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Introduction: Volumetric muscle loss (VML) is characterized by permanent
tissue impairment resulting from critically-sized muscle loss. We performed
time-series transcriptomic and proteomic analyses to reveal key mediators of
irreversible pathological remodeling after induction of VML in mice.

Methods: The dynamics of gene and protein expression patterns were analyzed
for up to 3 weeks after muscle injury.

Results: RNA Sequencing revealed transcriptional patterns that show rapid
upregulation or downregulation shortly after injury, among which a subset
of genes failed to return to pre-injury levels within 3 weeks after VML.
Time-series analysis revealed gene clusters with sustained upregulation after
3 weeks, including those associated with extracellular matrix remodeling and
inflammation, whereas the gene clusters having sustained downregulation
were associated with mitochondrial function and metabolism. We further
identified SPI1 and SP1 as novel molecular mediators of the pathological
remodeling process.

Discussion: This work demonstrates the utility of time-series analysis to reveal
dysregulated pathways in the setting of VML.

KEYWORDS

volumetric muscle loss (VML), RNA sequencing, proteomics, gene signature, muscle
regeneration

Introduction

Volumetric muscle loss (VML) is characterized by the irreversible loss of muscle
function due to the traumatic loss of a critically sized volume of muscle tissue,
leading to life-long disability and cosmetic deformities (Garg et al., 2015). The
incidence of VML resulting from military interventions or civilian accidents is
rising (Owens et al., 2008). Standard surgical treatment of VML using muscle
flap transfer or tissue debridement results in donor site morbidity or functional
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deficiency (Lin et al., 2007; Klinkenberg et al., 2013). Other
potential treatments under experimental investigation include
cell, biomaterials, and/or gene therapies, often in conjunction
with rehabilitation (Lin et al., 2004; Sicari et al., 2014;
Quarta et al., 2017; Nakayama et al., 2018; Rao et al., 2018;
Nakayama et al., 2019; Chan et al., 2023). However, efforts to
develop effective therapeutics to treat VML are hampered by the
incomplete mechanistic understanding underlying pathological
remodeling after VML.

Small-sized muscle injuries can reversibly recover with
time, but those exceeding a critical size result in permanent
muscle impairment, thereby suggesting the dysregulation of
intrinsic muscle healing processes associated with large defects

(Westman et al., 2021). Multi-omics approaches, including
transcriptomics and proteomics, have emerged as powerful tools
for unraveling the molecular intricacies of injuries, such as VML
(Westman et al., 2021; Na et al., 2023; Liu et al., 2024a; Liu et al.,
2024b; Sanches et al., 2024). Here, we studied the dynamic
temporal changes in gene and protein expression patterns driving
impaired VML recovery that would be otherwise overlooked
using conventional differential expression analytical methods
(Howard et al., 2020; Wang and Zhou, 2022; Careccia et al., 2023).
Temporal expression pattern analysis has been applied in other
settings, such as tissue development and disease progression over
time, leading to a new fundamental understanding of dynamics
pathways involved in biological processes and drug targets
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(Calvano et al., 2005; Androulakis et al., 2007). However, temporal
expression pattern analysis has yet to be applied to studying tissue
remodeling after VML.

Here, we performed time-series analyses of transcriptomic and
proteomic changes associatedwithVML in amousemodel, focusing
on the dynamics of gene and protein expression patterns for up
to 3 weeks after muscle injury. We identified signaling pathways
associated with temporal expression patterns that fail to restore
to pre-injury levels within 3 weeks after VML, including genes
with sustained upregulation or downregulation. Using temporal
expression analysis, we identified SP1 as a novel molecular
mediator of dysregulated muscle recovery after VML and elucidated
pro-inflammatory and extracellular matrix (ECM) remodeling
pathways mediating the remodeling process. These insights pave
the way for the future development of new targets that promote
muscle regeneration and functional recovery of traumatically
injured muscle.

Materials and methods

Mouse VML model

We utilized a well-established mouse partial-thickness VML
model, in which 40% of the tibialis anterior muscle in C57BL/6 (8-
week-old male) mice was bilaterally excised, based on our previous
work (Quarta et al., 2017; Nakayama et al., 2019). At time points of
3, 7, 14, and 21 days after the induction of VML, the tibialis anterior
muscles were explanted for protein and RNA extraction (n = 5–6
samples per time point). All animal studies were performed with the
approval of the Institutional Animal Care and Use Committee of the
Veterans Affairs Palo Alto Healthcare System.

RNA extraction and bulk RNA sequencing

Explanted muscle samples were stabilized in RNAlater
(Invitrogen) at −80°C prior to RNA extraction. Tissues were
mechanically homogenized in Trizol following routine RNA
isolation methods. In brief, the lysed tissues were treated with
chloroform, allowing for a biphasic separation of the RNA content,
followed by RNA precipitation in isopropyl alcohol. The purified
RNA was then resuspended in RNAase-free water. Bulk RNA
sequencing was performed by Novogene Corporation, in which
messenger RNA was purified from total RNA using poly-T oligo-
attached magnetic beads. cDNA was synthesized, followed by non-
directional library preparation for sequencing on a Novaseq 6000
instrument. Raw data (raw reads) of fastq format were filtered based
on quality metrics relating to adapter content, poly-N reads, and
low-quality reads. All the downstream analyses were based on
clean, high-quality data. The reads were aligned to a reference
genome using Hisat v2.0.5. FeatureCounts v1.5.0-p3 was used
to count the reads mapped to each gene. The FPKM (fragments
per kilobase of transcript per million mapped reads) of each
gene was calculated based on the length of the gene and the
reads count mapped to this gene.

RNA sequencing analysis

The samples reflecting different time points were time-aligned
for a better structure of the count data. The FPKM (Fragments
Per Kilobase of exon per Million) counts were normalized and
then log transformed. Linear modeling as a function of time was
performed using the limma package in R. Pairwise comparisons
were performed for all time points. The differentially expressed
genes for pairwise combinations were consolidated in a single
file with all the raw counts. These raw expression values of the
differentially expressed genes were entered into the Mfuzzy package
for time-series analysis (Hathaway and Bezdek, 1985; Kumar and
Futschik, 2007; Oh and Li, 2021). The number of clusters was based
on the different behaviors observed and the ease of separation of
biological relevance. For each time cluster, a core-cluster gene list
was obtained for further analysis based on the enrichment of each
gene in each cluster, ensuring only the genes that followed the
temporal cluster pattern were chosen for further analysis. Using this
gene list, gene enrichment analysis was performedusing the EnrichR
website. The enrichment p-values and odds ratio were quantified,
and RStudio was used to generate plots (ggplot2). The core-cluster
genes were also used as input in the NetworkAnalyst website
to construct transcription factor (TF)-gene networks. Statistical
analysis was performed by the limma package in R that uses
Benjamini–Hochberg correction to calculate the adjusted P value
for each comparison. Statistical significance was accepted at P <
0.05. The VML signature was obtained by comparing our data
to existing datasets for clinical (PRJNA491748) and mouse toxin-
induced injury (GSE138826), respectively. For the clinical dataset,
the differentially expressed genes (DEGs) for the analysis of heathy
compared to patients with critical illness myopathy were compared
to the DEGs for day 21 VML injury versus no injury control groups.
For the mouse toxin injury data, DEGs were obtained for Day 21
post toxin injury versus healthy control and compared to our day 21
post VML versus no injury control groups.

Protein extraction and proteomic analysis

Tissue samples were homogenized in a solution consisting
of RIPA lysis buffer (Thermo Fisher Scientific) with protease
inhibitors, incubated on ice, and then centrifuged to separate
tissue components. Total protein concentration was measured using
a Bicinchoninic acid protein assay (Thermo Fisher Scientific).
RayBiotech Corporation performed a mouse proteomic panel of
32 cytokines (AAM-CYT-G2). In brief, equally loaded protein
lysates were incubated onto membranes, followed by incubation
of the membranes with a biotinylated detection antibody cocktail,
followed by horse radish peroxidase-conjugated streptavidin. The
cytokine arrays were imaged for chemiluminescence intensity,
followed by quantification by densitometry. Proteins that exhibited
sustained upregulation or sustained downregulation were fed
into the STRING database to understand protein interactions.
Statistical analysis was performed by repeated measures ANOVA
with Tukey post hoc testing. Statistical significance was accepted
at P < 0.05.
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Quantitative PCR (qPCR)

To perform gene expression analysis, total RNA underwent
reverse transcription using the First Strand cDNA synthesis protocol
based on the manufacturer’s instructions (Invitrogen). The primers
used to qPCR consisted of Nmrk, Pfkfb3, Bdh1, Sln, Chrna1,
Krt18, and GAPDH (Applied Biosystems, Foster City, CA). The
qPCR was performed on the QuantStudio Real-Time PCR system
(Fisher Scientific) for 40 cycles. The ΔΔCt method of analysis
was performed, normalized to GAPDH, and then expressed as
relative normalized fold change (n = 4–5) (Huang et al., 2010).
Statistical analysis of two groups was performed by an unpaired
t-test. Statistical significance was accepted at P < 0.05.

Tissue histology

Mouse tibialis anterior muscle was collected from healthy (no
injury control) mice or 21 days after induction of VML. Tissue
cross-sections underwent immunofluorescence staining for SP1
antibody (Abcam). For each animal, four images were acquired by
a Keyence fluorescence microscope (BZ-X710) and then quantified
using ImageJ software for mean intensity (n = 6). Statistical analysis
of two groups was performed by an unpaired t-test. Statistical
significance was accepted at P < 0.05.

Results

Transcriptomics analysis reveals gene
clusters with distinct patterns of temporal
expression

Bulk RNA sequencing was performed to elucidate the temporal
dynamics of transcriptomics changes in the tibialis anterior muscle
samples at time points up to 3 weeks following VML in a mouse
model. The VML samples were compared to non-injured (healthy
control) tibialis anterior muscle tissue as a basis for comparison.
We identified approximately 2,500 genes that were differentially
expressed at least at two time points. Time series analysis of genes
showing differential expression at least at two time points revealed
a total of 13 temporal clusters (Figure 1), in which 5 clusters
were associated with rapid upregulation immediately after injury,
and a subset of those (in red) remained upregulated by >2.2 fold
change after 21 days. Based on gene ontology analysis, the clusters
with rapid upregulation were categorized as ECM Remodeling,
Inflammation, Neuromuscular Junction, Cell Adhesion, and Innate
Immunity (Figure 1A). In contrast, 3 gene clusters shared a
similar pattern of rapid downregulated soon after injury, where a
subset of those remained downregulated by >2.2 fold-change for
21 days. These clusters showing downregulation were categorized
as Mitochondrial Function, Mitochondrial Respiration/Oxidation,
and Muscle Development (Figure 1B). Five additional gene clusters
had non-uniform gene expression patterns, comprising mixed
patterns of temporal gene upregulation and downregulation. These
clusters were assigned as RAS Pathway; Ribosomal Proteins,
Smooth Muscle Contractions; M Phase Genes; and Heparin
Sulfate/Glycosaminoglycan (GAG) Synthesis (Figure 1C).

ECM remodeling cluster shows sustained
upregulated expression and cell cycle
transcription factor-gene networks

The ECM remodeling cluster, which included genes like
COLL1A1, FN1, and MMP14, showed sharp gene upregulation
after VML injury (>14-fold change at day 3, compared to day
0). A progressive decline followed this in expression levels, in
which a subset did not normalize to pre-injury levels after 21 days
(Figures 1A, 2A). Some key genes that remained upregulated on
day 21 within this cluster included ECMs associated with fibrosis,
such as COL1A1 and FN1, and ECM remodeling genes, such as
TIMP2 andMMP14. Although 15 collagen genes within the cluster
shared the temporal pattern of having a sharp upregulation after
VML injury, COL4A2 and COL24A1 were notably not upregulated
until day 14 and remained elevated until day 21 (Figure 2B).
This finding is consistent with collagen IV being associated with
elevated levels in VML and contributes to fibrotic scar content
(Hoffman et al., 2022). The overall identity of this cluster was
identified using Gene Ontology, where the gene sets included
Collagen Fibril Organization (P = 3.84 × 10−20), Extracellular
Matrix Organization (P = 5.81 × 10−21), and Extracellular Structure
Organization (P = 2.97 × 10−15) (Figure 2C). Among the ECM-
related genes, SP1 is a transcription factor that is involved in
ECM remodeling and drives fibrosis (Feng et al., 2023). Since
the role of SP1 in the VML is largely unknown, we performed
immunofluorescence analysis of SP1 protein expression, showing
that SP1 is significantly more abundant after 21 days after VML,
compared to healthy no-injury controls (∗∗P < 0.01, Figures 2D,E).
Furthermore, DEGs representing the ECM cluster were further
verified by qPCR. For example, the differentially upregulated
cytoskeletal gene, KRT18 (Keratin 18, P < 0.0001), was reflected by
a >200-fold upregulation after 21 days based on qPCR, compared
to the no-injury control group (∗P < 0.05, Figure 2F). Together,
these findings suggest sustained fibrosis and ECM remodeling in the
VML injury after 21 days, which is consistent with previous reports
(Crum et al., 2022).

To further explore the mechanistic interactions of the gene
pattern,we identified key transcription factorsmediating the process
using NetworkAnalyst to create transcription factor-gene networks.
This analysis revealed that COL1A1, which had a 5.6-fold change on
day 21 vs. control), was one themost connected nodes (black circles)
in the network and was regulated by many transcription factors (red
squares) such as SP1 (Figure 2G). The closest neighbors of COL1A1
were CDKN2C and TWIST1, both of which were upregulated with
>3-fold change on day 3, compared to day 0. Since CDKN2C
is a negative regulator of cell proliferation, its close distance to
COL1A1 suggests a potential role of ECM remodeling-mediated cell
cycle regulation (Leone et al., 2008). Furthermore, TWIST1 is a
transcription factor generally found in skeletal muscle that triggers
muscle atrophy (Parajuli et al., 2018), so the increased expression of
ECM-related genesmay be indicative ofmuscle atrophy, which often
accompanies VML (Greising et al., 2017). Together, these findings
based on genes with a sustained upregulation suggest potentially
meaningful dynamic interactions among ECM remodeling, cell
cycle modulation, and atrophy genes that limit muscle repair and
regeneration after VML.
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FIGURE 1
Temporal clusters identified from transcriptomics profiling of tibialis anterior muscle tissue samples after VML injury using time-series analysis. (A,B)
Gene clusters that represent upregulation (A) or downregulation (B) after injury. (C) Gene clusters that exhibit irregular temporal expression patterns
following VML. Data generated using Mfuzzy package in R. The black lines within each line plot denote genes that were differentially expressed at one
or more time points. The red lines indicate genes that showed sustained upregulation after 21 days, compared to the control (non-injured) samples (P
< 0.05).
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FIGURE 2
ECM remodeling cluster shows sustained upregulated expression and cell cycle transcription factor-gene networks. (A) Heatmap of all genes
belonging to the ECM remodeling cluster. (B) Heatmap of all ECMs found to be differentially expressed. (C) Gene enrichment bar plot of genes in the
ECM remodeling cluster. (D) Immunofluorescence staining of SP1 in the area of VML after 21 days, compared to no injury control muscle samples. (E)
Quantification of SP1 mean fluorescence intensity in arbitrary units (AU, n = 6, ∗∗P < 0.01) (F) qPCR gene expression validation of KRT18 (∗P < 0.05, n =
4–5). (G) Gene-Transcription factor networks of genes (black circles) in the ECM remodeling cluster and their connection with any known transcription
factors. Scale bar: 100 µm.
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Inflammatory signaling cluster shows
sustained upregulated expression and SPI1
transcription factor-gene networks

The inflammation-related genes cluster was another prominent
cluster showing sustained upregulation over 21 days (Figure 1A).
The temporal pattern of this gene cluster exhibited a sharp increase
in gene expression after VML, followed by a stepwise reduction
over time. Some of the key genes in this temporal cluster that
exhibited >3-fold change increase on day 3, relative to day 0, were
CCR1, CCR2, SPI1, and VCAM1 (Figure 3A), which are involved
in cell migration and recruitment of immune cells to the injury
site in the skeletal muscle (Yahiaoui et al., 2008; Choo et al., 2017;
Wang et al., 2022). On day 21, genes like IL3RA,CSF2RA, and SGPL1
remained elevated with an average 3-fold increase compared to
non-injury control. Although inflammation pathways are necessary
to initiate the regeneration response, chronically elevated gene
expression has been shown to have adverse effects that lead to
cell death or fibrosis (Larouche et al., 2018). Gene enrichment
analysis using the Reactome 2022 database revealed significant
enrichment in the categories of Neutrophil Degradation (37 genes
in total; P < 3.5 × 10−15) including SLC11a1 and NFAM1; and
Innate Immune System (74 genes in total; P < 4.5 × 10−14) including
CSF3R, CCR2 (Figure 3B). Intriguingly, multiple gene sets related to
Rho GTPases were also significantly enriched in this cluster of 28
genes on day 21 (P < 8.7 × 10−07), including ARPC1B, DBN1, and
SPC25). RhoGTPases are essential players by activating satellite cells
(Rodriguez-Fdez and Bustelo, 2021), so their sustained upregulation
suggests compensatory activation of regeneration-related pathways
to counteract inflammatory processes (Figure 3B).

In order to identify central regulators of this sustained
inflammation, we focused on early time point targets using the
transcription factor gene network, which revealed SPI1 (>48-fold
change on day 3) to be one of the most connected nodes for
the gene regulatory network (Figure 3C). SPI1 is a transcription
factor that controls the development of myeloid and B-lymphoid
cells, which are shown to be involved in fibrosis and muscle
atrophy in skeletal muscle (Wang et al., 2022). Furthermore, within
the transcription factor-gene network, SPI1 is closely related to
NCF4 and CEBPA, both of which have a role in macrophage
activation and infection response (Lee et al., 2014). Interestingly, the
transcription factor (red nodes) that regulated most of the genes in
this inflammation cluster (black nodes) was SP1 (>2.2 fold change
on day 3, compared to day 0), which is consistent with what was
observed with ECM-related clusters. Consequently, SP1 could be a
novel target for regulating inflammation after VML.

Mitochondria function and oxidative
metabolism show sustained
downregulation after VML injury, with
enrichment in oxidative phosphorylation
and adipogenesis

In contrast to the gene clusters that showed upregulation
patterns, two gene clusters with mitochondria function and
oxidative metabolism identities were characterized by significant
downregulation immediately after injury, followed by progressive

increases in gene expression over time (Figures 4A,B). Notably,
these two clusters consisted of approximately 400 genes with
incomplete recovery, with >2.2-fold change downregulation on
day 21, compared to pre-injury levels. These genes included 27
out of 40 subunits of NDUF proteins that are a part of NADH,
a ubiquinone oxidoreductase core in the inner membrane of
mitochondria (Figures 4A,B). The DEGs associated with specific
metabolic markers were further validated by qPCR, namely,
BDH1 (ketone body metabolism, −2.8 log Fold Change at Day
21 post-VML), NMRK (energy metabolism, −2.4 logFC at Day
21 post-VML) and PFKFB3 (regulating glycolysis, −2.7 logFC at
Day 21 post-VML). Similar downregulation in mitochondrial or
metabolism-related genes was observed using qPCR for BDH1
and PFKFB3 (Figure 4C, ∗∗P < 0.01 and ∗∗∗∗P < 0.0001).

Gene set enrichment analysis of these two clusters revealed
numerous mitochondrial function-related or cellular metabolism-
related gene sets. In particular, oxidative phosphorylation (P =
1.88 × 10−25) and cellular respiration (P = 7.2 × 10−23) were the
most enriched gene sets for the mitochondrial respiration/oxidation
cluster (Figure 4D). Among the DEGs, These enriched gene sets
included multiple NDUF and COX genes. COX encodes enzymes
that convert arachidonic acid to prostaglandins, which has been
shown to upregulate muscle regeneration (Bondesen et al., 2004).
The sustained downregulation of the COX genes in the context of
mitochondrial respiration suggests a role for cellular respiration in
muscle regeneration.

In the mitochondrial function gene cluster, oxidative
phosphorylation was also found to be enriched (P = 2.9 ×
10−41), including several versions of malate dehydrogenase (MDH)
enzymes, along with adipogenesis genes (P = 3 × 10−18) such as
VEGFb and ALDOA) (Figure 4E). Although not reported in the
context of VML, a knockdown ofVEGFb has been linked to adipose
browning and a decrease in muscle growth via energy-dependent
pathways in mice, signifying the importance of adipogenesis
in muscle regeneration (Ling et al., 2022). In addition, fatty
acid metabolism (P = 9.0 × 10−13) as characterized by MLYCD,
along with glycolysis-related genes (P = 0.02), were enriched
in the mitochondrial function temporal cluster, signifying an
overall reduction of cellular metabolism in the muscle after
VML injury (Li et al., 2021). In summary, a sustained decrease
in cellular respiration, metabolism, and adipogenesis was regulated
by mitochondrial machinery after VML induction.

In addition, we observed another temporal cluster with a
notable downregulation pattern at earlier time points corresponding
to muscle development (Supplementary Figures S1A–C). This
cluster was characterized by immediate downregulation,
with a gradual increase in gene expression after 7 days
(Supplementary Figure S1B). Some of the genes in this cluster
consisted of cytoskeletal markers such as MYL1 and TTN that are
critical for proper muscle structure (Supplementary Figure S1A).
This suggests that even though genes corresponding to structural
components of the muscle do return to non-injury levels, the
functionality of the regenerated muscle remains dysregulated as
evident in the significant reduction in mitochondrial function and
energy metabolism. This finding is consistent with VML inducing
irreversible impairment in muscle function in preclinical VML
models (Shayan andHuang, 2020; Clark et al., 2022; Hu et al., 2025).
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FIGURE 3
Inflammatory signaling cluster reveals gene upregulation and Spi1 transcription factor gene networks. (A) Heatmap of all genes belonging to the
inflammation cluster. (B) Gene enrichment bar plot of genes in inflammation cluster. (C) Gene-transcription factor networks of genes (black circles) in
the inflammation cluster and their connection with any known transcription factors.
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FIGURE 4
Mitochondria function and oxidative metabolism clusters showed downregulation after VML injury. (A,B) Heatmap of all genes belonging to the
mitochondrial respiration/oxidation cluster (A) and mitochondrial function cluster (B), respectively. (C) qPCR gene expression validation of differentially
expressed genes showing significant downregulation after 21 days of VML, compared to no injury control group (n = 4–5, ∗∗P < 0.01, ∗∗∗∗P < 0.0001).
(D,E) Gene enrichment volcano plots of genes in the mitochondrial respiration/oxidation cluster (D) and mitochondrial function cluster (E), respectively.

RAS pathway, mTOR pathway and
neuromuscular genes

Besides the first two patterns of genes showing upregulation
or downregulation patterns, we also observed clusters that

demonstrated irregular gene expression patterns. In particular,
the RAS/mTOR pathway and Neuromuscular junctions cluster
were downregulated initially after injury but upregulated beyond
pre-injury levels by 21 days after VML (Figures 5A–D). In the
RAS/mTOR pathway cluster, a marked increase in HRAS and
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FIGURE 5
RAS pathway, mTOR pathway and neuromuscular genes show non-uniform gene expression temporal profiles. (A,B) Heatmap of all genes belonging
to the RAS pathway cluster (A) and neuromuscular junction cluster (B), respectively. (C) Gene enrichment bar plot of genes in neuromuscular junction
cluster. (D) Gene enrichment volcano plots of genes in RAS Pathway cluster. (E) qPCR gene expression validation of differentially expressed genes
showing trends of upregulation after 21 days of VML, compared to no injury control group (n = 4–5).

LAMTOR2 (both activators of MAPK and MTOR signaling) was
observed, particularly on day 21 (Figure 5A). Since this pathway
modulates metabolism in muscle, this upregulation pattern could
be in response to defective mitochondrial function (Yoon, 2017).
Gene enrichment analysis also revealed significant enrichment of
the RAS/mTOR pathway cluster to RAS pathway genes (P = 0.001)

and Energy Dependent Regulation of mTOR (P = 0.003) in the
Reactome database (Figure 5D). In addition, the cluster associated
with neuromuscular junction genes showed marked upregulation
only after 14 days (Figure 5B). In particular, this cluster included
multiple subunits of cholinergic receptors, such as CHRNA1,
CHRNB1, and CHRND. This gene cluster also had significant
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enrichment in gene sets such as Acetylcholine-Gated Channel
Activity (P = 7.0 × 10−05) and Axon Guidance Receptor Activity
(Figure 5C, P = 0.02). These findings were additionally verified by
quantification of mRNA for CHRNA1 and SLN (sarcolipin, calcium
ion channel in muscles). Both CHRNA1 and SLN were upregulated
at 21 days after VML by 16 and 185-fold, respectively, compared to
no VML control (Figure 5D). This finding suggests an association
of defective muscle regeneration with impaired neuromuscular
junction interactions.

Cytokine proteomics show sustained
elevation of pro-inflammatory factors

To validate the findings of a sustained inflammatory
transcriptomic signature, we performed a temporal proteomic
analysis of 32 inflammation-related cytokines in muscle lysates
at each time point. Among them, 24 cytokines demonstrated
significant differences in protein levels and were categorized into
clusters as well (P < 0.05). The first cluster was categorized as
cytokines, with an increase in level by day 21. These cytokines
consisted of those that regulate the inflammatory and repair phases
of muscle regeneration (Figure 6A), including 6Ckine that recruits
necessary immune cells (day 0 vs. day 14, ∗∗∗P=0.0008; day 0 vs. day
21, ∗P= 0.015); IL-3 that supports the proliferation of hematopoietic
cells and influences immune cell function (day 0 vs. day 21, ∗P
= 0.049), and IL-4 that promotes a tissue-repairing environment
(day 0 vs. day 21, ∗P = 0.02) (Fujita et al., 2022; Podolska et al.,
2024). These cytokines did not revert to pre-injury expression
levels by day 21, suggesting the persistence of immunomodulatory
signals to support tissue remodeling to the affected muscle tissue.
The sustained elevated levels of these inflammatory cytokines
suggest dysregulation in the tissue recovery process. We further
analyzed the interactions among the proteins within this cluster
(Figure 6B) that guide muscle healing processes. The key player
identified in this protein cluster was interferon-γ (IFN-γ), whose
upregulation stimulates a response from all other cluster cytokines
and is essential for early pro-inflammatory response (Gordon
and Taylor, 2005). 6Ckine levels are directly regulated by IFN-
γ and IL-4, while being indirectly regulated by IL-3 through its
enhancement of the hematopoietic response (de Bruin et al., 2014;
Naradikian et al., 2016). Furthermore, IL-3 enhances the roles
of MCP-1 and GM-CSF due to the immune cell recruitment
inherent in its increased expression (Barnes, 2008; Zarei et al.,
2009). Therefore, it is possible that the dysregulated cytokine
expression levels prohibit effective participation in the inflammatory
response to VML.

Additional cytokines with statistically significant high protein
expression over time were associated with the management of
inflammation, immune cell migration, and tissue repair (Figure 6C,
P < 0.0.05). In normal healing processes, the early inflammatory
phase is driven by GCSF and IL-12B, while IL-13, MIP-3β, CTACK,
and TARC help transition the response to a repair phase and
ensure proper resolution of inflammation (Koh and DiPietro, 2011;
Oishi and Manabe, 2018). The interactions detected in this protein
cluster (Figure 6D) relate to immune cell recruitment, signaling,
and macrophage activation. During muscle repair and remodeling
processes, MIP-3β, TARK, and CTACK are modulated by IL-13 for

Th2 and T cell recruitment to the injury site (Wu et al., 2022). IL-
12B and IL-13 levels balance each other by promoting Th1 and
Th2 responses, respectively. GCSF and IL-13 facilitate macrophage
polarization (Wang et al., 2014; Atri et al., 2018). The protein
interaction network suggests that the balance and timing of these
interactions prohibit effective muscle regeneration in the setting of
VML. Although less prevalent, two cytokines were identified to have
a significant decrease in cytokine levels, including MCP-5, which
regulates inflammatory responses through the attraction of immune
cells, and TIMP-1, which interacts with T cells and facilitates Th2
phase for tissue repair (Knight et al., 2019; Kokubo et al., 2022;
Lee and Kim, 2022) (Figure 6E). Together, this cytokine analysis
demonstrates time-dependent changes in protein levels that may
point to dysregulation of inflammatory processes that impede
effective recovery after VML.

VML transcriptional signature

Based on these findings, we further sought to identify a signature
that characterizes the transcriptional signature of a non-healing
muscle injury model like VML to that of a healing model of
cardiotoxin-induced muscle injury. In particular, we compared the
DEGs on day 21 between VML injury with that of cardiotoxin-
induced muscle injury (Oprescu et al., 2020). Intriguingly, we
identified a unique signature of VML-specific genes characterized
by the greatest fold change in the unique DEGs (Figure 7). The
unique VML signature was associated with the upregulation of SLN
(Sarcolipin; thermogenic andmetabolism regulator),KRT8 (Keratin
8, cytoskeletal fibrotic marker), KRT18 (Keratin 18; cytoskeletal
fibrotic marker) and RRAD (Ras-related GTPase). Concomitantly,
the VML signature was also characterized by the downregulation
of mitochondrial genes, namely, MT-TI, MT-TI2, MT-TS2, and
MT-TR. These data suggest a unique signature associated with
VML that is not associated with fully healing toxin injury models.
To further explore this signature, we also compared our findings
with a clinical dataset from hospitalized patients having severe
skeletal muscle wasting patients (Llano-Diez et al., 2019). Similar
findings were found where the VML signature was marked by
upregulation of SLN, KRT8, KRT18 and RRAD, concomitant
with a significant downregulation in specific mitochondrial genes.
Together, this analysis reveals unique gene expression signatures
associated with VML, in contrast to healing muscle injuries
or atrophic muscle.

Discussion

This work elucidated the temporal transcriptional landscape
of tissue remodeling after VML in a mouse model. Bulk RNAseq
and time-series analysis were performed to identify temporal
gene clusters based on temporal expression patterns reflecting
sustained upregulation, sustained downregulation, or those with
irregular expression patterns. The salient findings are that: (1)
gene clusters with sustained upregulation were generally associated
with ECM remodeling and inflammation, with strong cell cycle
and SP1 transcription factor gene network interactions; (2) gene
clusters with sustained downregulation were associated with
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FIGURE 6
Validation of inflammatory transcriptomic signature using cytokine proteomics. Proteomic analysis of inflammation-related cytokines on muscle
lysates at each time point. (A) The first cluster was categorized as cytokines that demonstrated a significant increase in level over time. These cytokines
consisted of those that regulate the inflammatory and repair phases of muscle regeneration. (B). Interactions among the proteins within cluster (A) that
guide muscle healing processes. (C) Additional cytokines with persistent protein expression increases are associated with the management of
inflammation, immune cell migration, and tissue repair. (D) The interactions detected in this protein cluster relate to immune cell recruitment,
signaling, and macrophage activation. (E) Cytokines were identified to have a significant decrease after induction of VML. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P <
0.001, ∗∗∗∗P < 0.0001.

mitochondrial function and metabolism with enrichment in
oxidative phosphorylation and adipogenesis; (3) by examining gene
clusters with mixed regulation patterns, we identified a putative
role of RAS/mTOR pathway in later stages of recovery, possibly
as a compensatory mechanism due to the loss of mitochondrial
function.

Complementary to transcriptomic profiling, cytokine profiling
also revealed the dysregulation of inflammatory factors.The balance
and timing of cytokine expression levels are essential for effective
muscle regeneration. Since 6Ckine and IFN-γ are heavily involved
in the initial inflammatory phase, these factors might act by
recruiting M1 macrophages and T cells to clear tissue damage
initially. However, the observed sustained upregulation of IFN-γ
indicates a chronic inflammatory stage that contributes to fibrosis
and eventual impairment of the regenerative process. These pro-
inflammatory factors are counteracted by IL-13, TARC, and MIP-
3β which potentially act to shift the environment to one that is
repair-driven and anti-inflammatory.

Our findings concur with other reports of transcriptomic
analysis after VML injury. In a VML canine model, the authors
reported similar roles for collagen 1 and fibronectin in sustained

fibrosis and a significant role inmacrophage activation. Additionally,
spatial transcriptomics of a VML injury model reported a fibrotic
zone with similar ECM composition (FN1, COL1A1, COL6A1,
AND COL4A2, LAMA2) and inflammatory markers (CCR1,
NCAM1) (Larouche et al., 2023), as did our findings show.
Other reports of VML injury transcriptomics up to 14 days after
injury report similar findings regarding sustained fibrosis and
inflammation despite an increase inmyogenesis (Nuutila et al., 2017;
Aguilar et al., 2018).

Despite some similarities in findings with prior literature, this
study extends the fundamental understanding of VML pathological
remodeling, using distinct temporal patterns to identify pathways
that deviate from normal pre-injury levels. In particular, we showed
mitochondrial dysregulation and decreased cellular respiration in
the injured muscle, even after 21 days of injury. In addition, we
also demonstrated a novel putative role of insufficient adipogenesis
via VEGFB pathway, suggesting insufficient numbers of FAP
(Fibro-adipo progenitor) cell activation that accompanies muscle
regeneration (De Micheli et al., 2020). Owing to our non-biased
approach in delineating these temporal patterns, we also sought to
find key regulators of these temporal clusters using transcription
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FIGURE 7
Characterization of a unique VML gene signature. (A) Volcano plot of uniquely differentially expressed genes in our VML transcriptomics dataset,
compared to mouse cardiotoxin-induced muscle injury dataset. (B) Volcano plot of uniquely differentially expressed genes in our VML transcriptomics
dataset compared to human muscle atrophy dataset.

factor-gene networks. Specifically, we found key regulators for
sustained fibrosis and inflammation. One of the potential key targets
identified from our analysis is the SP1 transcription factor. SP1
is linked to pro-fibrosis, an inflammation in many diseases such
as muscular dystrophy and atherosclerosis (Vinals et al., 1997).

In skeletal muscle, MYOD1 (a muscle regeneration transcription
factor) has been shown to downregulate SP1, which aligns with the
hypothesis of targeting SP1 for reducing fibrosis and inflammation,
leading to better repair (Vinals et al., 1997). Another therapeutic
target derived from our work is the mitochondria. The significant
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role of mitochondrial function and oxidative phosphorylation is
impactful and paradigm-shifting for VML injury therapeutics.
Drugs targeting the mitochondria can potentially treat muscular
conditions of VML. Future work to delineate the role of Sp1 or
mitochondrial targets is warranted in the setting of VML.

A limitation of the current work is that it does not address
concerns of potential compensatory hypertrophy in the context
of VML. For example, one group reported that the extensor
digitorum longus muscles of the surgically removed TA muscle
was higher in muscle mass and cross-sectional, compared to the
ipsilateral uninjured leg (Freeman et al., 1982). However, other
studies were inconclusive in showing compensatory hypertrophy
of other muscle groups (Wu et al., 2012). Therefore, studies to
further understand the extent of compensatory hypertrophy as a
consequence of VML requires further attention in the future.

In summary, the temporal kinetics of transcriptional and
proteomic signatures were evaluated using time-series analysis in
a mouse VML model. Our findings demonstrated dysregulated
muscle transcriptional signatures with patterns of sustained
upregulation, downregulation, or those with irregular patterns.
Geneset enrichment analysis revealed dysregulated pathways
associated with ECM remodeling, inflammation, mitochondrial
function, and metabolism while identifying a potential role of
Sp1 transcription factor gene network interactions in mediating
the process. These findings reveal the temporal kinetics of
pathological tissue remodeling and can be applied toward
the identification of novel gene targets that may augment
muscle regeneration.
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