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Exercise benefits yourself and
your offspring: a mini-review

Kun Wang1, Jiajia Zhao2, Yanqiu Wang2 and Mairu Liu2*
1Faculty of Physical Education, China West Normal University, Nanchong, China, 2School of Physical
Education, Central China Normal University, Wuhan, China

Regular physical activity is widely recognized for its systemic health benefits,
extending beyond physical fitness to influence metabolism, immunity, and
neurophysiology. Pregnancy is a physiologically unique period characterized
by dynamic immunometabolic changes that are crucial for maternal and fetal
health. Maternal exercise during this window offers a non-pharmacological
strategy to enhance maternal wellbeing and optimize offspring development.
This review summarizes recent advances in understanding the effects of
maternal exercise on both pregnant women and their offspring. In mothers,
exercise improves metabolic profiles, modulates inflammatory responses,
supports neuroplasticity, and promotes skeletal health. In offspring, maternal
exercise confers long-term benefits including improved glucose metabolism,
enhanced neurogenesis, cognitive development, and immune resilience.
Mechanistically, these effects are mediated through molecular pathways such
as placental superoxide dismutase 3 (SOD3) upregulation, adenosine 5′-
monophosphate-activated protein kinase/ten-eleven translocation (AMPK/TET)
signaling in the fetal liver, and exercise-induced circulating factors like Apelin
and SERPINA3C, which contribute to epigenetic remodeling and tissue-
specific programming. Despite growing evidence, gaps remain in understanding
the optimal intensity, timing, and molecular mediators of maternal exercise,
particularly regarding long-term immune and neurodevelopmental outcomes
in offspring. Future studies leveraging multi-omics approaches are needed to
elucidate cross-organ signaling mechanisms and identify therapeutic targets
to mimic exercise-induced benefits. Overall, maternal exercise emerges as a
safe, accessible intervention with significant potential to improve maternal-fetal
health and reduce offspring disease risk across the lifespan.
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1 Introduction

Regular exercise is a health-promoting lifestyle generally recommended to
reduce the risk of various disorders. Growing evidence shows the multiple
benefits of exercise, which extend beyond physical fitness and can exert positive
effects on the metabolism, immunity, and nervous system (Kusuyama et al.,
2020; Hayman et al., 2023; Davenport et al., 2018). However, the deeper
underlying mechanism of exercise-induced effects remains unclear, hindering the
development of alternative drugs that can reproduce the exercise-induced effects.
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FIGURE 1
Benefits of exercise. Exercise has systemic positive effects on multiple tissues, including the skeletal system, muscle, adipose tissue, liver, and brain.
Exerkines are exercise-induced factors that exert their effects through endocrine, paracrine, or autocrine pathways. BDNF, brain-derived neurotrophic
factor; NGF, nerve growth factor; Gpld1, glycosylphosphatidylinositol-specific phospholipase D1; IL-6, interleukin-6; IL-13, interleunkin-13; IL-15,
interleukin-15; IFN-I, type I interferon; Lac-Phe, N-lactoyl-phenylalanine; PF4, platelet factor 4; CLPs, common lymphoid progenitors.

The prenatal period encompasses a critical window for the
future healthy development of offspring (the Barker Hypothesis).
Thus, investigating the effects ofmaternal exercise during pregnancy
on offspring throughout intrauterine and postnatal development is
also an interesting topic (Muglia et al., 2022). Emerging evidence
supports that moderate exercise by mothers during pregnancy
benefits their children. The US Department of Health and Human
Services recommends that pregnant women insist on a minimum
of 150 min per week of moderate-intensity exercise (Piercy et al.,
2018). However, only a minority of pregnant women meet the
recommendations (Hayman et al., 2023; Davenport et al., 2018).

In this review, we firstly introduced the benefits of exercise
on pregnant women focusing in their common body conditions,
which include recent findings of exercise-induced effects on body
metabolism, neuron system, immune system, and skeletal system.
We also review recent studies of maternal exercise-induced effects
on offspring. We also discuss the present challenges and future
directions for studying exercise.

2 Benefits of exercise on mothers

Physical exercise is a well-known non-pharmacological
treatment to improve various disorders. It produces systemic health
benefits by affecting multiple tissues, including the skeletal system,
muscle, adipose tissue, liver and brain (Figure 1). Therefore, these
exercise-induced effects and the underlying mechanisms must be
studied from a holistic perspective.

2.1 Improve body metabolism

The global incidence of obesity and diabetes has risen sharply,
and exercise is a key non-pharmacological intervention to improve
metabolic health. Traditionally, the benefits of exercise have been

attributed to skeletalmuscle (Egan andZierath, 2013; Jonathon et al.,
2023), which releases myokines and metabolites during activity
(Martin et al., 2023). For example, succinate (Reddy et al., 2020)
and IL-13 (Nelson et al., 2020) are secreted bymuscle during exercise
and contribute to enhanced glucose tolerance, mitochondrial
activity, and endurance.

However, recent studies highlight that other tissues also
mediate exercise benefits (Stanford et al., 2015a). Adipose tissue
responds to exercise in a time-of-day dependent manner, as shown
by Pendergrast et al. (2023), with fat mobilization occurring
only during nocturnal activity in mice. Exercise also modulates
cardiac metabolism by reducing glycolytic activity (Gibb et al.,
2017) and reshapes the gut microbiome (Jonathan et al., 2024),
thereby improving endurance. Furthermore, Li et al. identified
the metabolite N-lactoyl-phenylalanine (Li et al., 2022), which
suppresses appetite and reduces obesity, though its cellular
origin remains unclear. A meta-analysis also suggests that
combining exercise with metformin enhances glucose regulation
in diabetic patients (Zhao et al., 2024).

In humans, maternal exercise during pregnancy lowers
gestational weight, reduces cesarean risk (The International Weight
Management in Pregnancy (i-WIP) Collaborative Group, 2017;
Wang et al., 2017), and decreases the incidence of gestational
diabetes mellitus (GDM) (Wang et al., 2017). It also induces long-
term liver mitochondrial adaptations in GDM mothers, potentially
delaying metabolic complications later in life (Stevanović-
Silva et al., 2021).

Advancements in multi-omics technologies have
accelerated this field. Sato et al. mapped the exercise-
induced metabolome across tissues and time points,
while the Molecular Transducers of Physical Activity
Consortium developed a comprehensive database spanning
transcriptomic to epigenomic changes across multiple
tissues during endurance training (Sato et al., 2022). These
resources offer powerful tools for deciphering the complex
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molecular responses to exercise and identifying potential
therapeutic targets (MoTrPAC StudyGroupLeadAnalystsMoTrPAC
Study Group, 2024).

2.2 Improve nervous system

Exercise exerts profound benefits on the nervous system,
influencing both the central and peripheral components. A
large body of evidence shows that physical activity promotes
neurogenesis, particularly in the hippocampus (Liu et al., 2019).
Van Praag et al. demonstrated that running enhances dentate
gyrus neurogenesis in mice, improving memory and learning
performance (van Praag et al., 1999). Aerobic exercise has been
shown tomost effectively stimulate adult hippocampal neurogenesis
(Nokia et al., 2016), which is also essential for maintaining cognitive
function in aging (Zhou et al., 2021). Exercise also enhances
neuroplasticity (Yamaguchi et al., 2016), partly by upregulating
neurotrophic factors. Notably, exercise increases brain-derived
neurotrophic factor (BDNF) expression (Sleiman et al., 2016;
Adlard et al., 2005), which supports synapse formation, plasticity,
and cognitive enhancement (Hempstead, 2015; Casarotto et al.,
2021; Fang et al., 2003; Anastasia et al., 2013; Kowianski et al.,
2018). Additionally, nerve growth factor (NGF) activated by
exercise binds to TrkA receptors, promoting neuronal survival
and synaptic modulation (Chao et al., 2006; Saragovi et al.,
1998; Hall et al., 2018). Interestingly, exercise not only acts as
a metabolic challenge but also initiates brain-driven metabolic
regulation (Hwang et al., 2023; Gautron et al., 2015). For
instance, BDNF influences systemic metabolism (Fulgenzi et al.,
2020; Xu and Xie, 2016), and exercise stimulates hypothalamic
POMC neurons (Kang et al., 2021), leading to thermogenesis
via adipose tissue mitochondrial activation. Exercise improves
cognitive functions, including memory, learning, and decision-
making (Augusto-Oliveira et al., 2023). Horowitz et al. found that
plasma from exercise-trained aged mice improves cognition and
neurogenesis in sedentary peers, with Gpld1 identified as a key
circulating factor (Horowitz et al., 2020). Similarly, platelet factor
4, higher in younger individuals, reduces neuroinflammation and
enhances cognition in aged mice (Schroer et al., 2023). Moreover,
exercise mitigates neurodegenerative conditions (Zhang et al.,
2019). Long-term physical activity alleviates cognitive impairment
in Alzheimer’s disease mice by enhancing lysosomal function
and promoting amyloid-beta clearance (Wang et al., 2022).
Mechanistically, exercise facilitates nuclear translocation of TFEB,
increases interaction with AMPK-mediated acetyl-CoA synthetase
2, and boosts lysosomal gene transcription.

In summary, exercise promotes neuronal development,
synaptic plasticity, metabolic regulation, and cognitive resilience,
highlighting its therapeutic potential for neurodevelopmental and
neurodegenerative conditions.

2.3 Improve immunity

The immune system plays essential roles in defense, regulation,
and homeostasis, and exercise has emerged as a powerful modulator
of immune function (Friedrich, 2008; Watts, 2012). One of the

most consistent findings is that regular physical activity helps
reduce systemic inflammation (Gleeson et al., 2011), which is
particularly beneficial in chronic metabolic disorders such as type
2 diabetes (Papagianni et al., 2023). This anti-inflammatory effect
is supported by evidence showing that exercise downregulates pro-
inflammatory signaling pathways and enhances anti-inflammatory
immune responses, partly through epigenetic and metabolic
modulation of immune cells (Nini et al., 2024). Aging-related
increases in inflammatory activity can also be attenuated by exercise,
highlighting its role in immune rejuvenation (Ling et al., 2023).

Beyond controlling inflammation, exercise promotes immune
cell production and activity (Shen et al., 2021). Mechanical
stimulation during physical activity can trigger bone marrow
niche cells to release factors that support lymphoid progenitor
expansion (Tengfei et al., 2024). Additionally, exercise enhances
innate antiviral responses, such as increased type I interferon
production, and promotes the expansion of regulatory T cells in
muscle tissue (Langston et al., 2023). These cells help maintain
immune balance and support tissue integrity by preventing excessive
inflammatory responses that could lead to cellular damage.

Given these immunomodulatory properties, exercise is
increasingly recognized as a valuable adjunctive therapy in cancer
(Fiuza-Luces et al., 2024; Kathryn et al., 2019). It has been shown
to improve quality of life (Anouk et al., 2024), physical function
(Scott et al., 2018), and immune competence (Kurz et al., 2022) in
cancer patients. Exercise can lower recurrence risk (Soldato et al.,
2024), enhance tumor immune surveillance, and improve treatment
outcomes. Mechanistically, this involves the release of cytokines
such as IL-15 (Kurz et al., 2022), which supports T cell mobilization
and tumor infiltration, strengthening anti-tumor immunity.

Importantly, exercise also contributes to long-term health and
longevity, regardless of disease status, by promoting systemic
immune balance. Together, these findings support the role of
regular physical activity as a low-cost, non-pharmacological strategy
to enhance immune defense, reduce chronic inflammation, and
support disease prevention and recovery, particularly in aging and
cancer contexts (Jessica et al., 2024; Lavery et al., 2023).

2.4 Effects on skeletal system disorders

The skeletal system is fundamental for movement and
structural support, and exercise plays a critical role in its
development, maintenance, and rehabilitation (Lee et al., 2014;
Huiskes et al., 2000). Physical activity has long been recommended
for managing skeletal disorders such as osteoporosis and low
back pain (LBP) (Kise et al., 2016; Pagnotti et al., 2019;
Breda et al., 2021; Owen et al., 2020).

In osteoporosis, particularly among postmenopausal women
(Pagnotti et al., 2019; Courteix et al., 1998), various exercise
modalities have shown beneficial effects on bone mineral density
(BMD) (Mohammad Rahimi et al., 2020). Resistance and impact
training are especially effective in improving bone strength and
functional performance (Watson et al., 2018), while mind–body
exercises (Zhang et al., 2021), such as Tai Chi, have been
associated with BMD improvements in the lumbar spine and
femoral neck, particularly with long-term practice (Chow et al.,
2018; Sun et al., 2016).Mechanistically, bones respond tomechanical
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FIGURE 2
Benefits of maternal exercise. Exercise during pregnancy provides many health benefits for mothers and children. BMI, Body mass index.

loading (Huiskes et al., 2000), where osteoblasts sense strain
through mechanosensitive ion channels like PIEZO1/2 (Sun et al.,
2019; Wang et al., 2020). In addition to mechanical signaling,
moderate exercise has been shown to influence bone formation
through sympathetic cholinergic nerve fibers (Gadomski et al.,
2022) and epigenetic modifications (Chen et al., 2021), offering
insights into how physical activity promotes skeletal adaptation at
a molecular level.

For LBP, a condition increasingly prevalent and economically
burdensome, intervertebral disc (IVD) degeneration is often
a primary cause. Exercise has emerged as a non-invasive
strategy for promoting IVD regeneration (Sasaki et al., 2012).
Experimental models show that exercise stimulates the proliferation
of IVD progenitor cells and increases glycosaminoglycan content
(Ueta et al., 2018), enhancing disc hydration and matrix integrity.
In humans, early-stage physical activity yields modest but
significant improvements in disability related to recent-onset
LBP (Fritz et al., 2015). Specific movement therapies, such as
motor control exercise (Saragiotto et al., 2016) and moderate
intensity aerobic training (Belavý et al., 2017), have shown low
to moderate efficacy in reducing chronic LBP symptoms and
improving long-term disc function (van Dillen et al., 2021),
especially in individuals with less physically demanding occupations
(Hayden et al., 2020).

Overall, exercise serves as a mechanically and biologically
active intervention for skeletal health, benefiting both bone
density and spinal disc integrity, and offers a promising alternative
or adjunct to pharmacological and surgical treatments for
skeletal disorders.

3 Benefits of maternal exercise on
offspring

Maternal exercise during pregnancy exerts multiple beneficial
effects on offspring and confers protection against the development
of various disorders. However, more studies are required to
reveal the maternal-exercise-induced long-term effects on
offspring (Figure 2).

3.1 Improved metabolic health in offspring

Increasing evidence suggests that an adverse intrauterine
environment is strongly associated with a higher risk of
obesity and diabetes in offspring (Kusuyama et al., 2020;
Sales et al., 2017). In contrast, maternal exercise has emerged as a
promising non-pharmacological intervention to improve offspring
metabolic health (Harris et al., 2018).

In humans, maternal physical activity during pregnancy
is associated with favorable postnatal outcomes, including
reduced offspring subcutaneous fat mass (Clapp, 1996),
lower BMI (Mourtakos et al., 2015; Jevtovic et al., 2005),
and improved body weight regulation into early childhood.
Importantly, maternal exercise has been shown to influence the
metabolic function of offspring mesenchymal stem cells (MSCs)
(Jevtovic et al., 2024), enhancing glucose and lipid metabolism
(Chaves et al., 2022), with resistance training showing the most
prominent effects (Jevtovic et al., 2023).

Animal studies further confirm that maternal exercise
mitigates the adverse metabolic effects of a maternal high-fat
diet (Stanford et al., 2017), improving glucose tolerance and liver
metabolism in offspring (Zhang et al., 2023). However, the timing
of exercise is critical; benefits are most evident when exercise is
performed both before and during gestation, but not if limited to
either period alone (Stanford et al., 2015b; Sheldon et al., 2016).

At the molecular level, recent research has identified several key
pathways throughwhichmaternal exercise benefits fetal development.
These include the vitamin D receptor-mediated increase in placental
superoxide dismutase 3 (SOD3) (Kusuyama et al., 2021), which
activates adenosine 5′-monophosphate-activated protein kinase/ten-
eleven translocation (AMPK/TET) signaling and promotes DNA
demethylation of glucose metabolism genes in fetal liver (Bae-
Gartz et al., 2020). Additionally, exercise-induced circulating factors
such as Apelin (Jun Seok et al., 2020) and SERPINA3C (Li et al., 2025)
play crucial roles in enhancing brown adipose tissue development
and reducing inflammation via PI3K-TET1-Klf4 signaling in fetal
adipose tissue (Li et al., 2025).

Together, these findings highlight maternal exercise as a
powerful modulator of epigenetic programming and cellular
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metabolism in offspring, offering long-term protection against
metabolic disorders.

3.2 Promotion of neuron development in
offspring

Maternal exercise during pregnancy has been increasingly
recognized to promote not only maternal neurogenesis but also
enhance neurodevelopmental outcomes in offspring, particularly
in cognitive, behavioral, and motor domains (Wiebe et al., 2015;
Labonte-Lemoyne et al., 2017). Studies report that offspring of
physically active mothers show more mature neonatal EEG patterns
(Labonte-Lemoyne et al., 2017), reduced neural immaturitymarkers
(Clapp et al., 1999), and higher cognitive performance, including
elevated IQ levels during infancy (Domingues et al., 2014).

The neuroprotective and neuroenhancement effects of
gestational physical activity are likely mediated by multiple
mechanisms. Exercise improves fetal cerebral oxygenation (Moreno-
Fernandez et al., 2020), promotes synaptogenesis (Yau et al.,
2019), and enhances hippocampal neurogenesis, leading to long-
term benefits in learning-memory capability (Ayfer et al., 2012),
and emotional regulation (Kim et al., 2024). Some findings
indicate sex-specific effects, with male and female offspring
showing distinct cognitive and neural responses (Yau et al.,
2019). Additionally, pre-pregnancy exercise may confer resilience
against prenatal stress (Nakahara et al., 2021) and reduce
neurodevelopmental issues (Klein et al., 2019) such as sleep or
behavioral disturbances (Nakahara et al., 2021).

Onamolecular level,maternalexercisehasbeenshowntosuppress
neurotoxic markers like tau phosphorylation and oxidative stress
(Kleinetal.,2020),while increasingneurotrophicfactorssuchasBDNF
andmature neurotrophic proteins (Park et al., 2021),which contribute
to enhancedneurogenesis and synaptic plasticity in theoffspringbrain
(Akhavanet al., 2011).Amyloidprecursorproteins (Mohammadet al.,
2024) and hippocampal plasticity pathways have also been implicated
in mediating these effects.

Motor development benefits have also been reported, with
offspring demonstrating improved neuromotor performance in
infancy (McMillan et al., 2019) and even into later childhood
(Ferrari et al., 2023). These motor improvements may be linked
to increased maternal BDNF levels during late pregnancy, which
can cross the placenta and influence fetal brain development.
However, some findings remain inconsistent, with certain
long-term studies reporting no significant differences in
motor outcomes (Ellingsen et al., 2020).

Overall, prenatal exercise is a promising, low-risk intervention
that supports neural development and functional maturation in
offspring. Despite encouraging findings, mechanistic understanding
remains limited, highlighting the need for further research into
how maternal physical activity programs neurodevelopmental
trajectories (Na et al., 2022; Zhou et al., 2022).

3.3 Immunomodulation in offspring

Pregnancy is characterized by trimester-specific
immunometabolic adaptations, essential for maintaining

maternofetal homeostasis and supporting healthy gestation. These
physiological changes include dynamicmodulation of inflammatory
responses (Mor et al., 2011; Kalagiri et al., 2016), which may be
influenced by maternal lifestyle factors such as physical activity.
Given the role of exercise-induced cytokines (exerkines) in systemic
immunoregulation, maternal exercise could serve as a potential
non-pharmacological strategy to modulate inflammation during
pregnancy. Exerkines refer to cytokines, peptides, and proteins
induced by exercise, which exert their effects throughout the body
through blood circulation, regulating various physiological and
metabolic processes (Sabaratnam et al., 2022).

Emerging, though limited, evidence suggests that maternal
exercise reduces systemic inflammation in pregnant women
(Wang et al., 2015; Hawkins et al., 2014). Light to moderate
physical activity has been associated with lower levels of C-
reactive protein (CRP) (Tinius et al., 2017) and pro-inflammatory
cytokines such as interleukin-6 (IL-6) and tumor necrosis
factor-alpha (TNF-α) (Acosta-Manzano et al., 2019). However,
findings on vigorous exercise remain inconsistent, with some
data indicating elevated IL-6 or IL-1β (Acosta-Manzano et al.,
2020), emphasizing the importance of exercise intensity and the
need for cautious interpretation due to statistical variability. Some
studies suggest that moderate-intensity exercise offers the most
favorable inflammatory profile, balancing immune activation and
suppression (Dhar et al., 2024).

Animal studies further support these findings. Prenatal
exercise in rodent models has been shown to increase BDNF
and decrease inflammatory markers in offspring exposed
to brain injury, suggesting that maternal physical activity
confers neuroprotection through enhanced antioxidant and
anti-inflammatory pathways (Gorgij et al., 2021).

Despite these promising observations, research on
immunomodulation by maternal exercise remains limited,
particularly regarding long-term effects on offspring immune
and neurodevelopmental health. Future studies are needed to
clarify the dose-response relationship between exercise intensity
and immune outcomes, and to elucidate the role of maternal
exerkines in mediating maternal-fetal immune communication
(Acosta-Manzano et al., 2020; Adamo et al., 2024).

3.4 Other benefits of maternal exercise to
offspring

Beyond the improvements in metabolic health and neuronal
function, maternal exercise has many other beneficial effects on
offspring, such as improving hypertensive disorders of pregnancy
(Barakat et al., 2016), reducing the risk of cesarean section
(Di Mascio et al., 2016; Owe et al., 2016) and heart protection
(Reihaneh et al., 2023). Although research in these aspects is not
as extensive as that on the effects of maternal exercise on offspring
metabolism and neurodevelopment, several randomized clinical
trials have reported relevant findings.Musakka et al. (2024) reported
as well that maternal exercise during pregnancy, when practiced
three or more times per week, is associated with a reduced risk of
asthma in offspring. Carlsen et al. (Gudmundsdóttir et al., 2022)
suggested that physical activity in the first half of pregnancy is linked
to increased lung function in the child. Moreover, Owe et al. (2016)
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found that regular exercise during pregnancy is associated with
reduced risk of acute cesarean section for mothers. Additionally, the
meta-analysis from Davenport et al. (2018) indicates that maternal
exercise is not associated with adverse childhood complications,
but it is associated with reduced odds of macrosomia. Macrosomia
refers to infants with a birth weight exceeding 4,000 g, and it
is associated with several maternal and fetal complications such
as maternal birth canal trauma, shoulder dystocia, and perinatal
asphyxia (Araujo Junior et al., 2017; Nguyen and Ouzounian, 2021).
Zhang et al. also reported that maternal exercise can alleviate
oxidative stress and the impairment of endothelium-dependent
vasodilatation, thereby improving vascular function in hypertensive
offspring.

Although current findings tentatively indicate various potential
enhancing effects of maternal exercise during pregnancy, yet
conclusions are constrained by methodological limitations
including small sample sizes and inconsistent assessment protocols.
Moreover, research examining the impacts of prenatal exercise on
offspring across different offspring age groups remains limited, with
underlying mechanisms poorly understood. Therefore, addressing
these research gaps holds significant clinical value for establishing
evidence-based guidelines for prenatal health management.

4 Risks of maternal exercise during
pregnancy

While prior research has established the benefits of maternal
exercise for offspring, its potential association with miscarriage
risk warrants clarification. Our comprehensive literature review
found no evidence that exercise during pregnancy increases
miscarriage risk. However, the lack of documented evidence does
not preclude this possibility. Previous research indicated that
high-intensity exercise can negatively affect placental blood flow
(Salvesen et al., 2012).While some studies suggest strenuous exercise
could be safe for pregnant women, but only for athletes who are
well trained before pregnancy (Titova et al., 2024). Moreover,
vigorous leisure activity is associated with reduced birth weight,
suggesting a cautious engagement in vigorous exercise during
pregnancy (Leet and Flick, 2003; Evenson et al., 2014; Mottola et al.,
2018). The Australian guidelines proposed by Brown et al. (2022),
aligned with recently published international standards and
professional recommendations, outline contraindications and
warning signs for prenatal and postnatal physical activity/exercise.
Pregnant individuals should undergo individualized risk
assessments and prioritize moderate-to-low intensity exercise
while monitoring for pregnancy-related complications (Vargas-
Terrones et al., 2019; Bull et al., 2020). Absolute contraindications
may include: Poorly controlled metabolic disorders (Type 1 diabetes
or Thyroid disease); Cardiovascular/Respiratory disorders; Pre-
eclampsia; Cervical insufficiency or rupturedmembranes; Persistent
second or third trimester bleeding; Placenta previa; Intrauterine
growth restriction; Multiple gestation (triplets or higher number).
Overall, further research is warranted to systematically evaluate
exercise-related risks during pregnancy through comprehensive risk
stratification and establish standardized risk assessment protocols
for prenatal exercise to prevent adverse pregnancy outcomes while
optimizing maternal-fetal health outcomes.

5 Conclusion

Regular exercise can improve whole-body health, but the
systemic effects and the underlying molecular mechanisms remain
incompletely understood. Various sequencing methods that have
emerged in recent years can help us further understand the exercise-
induced systemic effects. In fact, scientists around the world have
providedmultiple databases for studying the exercise-induced cross-
organ effects under different conditions. These datasets serve as
valuable resources for understanding the multi-tissue molecular
effects of exercise. However, current studies do not consider the
effects of exercise on pregnant mammals and their offspring. Future
studymay profile themulti-omic sequence across tissues of pregnant
mammals with or without exercise, which must be helpful for
exploring the molecular effects of exercise on pregnant mothers and
their offspring.

Additionally, despite themultiple benefits of exercise introduced
here, an active lifestyle, as well as insistence on exercise, may be
difficult for most individuals because of busy work or owing to
age, disease, or other reasons. Therefore, one of the ultimate goals
of sports medicine research is to identify the key regulators and
factors (e.g., peptides, metabolites, and cytokines) that are induced
after exercise.Theymay be developed as potential therapeutic agents
to mimic beneficial effects in the absence of physical training.
Moreover, the multi-omics profiles for exercise under any of the
conditions mentioned above may be pivotal for identifying the
promising target.
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