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Role of circadian clock in female
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Accumulating evidence indicates that circadian rhythm disruption can exert an
impact on female reproductive function. In the context of female reproduction,
the success of embryo implantation is of utmost significance as it is an essential
process for female reproduction. Studies have demonstrated that females with
disrupted circadian rhythms are more likely to experience embryo implantation
failure, which is exemplified by shift workers, nurses, and flight attendants.
Therefore, comprehending the circadian rhythm of female embryo implantation
is crucial for human reproduction. Herein, we emphasize the mechanism of
circadian operation and its regulatory effect on reproductive hormones related
to embryo implantation. More importantly, the regulatory role of peripheral
clock genes in the process of embryo implantation (endometrial receptivity
and decidualization) is highlighted. Finally, melatonin is hypothesized to be
a promising treatment for implantation failure caused by circadian rhythm
disturbances.
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1 Introduction

The central circadian clock, situated in the suprachiasmatic nucleus (SCN) of the
hypothalamus, functions as an autonomous pacemaker that synchronizes with the light-
dark cycle and/or other temporal cues (zeitgebers) through retinal synaptic inputs and
regulates physiological and behavioral rhythms to facilitate anticipation of predictable
environmental changes. It is widely accepted that circadian rhythms that persist in the
absence of zeitgebers are controlled by the central circadian clock (Bailey and Silver, 2014).
The SCN contains a variety of neuronal subtypes, among which the expressing neurons of
vasoactive intestinal peptide (VIP), arginine vasopressin (AVP), and neuromedin-S (NMS)
exhibit strong circadian gene expression (Lee et al., 2015; Wen et al., 2020). The SCN is
trained by environmental signals and conveys the external periodicity to the peripheral
clocks in the remaining parts of the body. External environmental factors, including
light–dark cycles, temperature, feeding times, and physical activity, function as circadian
time cues, or zeitgebers, to generate endogenous rhythms with a period approximately close
to 24 h. Light is regarded as the primary zeitgeber that imparts timing to the endogenous
clock and facilitates the process through which an individual’s internal period is adjusted to
alignwith that of its environment (Takahashi, 2017; Cox andTakahashi, 2019). Inmammals,
the core of the cellular and molecular clock mechanism is composed of transcriptional
activators such as brain and muscle arnt-like protein 1 (BMAL1) and circadian locomotor
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output cycle kaput (CLOCK). These two elements form a
heterodimer (BMAL1: CLOCK) and attach to the enhancer box
(E-box), which possesses the DNA sequence CANNTG (where 'N'
stands for any nucleotide) within the promoter area of both target
clock genes and clock-controlled genes. The target clock genes
mainly comprise, but are not limited to, the period (Per1-3) and
cryptochrome (Cry1-2) genes (Shearman et al., 1997; Kume et al.,
1999). The PER and CRY proteins undergo post-translational
modifications and subsequently return to the nucleus. There, they
function as cyclic repressors for the transcription of their own
genes and other related genes by interfering with the binding of
the BMAL1: CLOCK complex to the DNA (Michael et al., 2017;
Rosensweig et al., 2018). In the secondary major transcriptional
loop, BMAL1: CLOCK initiate the transcription of genes encoding
the nuclear receptors REV-ERBα and REV-ERBβ (Preitner et al.,
2002). These proteins contend with the retinoic acid-related orphan
receptors, namely, RORα, RORβ, and RORγ, for the binding
sites ROR-binding elements (RORE) on the BMAL1 gene. This
interaction leads to both positive (ROR) and negative (REV-ERB)
transcriptional regulation (Sato et al., 2004). A tertiary feedback
loop encompasses the D-box binding protein (DBP) and the nuclear
factor, interleukin-3 regulated protein (NFIL3 or E4BP4). These are
regulated by BMAL1: CLOCK and CRY1, and they attach to D-box
elements on circadian promoters, such as those of RORα and RORβ
(Ueda et al., 2005; Ripperger and Schibler, 2006; Stratmann et al.,
2010). These interconnected feedback loops collectively constitute
the “molecular clock”, governed by transcriptional-translational
mechanisms and exhibiting a self-sustained circadian oscillation
period approximating 24 h (Takahashi, 2017; Cox and Takahashi,
2019). The core clock gene also drives the expression of
clock-controlled genes (CCGs), including embryo attachment-
related genes (Figure 1), which act as cell- and tissue-specific
regulators of rhythmic physiological function.

In females of mammalian species, reproductive activity exhibits
regular cyclic patterns, namely, menstrual cycles in women and
estrous cycles in other mammals. These cycles are orchestrated by
intricate interactions among hypothalamic neuropeptides, pituitary
gonadotropins such as luteinizing hormone (LH) and follicle-
stimulating hormone (FSH), sex steroid hormones secreted by the
ovaries, and the circadian system (Simonneaux and Bahougne,
2015). The ultimate result of this regulatory mechanism is to
synchronize the production of ovulation after oocyte maturation
with the reproductive tract of the recipient area, thus ensuring
the normal development of the embryo (Simonneaux and
Bahougne, 2015). Studies focusing on SCN damage in rodents have
indicated that such damage induces a diverse array of reproductive
dysfunctions, manifested as disruptions in the estrous cycle,
aberrations in follicular development, and perturbations within
the ovulatory reproductive process (Silva et al., 2023; Vieyra et al.,
2024). In humans, circadian disruption has been established to
have an association with reproductive dysfunction and subfertility.
In circadian rhythm disruption scenarios such as shift work,
women are more predisposed to report irregular menstrual cycles
(Baker and Driver, 2007). Chronic circadian disruption in humans
correlates with augmented pregnancy latency and a higher incidence
of miscarriage, with the maximal risk manifesting during early
pregnancy. Prolonged engagement in shift work has also been
correlated with an elevated risk of preterm birth and the occurrence

of infants with low birth weight (Baker and Driver, 2007; Sen and
Sellix, 2016).

In mammals, a novel life commences with the fusion of
an ovum and a sperm, which is termed fertilization. After this
event, the zygote experiences multiple rounds of division and
morphogenetic processes, ultimately giving rise to the blastocyst.
The blastocyst represents an embryonic stage that comprises two
distinguishable cell lineages: the outer trophectodermal epithelium
with specialized characteristics and the inner cell mass (Wang and
Dey, 2006; Cockburn and Rossant, 2010). Successful implantation
requires synchronization between the acquisition of implantation
competency by the blastocyst and a receptive state in the uterine
endometrium (Dey et al., 2004; Wang and Dey, 2006). These
two events are precisely regulated by maternal hormones, in
particular, ovarian estrogen and progesterone (Conneely et al.,
2002; Cheng et al., 2023). Molecular and genetic evidence
indicates that ovarian hormones together with locally produced
signalingmolecules, including cytokines, growth factors, homeobox
transcription factors, lipid mediators and morphogen genes,
function through autocrine, paracrine and juxtacrine interactions
to specify the complex process of implantation (Dey et al., 2004).
The crosstalk between the blastocyst and the uterus is restricted to
a short period, termed the “window of implantation” (Paria et al.,
1993; Ma et al., 2003). Upon encountering the implanting embryo,
the adjacent uterine stroma undergoes a cellular transformation
process known as decidualization, which is essential for facilitating
embryonic growth and invasion (Lim and Wang, 2010). The locally
formed decidua provides a positive feedback mechanism that
promotes embryo survival. Any disruptions in this process can lead
to unfavorable consequences for subsequent developmental events
such as decidualization and placentation, and may even result in
the termination of the pregnancy (Ye et al., 2005; Chen et al.,
2011). Research investigations into the reproductive capacities of
female shift workers (engaged in work between 18:00 and 7:00),
nurses, and flight attendants have all found that women with
disrupted circadian rhythms have a higher incidence in terms of
menstrual disorders, infertility, and pregnancy failures (Zhu et al.,
2003; Quansah and Jaakkola, 2010; Grajewski et al., 2015). The
preponderant majority of pregnancy failures stem from the failure
of embryo implantation (Wilcox et al., 1988). Hence, it is of utmost
importance to explore the role of circadian rhythm in embryo
implantation and to tackle this global issue.This reviewwill examine
our understanding of circadian regulation of embryo implantation.

2 Reproductive hormones regulated
by the circadian clock are involved in
embryo implantation

Studies have shown that estrogen (E2) and progesterone (P4)
secreted by the ovary play a critical regulatory role in the
process of embryo implantation (Sandra, 2016). The synergistic
effect of these two hormones promotes the establishment of
uterine receptive state, which is conducive to the occurrence
of embryo implantation (Sandra, 2016). Based on the dynamic
fluctuation patterns of E2 and P4 during embryo implantation,
Finn and Martin classified it into three processes. The details of
these three processes, supplemented with data from subsequent
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FIGURE 1
The circadian clock loop. In the core feedback loop, the transcription factors BMAL1 (blue circles) and CLOCK (green circles) bind to E-box domains on
gene promoters, including the genes for Rev-erbs (red), Pers (yellow), and Crys (orange). PERs (yellow circles) and CRYs (orange circles) dimerize and
translocate to the nucleus, where they repress their own, Rors (purple), and Rev-erbs transcription. In a second feedback loop, CLOCK and BMAL1 also
regulate the transcription of genes for the nuclear receptors REV-ERBs (red circles), which compete with the retinoic acid-related orphan receptors,
RORs (purple circles) for binding to RORE elements on the Bmal1 gene promoter, providing both positive (ROR) and negative (REV-ERB) regulation of
BMAL1 transcription. A third feedback loop is mediated by BMAL1: CLOCK-mediated transcription of the gene Dbp (cyan) and the
ROR/REV-ERB-mediated transcription of Nfil3 (brown). DBP (cyan circles) and NFIL3 (brown circles) dimerize and bind to D-box elements on the
promoters of many of the core clock genes, providing additional layers of regulation. Ultimately, clock genes translocate to the nucleus to regulate the
expression of CCGs.

research, are as follows. In the first stage, LH and FSH induce an
elevation in E2 levels, which stimulates follicular development and
subsequently leads to ovulation. Subsequently, P4 levels experience
a continuous increase concomitant with the production of corpus
luteum and then return to normal levels. The second stage is

characterized by relatively low levels of both hormones. The third
stage is marked by the occurrence of mating behavior (Finn and
Martin, 1974). Implantation takes place at the end of the third
stage, during which P4 secretion continuously rises, reaches a
peak, and sustains peak secretion. Notably, in the third stage, a
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transient and relatively small E2 peak emerges on the first day
of implantation, which is associated with the release of delayed
implantation (Finn and Martin, 1974; Paria et al., 1993; Zhang et al.,
2013). In the pre-implantation period, if E2 supply to the uterus
is interrupted, the blastocyst fails to implant, and the uterus
enters a state of delayed implantation. P4 supplementation alone
does not reverse this condition. Nevertheless, the administration
of exogenous E2 can disrupt this state and trigger blastocyst
implantation (Paria et al., 1993). Furthermore, E2 modulates
uterine receptivity and decidualization via E2 receptors α and β
(Winuthayanon et al., 2010; Pawar et al., 2015). Although E2 is
crucial in the embryo implantation process, P4 has emerged as
the most essential hormone for successful implantation owing to
its specific properties. The nuclear receptors P4 receptors (PR)
A and B are expressed in the uterus. It is postulated that PRA
is implicated in embryo attachment. Both global PRA knockout
mice and uterus-specific knockoutmice exhibit infertile phenotypes
(Conneely et al., 2001; Lee et al., 2006). A substantial body of
research has demonstrated that P4/PRA signaling restrains the
proliferation of epithelial cells. Additionally, it promotes stromal cell
proliferation and differentiation by activating multiple downstream
signalingmolecules. Consequently, this signaling pathway facilitates
the establishment of uterine receptivity as well as the occurrence
of embryo implantation and decidualization (Conneely et al.,
2001; Lee et al., 2006) Reproductive hormones play a pivotal role
in embryo attachment. Intriguingly, as shown in Figure 2, these
hormones are regulated by the circadian rhythm.

2.1 The circadian clock regulates
gonadotropins

The circadian regulation of LH by the hypothalamic-pituitary-
gonadal (HPG) axis serves as a key signal for corpus luteum
formation and ovulation, as shown in Figure 2, which is essential for
the proper progression and coordination of reproductive processes.
In the hypothalamus, kisspeptin neurons stimulate Gonadotropin-
releasing hormone (GnRH) neurons, which release GnRH onto
gonadotropes in the anterior pituitary. In response to GnRH,
gonadotropes release LH and FSH into the circulation, allowing
these hormones to act on the gonads to stimulate gametogenesis
and sex steroid production. When the follicles are mature, the
level of estrogen released reaches a threshold level, which then
becomes an activator to kisspeptin neurons in the anteroventral
periventricular nucleus (AVPV). The increased activity and release
of kisspeptin by AVPV kisspeptin neurons onto GnRH neurons
results in a surge of GnRH, which prompts a surge of LH, and
then ovulation (Wang and Moenter, 2020). The VIP acceptor two
is expressed on GnRH neurons and VIP neurons located in the
SCN possess the capacity to project directly onto GnRH neurons
(Van der Beek et al., 1994; An et al., 2011). The absence of VIP leads
to a reduction and delay in the LH surge, consequently resulting
in impaired ovulation and reduced fertility in mice (Harney et al.,
1996; Loh et al., 2014; Hoffmann et al., 2021). AVP neurons in
the SCN shell project to AVPV kisspeptin neurons in rodents
by vasopressin receptor 1a (V1a), and AVP robustly stimulates
kisspeptin neuron firing (Williams et al., 2011; Piet et al., 2015).
In SCN-lesioned animals, intracranial injection of AVP in the late

afternoon rescues the LH surge through V1a (Palm et al., 1999;
Miller et al., 2006). Neuromedin U receptor type 2 (NMU2R), the
receptor for NMS, is widely expressed in the hypothalamus and
anterior pituitary, particularly in melanocyte-stimulating hormone
(MSH) neurons (Crown et al., 2007; Yang et al., 2010). Evidence
suggests that NMS regulates luteinizing hormone (LH) secretion by
acting on MSH neurons in pigs. Additionally, the administration
of exogenous NMS increases serum LH levels in female rats,
further supporting the regulatory role of NMS in LH secretion
(Vigo et al., 2007; Yang et al., 2010).

2.2 Estrogen is secreted under the control
of the circadian clock

E2 is the main hormone secreted by ovarian granulosa
cells and plays an important role in embryo implantation. The
steroidogenic acute regulatory protein (STAR) promotes the
transport of cholesterol from the outside to the inside of the
mitochondrial membrane. Under the catalysis of cytochrome
P450 family 11 subfamily a member 1 (CYP11A1), cholesterol
undergoes a side-chain cleavage reaction to generate pregnenolone.
Pregnenolone is then converted into dehydroepiandrosterone
(DHEA) under the action of 17-hydroxylase (CYP17A1). DHEA
is catalyzed by 3β-hydroxysteroid dehydrogenase (3β-HSD) to
produce androstenedione. Androstenedione is further converted
into estrone under the action of aromatase cytochrome P450 family
19 subfamily a member 1 (CYP19A1). Estrone can be further
transformed into estradiol with stronger activity under the action
of 17β-hydroxysteroid dehydrogenase (17β-HSD) (Wallach et al.,
1996). Accumulating evidence indicates that the circadian clock
exerts regulatory control over E2 signaling.The knockdown of Clock
genes Bmal1 or Clock via small interfering RNA led to a reduction
in the expression of StAR, Cyp11a1, and Cyp19a1, accompanied
by a decrease in E2 content within granulosa cells. Conversely,
the knockdown of Per2 enhanced StAR expression and augmented
E2 production. This may be the reason why PER2 is a BMAL1:
CLOCK repressor (Shimizu et al., 2011; Wang et al., 2017). REV-
ERBα further diminished estrogen secretion in ovarian granulosa
cells through a direct interaction with the RORE region of the
Cyp19a1 promoter, which in turn suppressed Cyp19a1 expression.
Simultaneously, REV-ERBα could also act on the RORE region
of the Bmal1 promoter to curtail its expression and undermine
Bmal1 function, consequently leading to a reduction in E2 secretion
(Cho et al., 2012; Wang et al., 2022). E2 is primarily secreted by
ovarian granulosa cells (GCs), and the proliferation, apoptosis and
autophagic processes of GCs can influence E2 production. A study
utilizing RNA-seq analysis on GCs with CLOCK overexpression
successfully identified Ankyrin repeat and suppressor of cytokine
signaling box-containing 9 (ASB9) as a differentially expressed
gene, which is involved in cellular growth and differentiation
processes (Benoit et al., 2019; Huang et al., 2023). Experimental
findings demonstrated that ASB9 is a direct target gene of CLOCK,
through which CLOCK increases the population of cells in the
G1 phase, reduces the number of cells in the G2 phase, and
suppresses the viability of GCs (Huang et al., 2023). Circadian
rhythms are not only involved in the proliferation of GCs but
also play a role in GCs apoptosis. In an experiment involving the
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FIGURE 2
Circadian rhythms regulate embryo implantation through reproductive hormones. The suprachiasmatic nucleus, situated within the hypothalamus, is
susceptible to environmental stimuli. It exerts regulatory effects in two main aspects. Firstly, it prompts the secretion of GnRH and the pituitary to
release FSH and LH, thereby modulating the ovarian secretion of estrogen and progesterone. Secondly, it influences the secretion of estrogen and
progesterone through the peripheral circadian clock loop. Ultimately, these processes facilitate embryo implantation. Specifically, in the hypothalamus,
VIP, AVP, and NMS secreted by time-controlled neurons within the SCN regulate gonadotropin secretion through binding to V1a receptors on Kisspeptin
neurons, VIP2R receptors on GnRH neurons, and NMU2R receptors on MSH neurons, respectively. In the ovary, clock genes modulate the secretion of
estrogen and progesterone by regulating genes associated with proliferation, steroidogenesis, and degeneration in granulosa and luteal cells.

knockdown ofBmal1 in porcineGCs, the phosphoinositide 3-kinase
(PI3K)/protein kinase b (Akt)/mechanistic target of rapamycin
(mTOR) signaling pathway was inactivated, indicating the onset
of apoptosis in GCs. This finding was further corroborated by
flow cytometry analysis (Wang et al., 2017). Autophagy, a tightly
regulated lysosomal degradation pathway, is essential for clearing
long-lived proteins and damaged organelles. Dysregulation of this
process can have severe cellular consequences (Klionsky and Emr,
2000; Kroemer et al., 2010). Autophagy-related 5 (Atg5) is a CCG
regulated by Rev-erbα, which negatively modulates Atg5 expression,
leading to autophagy dysregulation in mice GCs (Zhang et al.,
2022). Nuclear receptor coactivator 4 (NCOA4) is a cargo
receptor responsible for autophagy-dependent ferritin degradation
(Mancias et al., 2014). NCOA4-mediated ferritinophagy maintains
intracellular iron homeostasis by facilitating ferritin iron storage or
release according to demand. NCOA4 deletion inhibits ferroptosis
by blocking ferritinophagy and ferritin degradation (Liu et al.,
2020). In human ovarian GCs, Cry1 modulates NCOA4-mediated
ferritinophagy by regulatingNCOA4 ubiquitination and subsequent
degradation. Furthermore, treatment with KL201, a Cry1 stabilizer,
effectively suppresses ferritinophagy (Ma et al., 2024). In summary,
as synthesized in Table 1, the circadian system plays a fundamental
role in regulating both the initiation and termination of ovarianGCs
functions, critically influencing their capacity to secrete E2.

2.3 The circadian clock regulates
progesterone secretion and the luteal cycle

P4 is the main hormone secreted by the corpus luteum
(CL). The source of cholesterol for steroidogenesis in ovarian
luteal cells depends on circulating plasma lipoproteins, de novo
synthesis, and utilization of intracellular cholesterol ester stores.
STAR facilitates the transport of cholesterol from the outer to
the inner mitochondrial membrane, serving as the rate-limiting
step in progesterone synthesis. CYP11A1 catalyzes the conversion
of cholesterol to pregnenolone, which passes into the smooth
endoplasmic reticulum where it is converted to progesterone by 3β-
HSD. P4 then diffuses out of the luteal cell to be transported to the
target tissues (Yakin et al., 2023). Accumulating evidence suggests
that the circadian clock exerts significant regulatory control over P4
signaling pathways. In an experiment involving mice subjected to
constant light, the researchers discovered that mice with circadian
rhythm disruptions induced by continuous light exposure exhibited
lower StAR and serum P4 levels (Li et al., 2023). Continuous light
exposure and a 6-h phase shift every 3 days of light exposure led to a
reduction in serum P4 levels in ruminants (Gao et al., 2016; Suarez-
Trujillo et al., 2022). Specifically, it is the peripheral clock proteins,
such as BMAL1, that are operative. BMAL1 global knockout female
mice were found to be infertile (Ratajczak et al., 2009; Boden et al.,
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TABLE 1 Circadian coordination of reproductive hormone in embryo implantation.

Reproductive hormones Produce The regulatory role of circadian clock Roles in implantation

Estrogen Ovary Ovarian apoptosis and estrogen synthesis
Receptivity, decidualization

Progesterone Corpus luteum Corpus luteum formation, regression, and progesterone synthesis

2010). However, when additional P4 was continuously administered
from day 3.5 to day 6.3 post-fertilization, embryo implantation and
pregnancy establishment occurred. During pregnancy, at day 3.5,
BMAL1 global knockout mice exhibited lower levels of StAR and
serum P4 (Ratajczak et al., 2009). To validate the role of BMAL1
in the modulation of progesterone secretion within the ovary, Liu
has ascertained this role through the specific knockout of BMAL1
in steroidogenic cells and subsequent ovarian transplantation
(Liu et al., 2014).

In addition, as delineated in Figure 2, circadian rhythms also
regulate luteinization and luteolysis. Luteinization is the basis for
the secretion of progesterone by the corpus luteum. Ovulation
leads to the establishment of a local hypoxic microenvironment.
This hypoxic condition triggers a significant upsurge in hypoxia-
inducible factor 1α (HIF-1α) (Zhang et al., 2011). Subsequently,
HIF-1α associates with HIF-1β to form a heterodimer (HIF-1). The
formed dimer then binds to the cis-hypoxia response element (HRE)
located within the VEGF promoter region, thereby facilitating
and enhancing VEGF mRNA expression (Kazi et al., 2005). The
circadian-expressed CLOCK and PER2 functions as an effector
molecule, which is involved in promoting the recruitment of HIF-
1 to the HRE region of the VEGF promoter (Tang et al., 2015;
Kobayashi et al., 2017). However, in zebrafish, PER2 was shown
to inhibit VEGF (Jensen et al., 2012). In nucleus pulposus cells,
the suppression of BMAL1 and RORα leads to the decrease of
the expression of HIF-1 and VEGF (Suyama et al., 2016). BMAL1
even more has been demonstrated to act as a transcription factor
in facilitating VEGF expression (Jensen et al., 2012; Guo et al.,
2021; Zhang et al., 2023). The inhibitory proteins PER and CRY
heterodimerize into the nucleus and directly interact with BMAL:
CLOCK to inhibit its transcriptional function (Michael et al., 2017;
Rosensweig et al., 2018).The functions of BMAL1 and PER2 are thus
in opposition, and we are confident that PER2 regulates the role of
HIF-1, but the role of PER2 in the regulation of VEGF is debatable.
It is routinely assumed that PER2 regulates VEGF expression
through HIF-1, but due to the inhibitory effect of PER2 on BMAL1,
the pro-VEGF expression of BMAL1 is weakened, and the end
result is attenuated VEGF (Koyanagi et al., 2003; Su et al., 2017).
This indicates that Vegf is a CCG, and several studies have also
corroborated this notion (Frigato et al., 2009; Wharfe et al., 2011;
Yang et al., 2015). Although research on the regulation of VEGF by
circadian genes during ovarian luteinization is currently lacking, the
significance of circadian regulation of VEGF has been established by
numerous investigations. Additionally, there is evidence indicating
that BMAL1 coincides with the HIF-1 peak during luteinization
(Kobayashi et al., 2018). This evidence suggests that circadian genes
play a crucial role in modulating angiogenesis during luteinization.
Luteal regression is essential in triggering the development of a
new follicle and restarting the estrous cycle. During the stage of

diestrus, the CL regresses, losing its capacity to produce P4 and
under goes structural involution. Proapoptotic and antiapoptotic
factors have been implicated in structural luteal regression. The
pro-apoptotic factors, namely, Fas, FasL, and Bax, as well as the
anti-apoptotic factor Bcl-2, are rhythmically expressed within the
ovary. Additionally, the promoter regions of these factors all possess
BMAL1-binding E-box sequences. During luteal phase apoptosis,
the peak expression of these factors followed the peak in BMAL1
expression (De La Vega et al., 2018).

E2 and P4 regulated by the HPG axis, play crucial roles
in endometrial receptivity and decidualization during embryo
implantation. As shown in Table 1, these hormones are essential
for the implantation process. Furthermore, they are themselves
regulated by circadian rhythms, thereby mediating the circadian
coordination of embryo implantation through this bidirectional
regulatory mechanism.

3 The circadian clock is involved in
embryo implantation and
decidualization

In all eutherian mammals that have been investigated so
far, the uterus undergoes a transformation into a modified state
when blastocysts can engage in effective two-way communication
to commence the implantation process. This state is designated
as uterine receptivity for implantation and endures for a
restricted time frame (Paria et al., 1993). During this period,
the uterine milieu is capable of facilitating blastocyst growth,
attachment, and the ensuing implantation procedures. Besides
the E2 and P4 mentioned previously, as synthesized in Figure 3,
multiple factors contribute to the determination of uterine
receptivity (Dey et al., 2004). This stage is correlated with
circadian rhythms. In a study of human endometrial RNA
sequencing conducted prior to and during embryo implantation,
significant discrepancies were identified in circadian pathway
genes, indicating that circadian genes play an essential regulatory
role in the embryo implantation process (Hu et al., 2014).
Decidualization of the endometrium is a process involving
a series of morphological and functional changes that occur
in uterine endometrial stromal cells (UESCs) during embryo
implantation. It is a crucial step for embryo implantation
and maintenance of pregnancy, mainly manifested as the
proliferation and differentiation of UESCs, as well as the
remodeling of the extracellular matrix. Decidualization is subject
to circadian regulation. It has been demonstrated that the
peripheral clock systems play significant and essential roles in
the process of decidualization (Muter et al., 2015; Lv et al., 2019;
Zhang et al., 2019; Lužná et al., 2021).
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FIGURE 3
Circadian rhythm disruption impairs embryo implantation by interfering with implantation-associated factors. Disruption of circadian rhythms impairs
embryo implantation by altering the secretion of key implantation factors. Disruption of circadian rhythms interferes with the normal temporal
regulation of uterine-derived implantation factors, leading to dysregulated secretion patterns. This disturbance affects: Stage 1 (Uterine receptivity and
blastocyst adhesion): Macrophage-derived IL-6 and LIF, as well as endometrial epithelial cell-secreted COX-2, which are critical for embryo
attachment. Stage 2 (Decidualization and trophoblast invasion): Endometrial epithelial cell-derived BMP2/4 and GDF10/15, along with
adipocyte-secreted leptin, which support stromal decidualization and placental development. Additionally, circadian misalignment directly disrupts the
rhythmic secretion of cortisol (adrenal gland), insulin (pancreas), and ghrelin (stomach). These endocrine factors, upon reaching the endometrium via
systemic circulation, further impair Stage 2 implantation processes, including decidual transformation and trophoblast function. This systemic
dysregulation highlights the critical role of circadian homeostasis in successful embryo implantation.

3.1 Growth factors

Bone morphogenetic proteins (BMPs), which belong to the
transforming growth factor-β (TGF-β) superfamily, are implicated
in a diverse range of cellular functions, such as proliferation,
differentiation, and remodeling (Shimasaki et al., 2004). The BMP
family, comprising BMP2, BMP4, BMP6, and BMP7, exhibits
spatiotemporal expression in themouse uterus during the successive
phases of implantation. BMP2 is abundantly expressed within
the decidual area encircling the site of blastocyst attachment and
assumes a crucial function in decidualization (Ying and Zhao, 2000;
Li et al., 2007). Emerging evidence indicates that the circadian
clock exerts stable and significant regulatory effects on BMPs.
In both humans and rodents, UESCs undergo proliferation and
differentiation into decidual cells. In vitro decidualization was
induced by medroxyprogesterone acetate and 2-O-dibutyryl cAMP
(He et al., 2007). It was observed that the knockdown of Bmal1 led
to a downregulation of Rev-erbα expression and an upregulation
of Bmp2/4/6 expression. Subsequent to the application of a REV-
ERBα antagonist, the expression of Bmp1/2/4/6/7/8a was enhanced.
These findings imply that Rev-erbα is a significant circadian clock

gene that governs the BMP family and, as shown in Figure 4,
functions as a transcription factor by binding to the RORE regions
of the Bmp2 and Bmp4 promoters to modulate their expression
(Tasaki et al., 2015).

Growth/differentiation factors (GDFs) are members of the
TGF-β superfamily, and they are involved in a variety of cellular
functions and biological processes such as cell proliferation,
differentiation, and remodeling (Whitman, 1998). Gdf10 and
Gdf15 are ubiquitously expressed throughout the uterus, especially
during the crucial period of embryo implantation. This widespread
expression pattern strongly suggests their significant and active
roles in the implantation process (Fairlie et al., 1999; Zhao et al.,
1999). Notably, both Gdf10 and Gdf15 exhibit a remarkable and
significant increase in expression levels during the decidualization
of UESCs, thereby further implying their essential contributions
to the decidualization process. The circadian clock exhibits robust
regulatory control overGDFs.WhendecidualizedUESCs are treated
with a REV-ERBα inhibitor, it leads to an upregulation in the
expression of both Gdf10 and Gdf15. Moreover, through further
chromatin immunoprecipitation analysis, it has been revealed that
REV-ERBα, as demonstrated in Figure 4, exerts its inhibitory
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FIGURE 4
The regulatory mechanism of the BMAL1/REV-REBs loop in the modulation of growth factors Bmp2/4 and Gdf10/15. BMAL1 transcriptionally activates
REV-ERBs, which in turn binds to the RORE motifs in the promoters of Bmp2/4 and Gdf10/15, forming a feedback loop that governs their
transcriptional expression in UESCs, thereby synchronizing growth factor dynamics with circadian rhythms during embryo implantation.

effect on Gdf10 and Gdf15 by directly binding to their respective
promoters (Zhao et al., 2016).

3.2 Prostaglandins

Prostaglandins (PGs) are produced through the hydrolysis
of membrane phospholipids by cytoplasmic phospholipase A2
to release arachidonic acid, which is converted to PGs by
Cyclooxygenase-2 (COX2) and PG endoperoxide H synthase.
PGs intermediate the functions of the corpus luteum, participate
in maternal–fetal interface immunomodulation and pregnancy
identification, and stimulate angiogenesis during early pregnancy
(Ye et al., 2021). PGs can also regulate myometrium relaxation
and contraction via PG transporters and receptors, thus
affecting blastocyst transportation and adhesion reactions of the
endometrium–trophoblast, ultimately regulating the distribution of
the implanted embryos in the uterus (Blitek and Szymanska, 2020).
COX serves as the rate-limiting enzyme in the synthesis of PGs.
Mice lacking COX-2 display unsuccessful embryo implantation and
defective uterine decidualization (Lim et al., 1997). COX-2 is also a
time-regulated gene, exhibiting robust rhythmicity at rat D3.5-4.5
of pregnancy. The suppression of Bmal1 expression in rat UESC led
to a reduction in the expression levels of Cox-2 and PGE2. It was
highly expected that (Figure 3) the inhibition of REV-ERBα, which
is a repressor of Bmal1, would enhance the expression of Cox-2
(Chen et al., 2013; Isayama et al., 2014; 2015; Zhao et al., 2021).
This effectively illustrates the precise and effective regulation of the
prostaglandin synthesis pathway by the circadian clock loop.

3.3 Cytokines

It is widely acknowledged that the interleukin (IL)-6 family, a
group of cytokines, holds significant importance during embryonic
implantation (Dimitriadis et al., 2005).The IL-6 family encompasses
several cytokines, such as leukemia inhibitory factor (LIF), IL-6,
IL-11, and neurotrophic factor. Among the cytokines that have
been investigated, LIF is most relevant to implantation (Kimber,
2005; White et al., 2007). The expression of LIF exhibits a biphasic
pattern on day 4, initially appearing in the uterine glands and
subsequently in the stromal cells surrounding the blastocyst during
the attachment reaction (Song et al., 2000; Ni et al., 2002). This
expression profile implies that LIF has dual functions, being involved
in uterine preparation initially and then in the attachment reaction
(Stewart et al., 1992; Song et al., 2000). Femalemice with a deficiency
in LIF experience implantation failure, and this defect can be rescued
by supplementation with LIF (Stewart et al., 1992). In addition
to LIF, IL-6 is another crucial cytokine for successful pregnancy.
In mice, it is secreted by the epithelial and stromal cells in the
uterus and is regulated by ovarian steroid hormones (Prins et al.,
2012). Mice lacking IL-6 display impaired implantation and a
delayed onset of labor, leading to adverse pregnancy outcomes
(Robertson et al., 2010). In humans, IL-6 is mainly produced by
endometrial epithelium and stromal cells in a cyclic manner. The
levels of IL-6 are relatively low during the proliferative phase and
increase steadily during the secretory phase, suggesting its important
role during implantation (Jasper et al., 2007; Champion et al., 2012).
Melatonin (MT) represents a clock control hormone that is secreted
by the pineal gland, ovary, and placenta and plays a crucial role in
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modulating endometrial receptivity and immunity (Cajochen et al.,
2003;Wu et al., 2017).MT exerts its effects via two receptors,MT1/2,
which are expressed in a circadian manner (Wu et al., 2017). In a
research study on human endometrial receptivity, it was proposed
that MT could enhance endometrial receptivity through the nuclear
factor kappa B (NF-κB) and apoptotic pathways. Concurrently, MT
also stimulated the expression of LIF and IL-6 in the endometrium
(Guan et al., 2022; Zheng, 2022).

Studies have revealed that the internal time-keeping system
circadian clock genes are responsible for driving the circadian
rhythms evident in the immune system. For instance, the
recruitment of immune cells (such as monocytes, neutrophils, and
lymphocytes), antigen presentation, lymphocyte proliferation, and
cytokine gene expressions occur in accordance with a 24-h daily
rhythm, thereby initiating an acute response to infection (Nakao,
2014). In mouse aortic endothelial cells, the knockdown of the
Clock gene led to a significant downregulation of LIF expression
(Jiang et al., 2018). In mice with specific deletion of BMAL1 in
myeloid cells, the temporal variations in serum IL-6 following
lipopolysaccharide (LPS) challenge were not observed. BMAL1
exerts a downstream effect by activating the transcription of the
nuclear receptorRev-erbα, andREV-ERBα, in turn, inhibits BMAL1.
Consequently, in Rev-erbα-deficient mice, these rhythmic immune
responses to LPS were abolished. This finding implies that there is a
connection among BMAL1, REV-ERBα, and the production of IL-6
inmacrophages upon LPS challenge (Gibbs et al., 2012).This finding
(Figure 3) is buttressed by the observed inhibition of IL-6 expression
by REV-ERBα in bovine endometrial epithelial cells (Yang W. et al.,
2024). Finally, Cry is also involved in uterine receptive immunity.
Macrophages derived from Cry1/2 knockout mice exhibited an
enhanced secretion of IL-6 (Narasimamurthy et al., 2012).

3.4 Cortisol

The glucocorticoid hormone cortisol is a primary product of
the hypothalamic-pituitary-adrenal (HPA) axis, a key biological
stress response system. The effects of glucocorticoids are mediated
by the glucocorticoid receptor (GR), which translocates to the
nucleus in a ligand-dependent manner and acts as a transcription
factor to regulate gene expression (Kumar and Thompson, 2005).
Alterations in cortisol levels have been associated with impaired
trophoblast implantation and dysfunctional activity. In first-
trimester trophoblast cell line, Sw.71, the addition of cortisol was
shown to inhibit trophoblast cell invasion, thereby suppressing
the implantation process (Smith et al., 2017; Kisanga et al.,
2018). Cortisol exhibits a distinct endogenous circadian rhythm,
modulated by sleep/wake cycles, dietary intake, and physical
activity. Shift workers and night-shift nurses demonstrate
significantly lower cortisol levels and display abnormal circadian
rhythmicity due to circadian misalignment (Harris et al., 2010;
Yang Z. et al., 2024). Cortisol demonstrates a strong correlation
with peripheral circadian clock genes. Bmal1-knockout macaque
monkeys exhibited significantly elevated cortisol concentrations
accompanied by diminished oscillation amplitude, indicating
disrupted glucocorticoid circadian regulation (Qiu et al., 2019).
Exogenous cortisol administration significantly upregulated Per1
expression in human peripheral blood mononuclear cells (PBMCs),

while concurrently inducing phase shifts in the circadian oscillations
of Per2, Per3, and Bmal1 transcriptional patterns (Cuesta et al.,
2015). Collectively, these findings suggest that cortisol is under
circadian regulation and plays a regulatory role in embryonic
implantation. Furthermore, the investigation of the circadian
rhythm-cortisol-embryonic implantation axis and cortisol-
mediated regulation of clock genes during implantation warrants
further investigation to establish more direct mechanistic evidence.

3.5 Ghrelin- leptin

Ghrelin, an appetite-stimulating hormone produced by gastric
P/D1 cells, and leptin, an appetite-suppressing hormone secreted
by white adipocytes, have been demonstrated to participate in
human endometrial decidualization processes (Cervero et al.,
2004; Tawadros et al., 2007). Ghrelin demonstrates substantial
upregulation during decidualization and facilitates human UESCs
decidualization through activation of the growth hormone
secretagogue receptor signaling pathway (Tanaka et al., 2003;
Tawadros et al., 2007). Diet-induced obese murine models
exhibit delayed decidualization and disrupted leptin signaling
(Walewska et al., 2024). Exogenous leptin supplementation
significantly enhanced embryo implantation efficiency in both in
vivo and in vitro experimental systems through leptin receptor-
mediated janus kinase (JAK)/signal transducer and activator
of transcription (STAT) activation pathways (Yang et al., 2006;
Barnes et al., 2020). In healthy adults under energy-balanced
conditions, circulating ghrelin levels exhibit a 24-h oscillatory
pattern synchronized with circadian rhythms (Cummings et al.,
2002). In vitro experiments have also revealed that Ghrelin promotes
decidualization since, the peptide enhances the production
of insulin-like growth factor binding protein-1 (IGFBP-1) by
human UESCs (Tawadros et al., 2007). Sleep deprivation and
circadian misalignment contribute to obesity pathogenesis,
primarily through metabolic dysregulation characterized by
elevated ghrelin concentrations and suppressed leptin levels, thereby
promoting positive energy intake (Wright, 2009; Qian et al.,
2019). Genetic knockout models of Bmal1, Clock, Per2, or
Rev-erbs exhibited elevated leptin levels (Turek et al., 2005;
Yang et al., 2009; Kennaway et al., 2013; Adlanmerini et al.,
2021). Leptin administration downregulated Cry1 expression
while concurrently upregulating Rev-erbα transcriptional activity
(Vieira et al., 2012; Wei et al., 2021). In contrast, Bmal1-knockout
mice displayed reduced ghrelin levels (Laermans et al., 2015).
Accumulating evidence demonstrates that ghrelin and leptin
exhibit robust bidirectional interactions with the circadian
regulatory system. These metabolic hormones are rhythmically
modulated by circadian oscillators to participate in embryo
implantation processes.

3.6 Insulin

Insulin is secreted by pancreatic β-cells in response to
fluctuations in blood glucose levels (Tokarz et al., 2018). During
embryo implantation, insulin suppresses the production of
IGFBP-1 in UESCs, which is recognized as a biochemical
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TABLE 2 Circadian coordination of implantation factors in embryo implantation.

Factors Produce The regulatory role of circadian rhythm Roles in implantation

Growth factors
BMP2/4

UESCs Clock-controlled genes
Decidualization

GDF10/15

Prostaglandins COX2 Adhesion

Cytokines
LIF

Macrophage

Circadian clock regulation

Receptivity
IL-6

Cortisol Adrenal gland Invasion

Ghrelin Adipocytes

DecidualizationLeptin Stomach

Insulin Pancreas

marker of decidualization. Consequently, hyperinsulinemic
conditions are postulated to disrupt normal metabolic homeostasis
in the endometrium, compromising implantation success
through dysregulation of decidualization-related molecular
pathways (Giudice et al., 1992). Hyperinsulinemia represents
a hallmark metabolic aberration in polycystic ovary syndrome
(PCOS). Notably, PCOS patients exhibit concomitant insulin
resistance that downregulates glucose transporter 4 (GLUT4)
expression, subsequently impairing glucose transporter activity.
This metabolic dysfunction manifests as reduced cellular
glucose uptake capacity and abnormal glucose metabolism
homeostasis, ultimately contributing to aberrant endometrial
differentiation and compromised embryo implantation competence
(Zhai et al., 2012). Insulin signaling exhibits a close interplay
with circadian rhythms. Shift workers demonstrate reduced
insulin sensitivity. The SCN governs 24-h rhythmicity in blood
glucose concentrations, with SCN-lesioned mice displaying
abolished circadian glucose regulation (Fleur et al., 1999).
Genetic ablation of core clock components, including Bmal1,
Clock, or Cry1/2, induces hyperglycemia in murine models
(Zhang et al., 2010; Reinke and Asher, 2019). Muscle-specific
Bmal1 knockout mice manifest impaired muscle insulin
sensitivity (Harfmann et al., 2016). Notably, adenovirus-mediated
Cry1 overexpression enhances systemic insulin sensitivity in
experimental animals (Zhang et al., 2010). Circadian regulation
demonstrates a critical mechanistic connection with insulin
homeostasis, with particular pathophysiological implications
for insulin resistance. Emerging evidence implicates circadian
disruption in compromised embryo implantation processes through
its modulatory effects on insulin resistance pathways.

As summarized in Table 2, circadian rhythms regulate multiple
implantation-critical factors—including BMP2/4, GDF10/15,
COX2, LIF, IL-6, Cortisol, Ghrelin, Leptin and Insulin—through
direct modulation of key processes such as embryo adhesion,
trophoblast invasion, endometrial receptivity, and decidualization,
thereby demonstrating their essential role in orchestrating successful
embryo implantation.

3.7 Potential factor

It is well-established that sunlight exposure facilitates
vitamin D synthesis, wherein ultraviolet B (290–320 nm, UVB)
radiation converts cutaneous 7-dehydrocholesterol (7-DHC)
into vitamin D3 through photochemical reactions. Vitamin D
exerts pleiotropic physiological functions, with critical roles in
reproductive physiology particularly in embryo implantation.
Clinical evidence indicates vitaminD deficiency directly contributes
to implantation failure (Halloran and Deluca, 1980). Notably,
vitamin D supplementation in normally cycling mice significantly
enhanced embryo implantation rates (Lee et al., 2024). The skin
serves not only as the primary site of vitamin D synthesis but also
as a key model system for circadian clock regulation, with multiple
physiological skin processes exhibiting circadian rhythmicity. UVB
irradiation was found to entrain rhythmic expression of Bmal1
and Per2 in human HaCaT keratinocytes (Lamnis et al., 2024).
Emerging evidence further links vitamin D status to systemic
circadian homeostasis: Vitamin D depletion induces hepatic clock
gene dysregulation, characterized by downregulated Bmal1, Clock,
Per2, and Cry1/2 mRNA levels at ZT1, contrasted by paradoxical
upregulation of these transcripts at ZT13 (Li R. et al., 2024).
Conversely, vitamin D supplementation amplified the amplitude
of Per1:luc circadian oscillations and enhanced rhythmic precision
in human bone marrow stromal cells (BMSCs) (Hassan et al.,
2017). While accumulating evidence suggests that vitamin D
exhibits significant entrainment relationships with circadian
clocks, the regulatory role of circadian rhythms in mediating
vitamin D’s effects during embryo implantation warrants further
investigation.

There is evidence demonstrating that female Hoxa10−/− mice
experience infertility and implantation failure when wild-type
embryos are transferred into them. Meanwhile, the expression
of HOXA10 is remarkably enhanced during implantation, and
specific inhibition of HOXA10 in the endometrium leads to a
decrease in the number of implanted embryos. Besides its role in
receptivity, HOXA10 also plays a significant part in endometrial
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decidualization. It is prominently expressed during decidualization.
In 40% of the mice with HOXA10 null mutation, although
implantation was successful, local hemorrhage at the implantation
site, disordered embryos and empty decidua were observed. These
results have also been validated in vitro (Benson et al., 1996;
Lim et al., 1999; Modi and Godbole, 2009). In a research study
carried out on hamsters, it was observed that a daily light
exposure regimen with a longer light period (light/dark cycle of
16/8) led to a diminished expression level of HOXA10 and a
greater frequency of uterine abnormalities when contrasted with
the normal light exposure setting (light/dark cycle of 12/12).
The identical outcomes were also manifested in mice that were
exposed to continuous light (Das et al., 2022b; 2022a). Currently,
there is a lack of reports regarding the specific mechanism
by which particular clock genes act on HOXA10. However,
based on existing reports and the promoting effect of MT
on endometrial HOXA10, HOXA10 is clearly influenced by
circadian rhythms (Guan et al., 2022).

Previous studies have clearly manifested that adhesion
molecules are of crucial importance in the intimate and essential
interaction between the blastocyst and the uterine luminal
epithelial cells. Integrins, which are heterodimeric cell surface
glycoprotein receptors composed of α and β subunits, serve as
mediators for cell adhesion, cell migration, signal transduction,
and gene expression (Hynes, 2002; Calderwood, 2004). The apical
localization of integrin β3 has been thoroughly documented
and recorded throughout the entire course of early pregnancy,
accompanied by a significant increase precisely at the time
of implantation in the mouse. During the critical moment
of implantation, integrin β3 was observed to dissociate from
focal adhesions. Simultaneously, integrin β3 demonstrated an
augmented presence along the apical membrane of uterine
luminal epithelial cells. This particular manifestation suggests
that integrin β3 potentially has a substantial and influential role
in the intricate process of embryo attachment (Kaneko et al.,
2011b; 2011a). Integrin β5 demonstrates a circadian rhythm
within retinal pigment epithelial cells and is modulated by Bmal1
in human muscle tissue. In the case of mice, the expression
of integrin β3 in platelets was diminished subsequent to the
knockdown of Rev-erbα (Milićević et al., 2019; Shi et al.,
2022). To date, the interaction between the circadian clock
and integrin β3 remains unreported in uterus. Nevertheless,
during embryo implantation, the pathological decrease in
integrin β3 was reversed upon the addition of supplemental
melatonin (Guan et al., 2022). Based on these observations, we
hypothesized that integrin β3 may possess the potential to exhibit
chronobiological effects.

In addition to vitamin D, HOXA10, and integrins, numerous
potential factors regulated by circadian rhythms are involved
in embryo implantation. Including P-selectin (Burrows et al.,
1994; Qin and Deng, 2015), E-cadherins (Riethmacher et al.,
1995; Li et al., 2018) and matrix metalloproteinases 9
(Bai et al., 2005; Li D. et al., 2024), While their roles in the
embryo implantation process are well-established and circadian
regulation has been evidenced, their specific mechanisms of
influence during intrauterine implantation require further
investigation.

4 Melatonin is a promising therapeutic
candidate for addressing implantation
failure caused by circadian rhythm
disruptions

The function of clock-regulatedMT in the realmof reproduction
is currently under intensive investigation. As previously noted, MT
exhibits a significant therapeutic efficacy in addressing implantation
failure that arises from circadian rhythmdisruptions. In this context,
the pineal gland is the primary source of MT secretion, with a
relatively higher output compared to the ovary. The MT synthesized
within the mitochondria of oocytes and granulosa cells in the ovary
remains unsecreted, whereas the MT synthesized by mitochondria
in pineal cells is released into the third ventricle and cerebrospinal
fluid and subsequently distributed throughout the organism. The
significance of MT in embryo implantation is quite prominent. It
plays a crucial part in tissue remodeling, angiogenesis, as well as
in the suppression of inflammation during the process of embryo
implantation (He et al., 2015). Our particular emphasis has been
placed more on its role in modulating peripheral clock genes
(Soliman et al., 2015; Ma et al., 2023). Within the mouse striatum,
MT induces an upregulation in the expression of Clock and Per1.
Moreover, when the pineal gland is surgically removed, the circadian
rhythms of Per1 and PER1 are disrupted. In the mouse tubercle,
followingMT1knockout, the expression levels ofBmal1,Clock,Per1,
and Cry1 are observed to decline. In isolated rat adipocytes, MT
serves to enhance the expression of Bmal1, Clock, Per1, and Cry1. In
rats, it has also been demonstrated that MT modulates the circadian
clock loop by modifying the rhythm of Rev-erbα (Von Gall et al.,
2005; Agez et al., 2007; Alonso-Vale et al., 2008; Imbesi et al., 2009).
MT not only governs the transcription/translation feedback loop
of rhythm genes but also facilitates alterations in the firing rate of
neurons within the SCN, thereby contributing to the stabilization
of the body’s biological rhythm (Mauviard et al., 1991; Gillette
and McArthur, 1995). Previous studies have demonstrated that
MT rescues continuous light exposure-induced luteal insufficiency
in mice, thereby promoting progesterone production (Li et al.,
2023). Prolonged light exposure (18:6 light/dark cycle) significantly
reduced embryo implantation rates in mice, and this adverse
effect was reversed by MT supplementation (Zhang et al., 2017).
Consequently, MT presents itself as a potentially favorable
alternative for the treatment of implantation failure that is induced
by circadian rhythm disruptions.

5 Conclusion

Implantation represents a crucial female reproductive process
that is both centrally and peripherally modulated by circadian
rhythms. Herein, we emphasize the significant role of circadian
regulation in reproductive hormones, endometrial receptivity, and
decidualization during embryo implantation. Generally speaking,
while the overarching role of circadian rhythm in embryo
implantation is relatively well-recognized, the specific underlying
mechanisms still require further in-depth investigation. There
exist several essential procedures within the process of embryo
implantation, namely, blastocyst activation, positioning, adhesion,
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invasion, and decidualization. However, existing studies exhibit
deficiencies in numerous aspects, and additional research data
are essential to substantiate the clock regulation mechanism
during embryo implantation. This is of great significance in order
to expedite the resolution of the issue of abnormal embryo
implantation attributable to circadian rhythm disorders.
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