosome isolation can
be completed in a single step, inconsistent yields, time-consuming
sampling and cleaning processes, and a shortage of a suitable
targeted isolation technique undoubtedly compromise the high
quality of the separated EXOs, compromising subsequent analyses
(Wang et al., 2021; Fernandes et al., 2025).

EXOs have been found to co-precipitate with other cellular
components, including other extracellular vesicles, protein
clumps, and even extremely abundant proteins, in a variety of
biofluids such as plasma and serum. Furthermore, the varying
viscosity and sample matrix need distinct exosome precipitation
quality requirements, compromising precipitation technique
harmonization. Despite tremendous advancements, none of the
first-generation microfluidic devices are suitable for clinical trials
due to difficulties like adaptability, assurance, and consistency
(Huang et al., 2021; Cao et al., 2025).

Furthermore, some of the instruments have lengthy specimen
pretreatments, while others developed for use with clean specimens
have extremely low isolation efficacy. So far, all microfluidic devices
produced use a single exosome quantification method, which results
in limited yield or selectivity. Furthermore, their limited processing
capabilities may impair further analysis due to inadequate levels
of proteins and nucleic acids in the separated EXOs. As a result,
contemporary exosome separation methods, despite significant
advancements over the last decade, have brought an entirely novel
array of obstacles to scientists in the area (Shirejini and Inci, 2022).

Another critical difficulty that should be addressed is the
integration of exosome separation techniques into downstream
analysis, which will eliminate the requirement of handling exosome
extraction and subsequent examination independently. With
integration, exosome analyses take a shorter period and include
fewer stages, significantly enhancing the productivity and precision
of exosome separation and analysis (Zhao et al., 2025).

7.2 Challenges in standardizing EXOs
quantification

The literature describes a variety of approaches for isolating
and quantifying EXOs (Miron and Zhang, 2024; Wu et al., 2021b).
However, insufficient agreement on a ‘gold standard” has emerged.
Additionally, most researchers working in the domain of exosome
investigation acknowledge that a uniform method of separation is
essential for achieving greater comparability between findings and
investigations (Wu et al., 2021b).

Fluorescence-activated cell sorting (FACS) is the most widely
used method for exosome analysis 3. FACS offers the advantage
of allowing cells from diverse sources to be compared in a single
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step using fluorescent labeling. FACS is not sufficiently accurate to
distinguish particles smaller than 0.5 pm, but EXOs are typically
between 30 and 120 nm in diameter (5), making it difficult to
determine their dimensions (Akinduro et al., 2025).

Other methods for analyzing exosome particle size and shape
include scanning electron microscopy (SEM) and transmission
electron microscopy (Sharma et al, 2023). Nevertheless, both
SEM and TEM have the drawback of taking time to prepare
samples, requiring laborious stages, and posing some danger of
artifact creation. Neither approach is appropriate for increased
sampling rates and characterization of thousands of individual
particles from a single sample. Furthermore, performing statistical
analyses for clinical daily routines in which samples must frequently
be examined concurrently or within a brief amount of time is
problematic (Shi et al., 2023). Newer methods, such as ambient SEM,
currently enable us to examine EXOs without requiring extensive
preparation. These current approaches remain rather cumbersome
for assessing large volume solutions harboring EXOs to evaluate
their average quantity and size distribution.

Nanoparticle-tracking analysis (NTA) is another extremely
accurate approach for detecting and analyzing EXOs. This strategy
makes use of two distinct physical concepts. Initially, when a laser
beam is used for radiating particulates, the light dispersed by them
is measured (Santos-Coquillat etal., 2022). The second phenomenon
is commonly referred to as Brownian motion, which states that the
dispersion of particles in a liquid solution is inversely correlated to
their sizes. This method is very effective for examining particles with
an average diameter of below 100 nm (Cordero et al., 2025).

The dimension and concentration are measured using the
ZetaView Brownian and Electrophoresis Motion Video Analysis
Microscope. This is a partially computerized desktop nanoparticle
monitoring equipment for liquid samples (also known as the
particle monitoring analyzer). It comprises a particle detector and
a laptop loaded with data processing software. This approach works
equally well with complex biological specimens and homogenous
inorganic particle suspensions. A laser scattering microscope
equipped with a video camera is used to identify particles and track
their course (Sausset et al., 2023).

While determining the best method for analyzing separated
EXOs is one issue, another is effectively isolating EXOs from various
media like blood, urine, or cell cultures. So far, several approaches
have been published, including ultracentrifugation, commercial kits
(for example, Exoquick), magnetic beads for antigen segregation,
and ultrafiltration stages (Capriglione et al., 2022).

Filipe et al. contrasted NTA and DLS to analyze polystyrene
beads with established diameters. Diameters of used beads (60, 100,
200, 400, and 1,000 nm) appeared comparable for both approaches;
however, larger particles were measured somewhat larger using DLS
(e.g., 1,056 nm [DLS] against 989 nm [NTA]. A 100/400 nm bead
mixture was spiked with 1,000 nm beads to assess the impact of a
tiny amount of bigger particles. DLS observed a peak at 750 nm,
which appeared to be an average of the three sizes, but NTA was
capable of resolving peaks at 106/420 and 997 nm, providing an
improved understanding of the combination (Filipe et al., 2010).

Van der Pol and coworkers examined the particle size
arrangement of EXOs from urine and polystyrene beads using
TEM, flow cytometry, NTA, and resistive pulse sensing (RPS).
Polystyrene beads and urinary EXOs were analyzed. Forward
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scatter (FSC) was linked to the dimension of vesicles utilizing
beads of identified dimensions and the Mie theory. Remarkably,
each approach produced a varied range of sizes and content for
the same vesicle specimen. These disparities were mostly caused by
variances in the minimally detected vesicle measurements, which
were 70-90 nm for NTA, 70-100 nm for RPS, 150-190 nm for
the specialist flow cytometer, and 270-600 nm for ordinary flow
cytometry (Van der Pol et al., 2014).

Maas et al. examined EXOs sorting employing three distinct
detection approaches: NTA, RPS, and an optically tuned excellent
quality FCM. They examined both EXOs and artificial analogues
like liposomes of established sizes. They discovered more disparities
in quantification for liposomes than for EXOs using all three
approaches. used,
however, RPS and flow cytometry (FCM) produced equivalent

When fluorescence-based activation was

EEXOs quantification findings. This was most likely owing to
changes in the quantity of fluorophore molecules associated
with EXOs vs. liposomes caused by varying sizes or labeling
efficiency (Maas et al., 2015).

Additionally, van der Pol et al. discovered that EV measurement
by FCM was 15 times lower than NTA and RPS. These disparate
results could potentially be attributed to changes in the EXOs
purifying procedure, FCM equipment, threshold triggering
mechanism, and kind of EXOs evaluated. These findings highlight
the significance of standardization and the execution of additional
meticulous research like this (Van der Pol et al., 2014).

7.3 Cell culture

Appropriate culturing, division, and differentiation methods are
critical for successful therapy results. As a result, choosing the
best culture procedure and methodologies for MSCs cultivation is
critical. Culture medium, cell count, and the environmental factors,
including soluble O2 and CO2 levels, pH, and temperature, all have
an impact on study outcomes (Clément et al., 2022).

In investigations that extract EXOs from the culture
medium, EXOs extracted from body fluids utilized in the
media may contaminate the results. To reduce impurities, it
is advised to incubate cells for EXOs investigations in serum-
free medium (Ahmadian et al., 2024). If this is not achievable,
it is critical to separate EXOs supplied to the culturing media
for control (Takagi et al., 2021).

EXOs generated from cells cultivated in standard cell culture
dishes vs. two-chamber bioreactors had comparable shape, size
distribution, and surface indicators. Nevertheless, the resulting
quantity of EXOs was more than 100 times higher in bioreactors than
in dishes, and the metabolomic data indicated substantial changes
(Palviainen et al., 2019). For optimal development, the different
kinds of cells demand a distinct medium composition, as well as
seeding volume, passage frequency, and medium replenishment.
Aside from adjusting sample purity, Patel et al. demonstrated that
using varied cell counts may possess a direct influence on exosome
cargo and activities (Patel et al., 2017). To ensure the repeatability
and consistency of the amounts and payload of separated EXOs, the
same cell seeding process must be established and followed. Utilizing
a comparable passage of producing cells improves the consistency of
exosome quality (Xu et al., 2024; Salehpour et al., 2024).
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7.4 Storage

The storage of EXOs is an important factor affecting
the outcomes of EXOs investigations. Freezing materials at
—70 °C prevents crystal formation, reduces cryo-precipitation, and
preserves EXOs (Lee et al., 2016). Furthermore, it is recommended
that the aliquots be frozen and thawed only once before analysis
(Maroto et al,, 2017). To acquire trustworthy findings, select the
EXOs separation technique based on the cargo to be tested. It is
also critical to carry out replications and compensate for numerous
comparisons (Willms et al., 2016).

Moreover, repetitive freeze-thaw cycles may reduce the amount
of exosome indicators, perhaps due to membrane damage. The
short shelf life of liquid treatments filled with EXOs, along with
severe freezing requirements, continues to hamper their clinical
adoption. As a result, several investigations have turned attention
to the production of solid agents, notably freeze-dried powder
incorporating EXOs (An et al., 2023).

In addition to the proprietary freeze-drying process, a common
strategy in experiments is to gather EXOs utilizing the previously
outlined separation method. Following that, a freeze dryer is used
to manufacture freeze-dried EXOs in accordance with a widely
recognized “freezing step program,” which usually comprises
generic procedures including freezing, vacuum, sublimation,
and drying (DehghaniP. et al, 2024). This method preserves
the proteins and vesicle configuration of EXOs, resulting in
consistent biophysical characteristics even when maintained at
—20 °C or ambient temperature (Popowski et al., 2022). Scientists
have tried adding a variety of lyoprotectants, such as sucrose,
trehalose, mannitol, and other analogous compounds, to minimize
lyophilization destruction and preserve the quality and dimensions
of EXOs. However, the possible effects of freeze-drying methods on
biomolecules such as miRNAs need to be further investigated.

7.5 Standardization of functional assays

EXOs have much potential as a means of transport for proteins,
RNAs, and tiny molecules in medicine because of their native
origin and biocompatibility. However, there are still many issues
with their bioavailability, systemic stability, and pharmacokinetics.
Research indicates that most of the intravenously administered
EXOs are quickly removed from circulation by the mononuclear
phagocyte system in a matter of minutes, thus reducing their
therapeutic range (Honda et al., 2025).

The kind of donor cell, surface ligands, and delivery technique
can all have a substantial impact on the biodistribution of EXOs.
Techniques, including surface modifications, PEGylation, or fusion
with targeted peptides, are being investigated to extend their
circulation duration. However, these methods still require thorough
safety evaluation and additional improvement. Furthermore,
following distribution, EXOs experience physiological alterations
that are still unclear and pose serious translational hazards,
including morphological reconstruction, cargo disintegration, or
fusion with undesired cells (Nakase, 2021).

EXOs' dual immunomodulatory role adds to the complexity
of the issue. In order to optimize the effectiveness of therapy, the
competing immune reactions must be carefully handled, which
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emphasizes the necessity of exact management of the source and
composition of EXOs in medicinal preparations (Li et al., 2022¢).

Upgraded genetic designs, including inducible knock-in
systems and CRISPR/Cas9-mediated lineage tracing, are crucial
for comprehending the complexities of exosome synthesis and
cargo packing in vivo and for overcoming the existing obstacles
in exosome exploration. Integrating multi-omics techniques may
assist in discovering biochemical signatures that describe distinct
exosome subpopulations (Aslan et al., 2024).

Recent developments like barcoded RNA sequencing and
single-vesicle analysis tools have greatly improved our capacity
to examine exosome polymorphism in previously unheard-of
depth. Furthermore, early cancer identification and monitoring
have been greatly enhanced by the combination of EXOs RNA
characterization and circulating tumor DNA (ctDNA) analysis,
which represents a substantial advancement in personalized
oncology. Additionally, the use of machine learning and AI-driven
data integration holds significant potential for improving the
precision of therapeutic prognosis and speeding up the discovery of
EXOs biomarkers (Galbiati et al., 2021).

To reach their maximum therapeutic capacity, EXOs-based
technologies must overcome a number of significant obstacles.
These involve problems with delivery stability, biogenesis, separation
techniques, and a better comprehension of their intricate biological
function. It will take multidisciplinary creativity to overcome
these challenges, but doing so may open the door to turning
exosome-based technologies into revolutionary instruments for
next-generation diagnostics and individualized therapies (Li et al.,
2022a; Zhou Y. et al., 2023; Wang et al., 2022a).

8 Clinical translation of exosomes

EXOs increased wound healing in preclinical models and
encouraged tissue regeneration by transferring bioactive molecules
(del Pozo-Acebo et al., 2021). Their impacts were achieved via
regulating inflammation, angiogenesis, cellular division, and matrix
production (Chen et al., 2022). EXOs provide an attractive cell-
free treatment for tissue engineering. However, obstacles remain
in scaling isolation, understanding processes, and applying this
technique in human trials (Akhlaghpasand et al., 2024). Addressing
these issues will allow for effective clinical implementation of EXOs
for personalized medical applications. Establishing therapeutic uses
with exosome technology has become a prominent area of research
in recent years (Pak et al., 2023). Their application as medicinal
carriers has sparked a lot of curiosity and financial investment.
To demonstrate this, the total amount of clinical trials employing
EXOs has increased sevenfold over the previous 5 years, with
targeted illness areas such as cancer, inflammatory conditions, and
immunotherapy (Dhodapkar et al., 2025).

Another significant concern is the stability and lifespan of EXOs
in bodily fluids. Getting enough EXOs is the biggest obstacle.
An initial amount of 10-100 ug of EXOs is needed for this.
However, the amount obtained from 1 mL of culture media is
often less than 1 g, which is the issue (Charoenviriyakul et al.,
2017; Yamashita et al., 2016). Exosome quality varies as well; when
extracted from biological fluids, they are frequently marked by poor
performance and impurities (Zheng et al., 2022). The culture media’s
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volume, composition, cell passage, and viability all have an impact
on exosome retrieval. Standardizing procedures and optimizing
manufacturing are crucial for obtaining EXOs (Zhu et al.,, 2021).

Cultures in bioreactors are utilized to generate a significant
number of EXOs; brief cultures can yield even ten times larger
numbers (Lee et al, 2023). Physical, chemical, and biological
stress are among the disorders that affect exosome formation.
Another potential source of contamination is the nutrition media
(Clément et al., 2022). Although serum-free circumstances put cells
under much stress and change the production of EXOs, EXOs
obtained from culture media incorporating serum possess few
contaminants (Wang et al., 2025).

Exosome usage in regenerative medicine lowers the possibility
of undesirable side effects linked to cell transplantation (Tu et al.,
2021). Additionally, such substances are therapeutic modulators
because they may alter target molecules in recipient cells,
such as by reducing inflammation. EXOs can be harmed
during separation and purification, which is a drawback of
employing them (Emam et al., 2021).

Despite a number of obstacles, the development of EXOs as
medication transporters is moving forward quickly (Zhao et al,
2024). The primary challenges for EXOs™ delivery technologies
to reach clinical stages are their quick elimination from the
bloodstream and their poor targeting capability. Naturally,
a number of engineering techniques have been established
to produce engineered EXOs with improved efficacy and
sensitivity (Choi et al., 2025).

As far as we know, there is no current clinical trial employing
exosome-based treatment in the management of female infertility
disorders. However, there is a specimen-collection research posted
on clinicaltrials.gov assessing the influence of EXOs on clinical
effects in advanced ovarian cancer (Dorayappan et al., 2016).
In the first phase I clinical trial (NCT01159288), the scientists
administered autologous dendritic cells EXOs as a vaccine against
metastatic melanoma and demonstrated their safety. Nevertheless,
they did not see substantial CD4" or CD8" T cell responses.
It is still necessary to investigate the mechanistic processes
behind vaccination antigen dispersion (Escudier et al, 2005).
Additionally, the first-in-human clinical study utilizing allogeneic,
platelet-derived EXOs as a possible treatment for delayed wound
healing was carried out by Johnson etal. In this study, we show
that platelet EXOs (pEXOs) of clinical grade may be effectively
separated from active platelets using Ligand-based Exosome Affinity
Purification (LEAP) chromatography while maintaining the parent
cell’s capacity for regeneration. LEAP-isolated pEXOs carry vital
proteins involved in wound healing processes, such as insulin
growth factor (IGF) and transforming growth factor beta (TGEF-
8), and exhibit the anticipated biophysical characteristics of EXOs
populations. According to in vitro research, pEXOs enhance the
angiogenic potential of dermal endothelial cells and promote the
migration and proliferation of dermal fibroblasts, indicating their
capacity to repair wounds. The ERK and Akt signaling pathways
in recipient cells are activated by pEXOs therapy. They showed that
injections of LEAP-purified pEXOs demonstrated acceptable safety
in their phase I clinical trial of healthy volunteer adults, which
was primarily conducted to evaluate safety with regard to wound
healing (Plexoval II study, ACTRN12620000944932). Following
administration of a single dosage of pEXOs, all wounds closed
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quickly and entirely. The results of this investigation demonstrate
that pEXOs produced using the LEAP process can be safely
administered to humans as an alternative therapy for wound healing,
and they call for additional research in clinical trials created
specifically to evaluate the therapeutic effectiveness in patients with
retarded or interrupted wound healing (Johnson et al., 2023).

The clinical applications of EXOs are still in their early
stages; future research will help to identify cost-effective and
time-efficient approaches for massive exosome synthesis. In
fact, EXOs can transport relevant medicinal products used for
disease management (Chandran et al, 2025). It is essential
to determine suitable approaches for additional personalizing
EXOs as pharmaceutical transporters with a substantial carrying
capability, outstanding selectivity, biocompatibility, and minimal
immunogenicity (Huo et al, 2025). In addition, the separation,
categorization, and purification of EXOs must be standardized
to ensure that EXOs can be used clinically (Cordero et al,
2025). Without a question, EXOs are an exciting development
in the realm of nanomedicine and may hold the key to solving
a number of current medical problems (Chen Z. et al., 2024).
Despite encouraging first findings, few studies demonstrate the
superiority of EXOs in delivering FDA-approved nanomedicine
(such as liposomes); hence, more research on EXOs as therapeutic
agents and pharmaceutical carriers is unavoidable in this setting.

9 Future research directions

Reproductive health is intimately linked to individual standards
ofliving. Women are very interested in understanding the mechanics
of reproductive aging and how to halt this process (Liu et al., 2025).
Exosome therapy has emerged as a potential star in gynecological
research, but there are still several practical issues that impede its
clinical implementation (Park et al., 2024).

To enhance the clinical use of EXOs, collaboration across
disciplines and fields is required, ranging from fundamental to
clinical, medicine to engineering (Jin et al., 2023). EXOs play a
crucial role in several biological processes, and their significance in
reproductive system problems in females is becoming more widely
recognized (Atia et al., 2025; Zhao et al, 2022). EXOs, as a key
regulator of interaction between cells, have a significant influence
on the mitigation of infertility (Freger et al., 2021; Lin et al., 2024).

Infertility studies regarding exosome roles, underlying
processes, and therapeutic capacity are still in their early
stages, and many concerns remain unanswered. Given the
increasing technological breakthroughs, there is discussion
regarding the possible application of exosome-based treatments
for infertility (Wang et al., 2024d).

While stem cell-based treatments have proved extremely
effective in treating tissue regeneration and reproductive system
problems, they are also subject to a number of limitations,
including immunogenicity, undesired differentiations, and
ethical concerns (Xie et al., 2024).

EXOs have the same functions as MSCs, but they possess the
added benefits of focused administration, minimal antigenicity and
immunological rejection, and great repair potential (Cai et al.,
2022; Wang et al, 2024d; Yang et al., 2020b). As previously

stated, EXOs have distinctive characteristics and an outstanding

frontiersin.org


https://doi.org/10.3389/fcell.2025.1605174
http://clinicaltrials.gov
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Aldarmahi et al.

therapeutic effectiveness, making them an intriguing therapy option
for infertile women (Park et al., 2024).

Although the use of EXOs is becoming more widespread,
achieving optimal therapeutic results remains difficult. EXOs
undoubtedly play an important part in female fertility. The high
therapeutic capacity of EXOs in female reproductive disorders
has paved the way for further research (Hadidi et al, 2023).
In accordance with the presented findings, using these nano-
therapeutics as a cell-free method can overcome several technical
issues with cell-based treatments (Abdelnaby et al., 2024).

Currently, integrating EXOs with designed polymers has proven
to be highly beneficial in improving exosome selectivity and
reliability. Liang etal., for example, used EXOs produced from
decidual stromal cells (DSCs) in sodium alginate hydrogel as a new
therapeutic method for promoting endometrial rejuvenation and
restoring fertility. The researchers discovered that injecting DSCs-
derived EXOs (DSCs-EXOs)/SAH into the uterine cavity could
stimulate uterine angiogenesis, trigger mesenchymal-to-epithelial
transformation (MET), encourage collagen deposition, favor
endometrial regeneration, increase endometrial responsiveness,
and give rise to fertility restoration (Liang et al., 2024).

EXOs are at a turning point in therapeutic applications.
Considering their recent identification as crucial participants in
physiology and disease, the utilization of these tiny vesicles in
therapeutic applications is quickly growing (Navarro et al., 2025;
Zhang et al., 2025; Vaiciuleviciute et al., 2025).

The major therapeutic uses in cancer and inflammation
take advantage of the exosome’s involvement in immune system
modulation and its utilization as a vehicle for targeted medication
delivery. Numerous scholarly papers, in addition to extremely
valuable investments in pharmaceutical research focused on
EXOs, reveal widespread and cross-sector interest in these
biotechnological advances (Wang et al., 2024a; Wang et al., 2024d;
Taravat et al., 2024; Li et al., 2024b).

Several techniques for increasing the therapeutic effectiveness
of EXOs are being researched. The regulatory environment is
improving to enable safe and effective clinical trials. Enhanced
scaling-up solutions are achieved to address the limits associated
with production and characterization procedures. Thus, while still
in its earliest stages, the exosome area is rapidly maturing for the
greater good of patients (Liang et al., 2024).

Exosome-containing scaffolds have proven to be far more
successful in mending injured tissues than scaffolding or EXOs
alone. The immediate disposal of these scaffolds will likely be
employed at the bedside for better and quicker tissue restoration.
Although there are a number of techniques for isolating and
characterizing EXOs, some can be too costly or time-consuming
for researchers (Wu et al, 2024). Therefore, it is necessary to
overcome the current problems in order to expand the practical
usage of EXOs. Several avenues of research might be useful in
expanding the comprehension of exosome-based medicines and
their prospective uses, including the following: 1 Additional research
is needed to standardize and validate exosome-based products. The
regulatory environment for exosome-based therapeutics requires
additional development and clarification. 2 Exosome-mediated
delivery requires a thorough understanding of its biological
mechanics. Approaches for monitoring the fate of EXOs require
further research. EXOs should be investigated in conjunction with
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other medicinal agents. The creation of tailored therapeutics based
on patient-derived EXOs should be researched.

Besides these fields of inquiry, there are numerous more possible
uses of EXOs that need further examination, as the follows: 1 EXOs
have the potential to cure several disorders in regenerative medicine.
2 Exosome-based gene therapy has the potential to address several
genetic problems. 3 EXOs in vaccine development have the potential
to treat several ailments, notably infectious disorders and cancer.
4 EXOs in diagnostics might be utilized to diagnose a variety of
disorders.

In general, our comprehension of the biological functions of
EXOs is inadequate, and further research is required. Nonetheless,
the utilization of EXOs in complicated clinical settings in the near
future is not surprising.

10 Concluding remarks

Reproductive wellness is closely related to individual standards
ofliving. Women are very interested in understanding the mechanics
of fertility disorders and how to tackle their issues. Exosome
therapy offers several theranostics potentials in experimental
studies, but there are still several practical issues that impede
their clinical translation. To enhance the clinical administration
of EXOs, collaboration across disciplines and fields is required,
ranging from fundamental to clinical, medicine to engineering.
As a result, in this article, we completely explain the roles and
fundamental processes of exosome treatment in treating female
infertility issues.

Animal investigations have shown that exosome treatment
can fight apoptosis and promote regeneration which consequently
results in counteracting of reproductive aging. However, clear
clinical proof is now absent, and further basic study is needed to
investigate their bioactivity. Given the similar clinical hallmarks of
inflammation and fibrosis, exosome treatment established for heart
disease may be useful to other disciplines, including reproductive
aging. Furthermore, there are significant uncertainties associated
with the exosome manufacturing process.

We present a comprehensive description of the complete
process, from exosome separation, filtration, and sourcing to agent
preservation, applications, and customization. Quality control
procedures for EXOs and their metabolites are thoroughly reviewed.
This detailed explanation seeks to provide prospective investigators
with a clear grasp of the limits of current methodologies,
allowing them to make educated decisions throughout the
exosome research process. Furthermore, we discuss alternative
remedies to present problems. The combination of many modern
innovations with EXOs have shown limitless possibilities for
progression, and it is set to increase their potentials in personalized
medicine.

While the use of EXOs is becoming more and more popular,
there are still several obstacles in the way of achieving satisfactory
therapeutic results. EXOs undoubtedly have a big impact on female
fertility, egg implantation, and embryo development. Further
research has been made possible by the outstanding therapeutic
effectiveness of EXOs
reproduction. The published results indicate that some technical
issues with cell-based treatments can be resolved by using these

in conditions associated with female
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nanotherapeutics as a cell-free method. At the moment, exosome
durability and targeting capacity have been greatly improved by
integrating them with synthetic polymer-based biomaterials. More
research is required since there is currently a dearth of information
on the pharmacological specifics of EXOs and exosome-loaded
biomaterials. However, it is not at all surprising that EXOs will be
used in complicated clinical diseases in the years to come.
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BBB Blood-brain barrier GPX1 Glutathione peroxidase 1
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BMMSCs Bone marrow mesenchymal stem cells HEnSCs human endometrial stromal cells

CARPA Complement activation-related pseudoallergy HENPs Hybrid exosomes nanoparticles;
C-BMSCs Canine bone marrow mesenchymal stem cells HIF-1a Hypoxia-inducible factor1-alpha

CCN2 Cellular communication network-2 HO-1 Heme oxygenase-1

CCs Cumulus cells HUCMSCs Human umbilical cord mesenchymal stem cells
CD Cluster of differentiation HUVECs Human umbilical vein endothelial cells
CDK4 Cyclin-dependent kinase 4 I/R Ischemia-reperfusion

COX Cyclo-oxygenase IDEM Immune derived exosome mimetics

CS Collagen scaffold IGF Insulin growth factor

CTF1 Cardiotrophin-1 IL Interleukin
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DDSs Drug delivery systems LH Luteinizing hormone

DEP Dielectrophoretic LIF Leukemia inhibitory factor
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Signal transduction and activation of transcription 3
Testosterone

Tumor associated macrophages

Transmission electron microscopy
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