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Background: The retina plays a critical role in visual perception, yet lesions
affecting it can lead to severe and irreversible visual impairment. Consequently,
early diagnosis and precise identification of these retinal lesions are essential
for slowing disease progression. Optical coherence tomography (OCT) stands
out as a pivotal imaging modality in ophthalmology due to its exceptional
performance, while the inherent complexity of retinal structures and significant
noise interference present substantial challenges for both manual interpretation
and AI-assisted diagnosis.

Methods: We propose MSLI-Net, a novel framework built upon the ResNet50
backbone, which enhances the global receptive field via a multi-scale dilation
fusion module (MDF) to better capture long-range dependencies. Additionally,
a multi-segmented lesion localization module (LLM) is integrated within each
branch of a modified feature pyramid network (FPN) to effectively extract
critical features while suppressing background noise through parallel branch
refinement, and a wavelet subband spatial attention module (WSSA) is designed
to significantly improve themodel’s overall performance in noise suppression by
collaboratively processing and exchanging information between the low- and
high-frequency subbands extracted through wavelet decomposition.

Results: Experimental evaluation on the OCT-C8 dataset demonstrates that
MSLI-Net achieves 96.72% accuracy in retinopathy classification, underscoring
its strong discriminative performance and promising potential for clinical
application.

Conclusion: This model provides new research ideas for the early diagnosis
of retinal diseases and helps drive the development of future high-precision
medical imaging-assisted diagnostic systems.

KEYWORDS

retinal disease detection, multi-scale feature fusion, lesion localization, wavelet
transform, noise suppression
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1 Introduction

Theeye plays an indispensable role in howweperceive theworld.
Its retina, which primarily receives, adjusts, and relays visual stimuli
from the environment, supplies the brain with essential visual
information, serving as the core structure for our visual perception
(Grossniklaus et al., 2015; Kermany et al., 2018). Consequently,
retinal diseases are predisposed to causing severe visual impairment
and even permanent blindness. At the same time, retinal diseases
typically lack pronounced early clinical symptoms, and patients
often fail to notice changes in their condition in time, missing
the optimal window for intervention. Therefore, early diagnosis
combined with high-precision detection is vital in slowing disease
progression and minimizing visual impairment (Pennington and
DeAngelis, 2016; Robinson, 2003). Figure 1 shows the OCT images
of normal retina and seven common retinal diseases.

As a non-contact, non-invasive imaging technique,
optical coherence tomography (OCT) utilizes low-coherence
interferometry to obtain high-resolution cross-sectional images
of biological tissues. With its excellent imaging performance, OCT
has become an indispensable diagnostic tool in ophthalmology,
playing an increasingly important role in early screening, clinical
diagnosis, and efficacy assessment of retinal diseases (Huang et al.,
1991). Although this technology has significantly improved the
diagnostic efficiency and accuracy of doctors in detecting related
conditions, manual interpretation of retinal OCT images still faces
considerable challenges in clinical settings. On one hand, as the
incidence of retinal diseases continues to rise, the relative scarcity
of specialized healthcare resources makes it challenging to meet
the ever-growing demand for diagnosis and treatment. On the
other hand, the identification of lesion features in OCT images
relies heavily on the doctor’s professional knowledge and clinical
experience, rendering the diagnostic process highly subjective

and potentially compromising diagnostic accuracy (Tsuji et al.,
2020; He et al., 2023). In this context, the precise classification
of OCT images to distinguish various types of retinal lesions
has emerged as an indispensable component in the diagnosis of
retinal diseases (Khalil et al., 2024). Therefore, the development
of automated retinal image diagnosis systems is essential to assist
clinicians in accurately detecting retinal pathologies.

In recent years, deep learning technology has made significant
progress in both natural language processing and computer
vision, which has promoted the development of various AI-driven
diagnostic techniques. Among these, convolutional neural networks
(CNN) have increasingly been applied in medical image analysis
owing to their excellent feature extraction and pattern recognition
capabilities (Zhang et al., 2024; Zhang et al., 2025; Gong et al.,
2024; Ji et al., 2022; Simonyan and Zisserman, 2014). Numerous
CNN-based models have been developed to address complex tasks
such as disease detection (Hong et al., 2019b; Simonyan and
Zisserman, 2014), image segmentation (Hong et al., 2022a; Li et al.,
2024; Hong et al., 2022b), and classification (Hong et al., 2020a;
Hong et al., 2020b; Zhu et al., 2022; Wan et al., 2024; Zhang et al.,
2022), substantially enhancing both the automation and diagnostic
efficiency in medical image processing. In the realm of ophthalmic
image analysis, CNN have been extensively employed for OCT
image classification and lesion detection, yielding noteworthy results
(Qian et al., 2025; Subramanian et al., 2022; Laouarem et al., 2024;
Song et al., 2025). For instance, Qian et al. enhanced the model’s
feature representation by fusing the outputs ofmultipleDenseBlocks
based on DenseNet121 and replaced the positive and negative
sample pairs in the conventional triplet loss with the class proxy
concept. This modification enabled more efficient and accurate
classification of retinal OCT images (Qian et al., 2025).

However, the inherent characteristics of OCT retinal images
pose a significant challenge to the discriminative performance of

FIGURE 1
Eight categories of OCT images. (A) AMD, (B) CNV, (C) CSR, (D) DME, (E) DR, (F) DRUSEN, (G) MH, (H) NORMAL.
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existing models. On the one hand, because OCT is a grayscale
imaging technique, subtle lesion features are not clear enough to
be accurately identified. Moreover, there is a certain diversity in
the shape, size and spatial distribution of lesion regions, which also
increases the difficulty of lesion localization (Cheng et al., 2025;
Simonyan and Zisserman, 2014; Lo et al., 2019). On the other hand,
limited by the performance of imaging equipment and hardware
conditions, OCT images are often accompanied by unavoidable
noise interference during the acquisition process, resulting in
many CNN-based models capturing a large amount of speckle
noise information while learning lesion features, which makes the
model unable to accurately distinguish between important and
unimportant features, thus affecting the model’s discriminative
ability. In addition, the process of performing downsampling
operations to extract high-level semantic features in CNN-based
models often inevitably leads to the reduction of the spatial
resolution of the image, resulting in the loss of some of the
critical lesion information, which together with the residual noise
interference weakens themodel’s discriminative ability for the lesion
region (Zhang et al., 2019; Zhao et al., 2022; Alaba and Ball, 2024).

To address these challenges, this study proposes a retinal disease
detection network (MSLI-Net) built upon multi-stage localization
and multi-scale interaction. Initially, the network utilizes the
residual blocks of ResNet50 for preliminary feature extraction from
retinal images. It then employs a Multiscale Dilation FusionModule
(MDF) to enhance the feature representation across scales and
expand themodel’s receptive field. Subsequently, aMulti-segmented
Lesion Localization Fusion Module (LLM) is adopted to emphasize
the lesion regions and suppress background noise. Finally, we
introduce an MSA module (Xiao et al., 2023) and design a Wavelet
Subband Spatial Attention Module (WSSA) to further refine the
feature representations in the lesion regions, thereby achieving
more precise disease detection. The contributions of this paper
are as follows:

1) Our MSLI-Net is based on the ResNet50 network framework,
which effectively integrates the MDF, LLM and WSSA,
realizing the complementary advantages between shallow
high-resolution features and deep semantic information. This
enables the model to significantly enhance the representation
of lesion regions in retinal OCT images, and effectively
improves classification performance.

2) We design a multiscale dilation fusion module (MDF),
which effectively extracts multiscale feature information by
introducing convolutional branches with different dilation
factors and deeply fuses it with original image features. It
effectively enhances the global receptive field and improves the
model’s ability to model long-range dependencies.

3) We propose a multi-segmented lesion localization fusion
module (LLM). By constructingmultiple parallel branches, the
LLM realizes the hierarchical extraction of local features aswell
as the enhancement of key channel features of a lesion. This
design effectively mitigates the limitations of the traditional
channel attentionmechanism that is susceptible to interference
in the context of complex noise while enhancing the accurate
localization of the lesion region.

4) We develop the wavelet subband spatial attention module
(WSSA) based on the introduction of the MSA module. This

module decomposes the input features into four subbands
of different frequencies by discrete wavelet transform, and
realizes feature interaction and information fusion across
subbands. The module is capable of extracting lesion-related
features in greater detail while effectively suppressing noise
interference.

5) We evaluate our model on the publicly available OCT-
C8 dataset, achieving 96.72% accuracy in retinal OCT
classification, demonstrating that this model has a strong
discriminative capability in this domain.

2 Related work

In recent years, the advancement of deep learning technology
and its extensive application in medical image analysis have
propelled research and produced significant results in fundus image
analysis (Zheng et al., 2024; Xu et al., 2022a; Xu et al., 2022b).
Early studies mainly focused on transfer learning and architecture
optimization for classical convolutional neural networks (CNN).
Wang et al. employed a transfer learning strategy by fine-tuning
various classical CNN models (including VGG16, ResNet18,
ResNet50, and InceptionV3) that were pre-trained on the ImageNet
dataset, thereby achieving higher precision in retinal OCT image
classification (Wang et al., 2019). Meanwhile, steady progress has
been made in refining the model architecture itself, such as Karthik
et al., who proposed Edgen blocks to replace the residual connection
method in the traditional ResNet50 and designed a novel activation
function to further enhance the network’s ability to capture image
boundary features and effectively highlight key lesion information
(Karthik and Mahadevappa, 2023). Sunija et al. also designed
OCTnet based on the ResNet50 architecture, achieving excellent
classification performance while significantly reducing the number
of model parameters (Sunija et al., 2021).

In addition to optimizing traditional CNN architectures, recent
research has also focused on fusing CNN and Transformer
architectures to further enhance the model’s feature representation
and global modeling capabilities. Laouarem et al. proposed a hybrid
model, HTC-Retina, that combines the advantages of CNN in local
feature extraction with the capability of a visual Transformer for
global dependency modeling, effectively overcoming the limitations
of a single architecture in image analysis (Laouarem et al., 2024).
Similarly, the CRAT network mitigates the common attention
collapse problem in deep Transformers by introducing the Re-
Attention module to dynamically adjust the multi-head self-
attentionmechanism (Yang et al., 2025). Moreover, the introduction
of the Swin Poly transformer network further broadens the research
boundaries of fusion modeling, and its mechanism of establishing
flexible connectivity between image regions significantly improves
the model’s ability to facilitate information exchange among multi-
scale features (He et al., 2023).

In addition to integrating different model architectures, task-
level co-design has emerged as a prominent research topic.
Diao et al. proposed an innovative method that tightly integrates
segmentation and classification tasks (Diao et al., 2023). This
approach employs an auxiliary segmentation branch within the
classification network (CM-CNN) to generate a complementary
mask for the input image, which is subsequently used to enhance
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the original features and effectively guide the classification network
to focus on the features of the lesion region, thereby improving
classification performance. Moreover, the application of the Grad-
CAMalgorithm enables CM-CNN to generate a class activationmap
(CAM) that further assists the segmentation network (CAM-UNet)
in refining its segmentation accuracy, ultimately achieving more
precise feature extraction and segmentation of the lesion regions.
This model exhibits excellent performance on both classification
and segmentation tasks, demonstrating the potential of explicit
information interaction between tasks in enhancing diagnostic
performance.

2.1 Image cropping and local feature
extraction

It has been shown that the classification performance of deep
learning models can be effectively improved by an appropriate
cropping strategy for retinal OCT images (Awais et al., 2017).
Some researchers have manually cropped out rectangular boxes
containing lesion regions at the image preprocessing stage to
help neural networks capture key lesion features more effectively
(Kaothanthong et al., 2023). However, this cropping method is not
only cumbersome and time-consuming, but also poses the risk of
degrading themodel performance bymistakenly deleting important
lesion features. To address these issues, some studies have proposed
dividing the OCT images into fixed-size patches and extracting
features from each patch individually, thereby improving themodel’s
ability to extract features from local lesion regions while preserving
the overall spatial structure of the image (Dutta et al., 2023).

In other related studies, Sharma et al. proposed a network
structure called AELGNet, which successfully achieved efficient
capture of both subtle and global features of plant leaf images
by partitioning the image feature map into four fixed patches
and extracting local features using independent RSA and RCA
mechanisms, respectively (Sharma and Vardhan, 2025). However,
since most retinal lesions tend to be concentrated in a few localized
regions of the image, dividing the patches in a fixed manner and
indiscriminately extracting features not only wastes computational
resources but also amplifies irrelevant background noise, thereby
reducing the model’s classification accuracy.

Unlike existing methods, our proposed LLM employs parallel
cropping branches based on the characteristics of retinal OCT
images, allowing the model to automatically locate the lesion region
and extract key features, effectively mitigating interference from
background noise and thereby improving themodel’s discriminative
capacity and robustness.

2.2 Discrete wavelet transform

As a common method for image denoising, the discrete
wavelet transform can decompose the signal into low-frequency
subbands and high-frequency subbands (Gao and Yan, 2010).
Specifically, the low-frequency subbands mainly retain the color
and structural information of the image, while the high-frequency
subbands preserve detailed features such as edges, textures, and
high-frequency noise. This property renders the wavelet transform

particularly advantageous in image processing (Yu et al., 2025;
Burrus et al., 1998; Xu et al., 2020). Some researchers have
attempted to eliminate the HH subband, where the noise is most
concentrated, and have introduced an attention mechanism solely
for the remaining three subbands, employing the wavelet transform
as a downsampling operation to mitigate noise interference
(Zhao et al., 2022). Alaba et al. strengthened the information of
the LL subband by efficiently fusing the important features in
the LH and HL subbands and passing them to the LL subband
(Alaba and Ball, 2024). Finder et al. enhanced the model’s receptive
field by implementing multi-level wavelet decomposition and
independently processing the LL subband (Finder et al., 2024).
Although these methods have improved the performance of the
wavelet transform in image analysis to some degree, most studies
have focused only on low-frequency information or have achieved
feature extraction and denoising at the expense of discarding
high-frequency information, thereby limiting the comprehensive
utilization of the potential information contained in all subbands.

To this end, we propose the WSSA, which synergistically
processes all subbands while fully preserving all subband features,
adaptively suppressing background noise and highlighting key
edge and structural information. Unlike previous approaches
that focus solely on information from a single subband, WSSA
enables synergistic processing and information interaction between
the low-frequency and high-frequency subbands, thereby more
comprehensively enhancing the model’s performance in noise
suppression and lesion perception.

2.3 Dilated convolution

The convolutional kernel is a core component of convolutional
neural networks (CNN), but when expanding the receptive field,
traditional methods often require stacking multiple convolutional
layers into a deep network, which significantly increases the number
of parameters. To address this issue, Yu et al. proposed achieving an
exponential expansion of the receptive field by introducing different
dilation factors, so that the receptive field expands exponentially
while parameters grow only linearly (Yu and Koltun, 2015). Based
on this design concept, some researchers proposed parallel dilated
convolution modules for more efficient image processing tasks
(Feng et al., 2020; Li et al., 2019; Bui et al., 2024). For example,
Kamran et al. replaced the traditional 3 × 3 convolution with
two parallel dilated convolutions with a dilation factor of 2 in
the residual block to enhance the network’s ability to model
contextual information (Kamran et al., 2019), and Li et al. extracted
spatial features from the feature map using a parallel dilated
convolution module (Li et al., 2019). Although these designs
expanded the receptive field, they did not fully consider the fusion
mechanism with the original feature map, which resulted in the loss
of local details. In contrast, the MDF designed in our work further
strengthens fusion with the original feature map while employing
dilated convolution to capture multi-scale features and enlarge the
receptive field, thereby preserving local details and enhancing the
model’s ability to capture long-range dependencies. Experimental
results show that the network using the MDF outperforms the
traditional design employing a single dilated convolution module in
terms of accuracy.
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FIGURE 2
Overall architecture of MSLI-Net.

3 Methods

3.1 Overall framework

We propose a new network structure MSLI-Net
as shown in Figure 2, the overall architecture of MSLI-Net is
composed of three core modules, namely, the multi-scale dilation
fusion module (MDF), the multi-segmented lesion localization
fusion module (LLM), and the wavelet subband spatial attention
module (WSSA). MSLI-Net comprehensively extracts lesion
features, effectively enhances focus on key pathological regions, and
improves classification accuracy and discriminative performance
for retinal OCT images.

Specifically, we feed the image into the multi-scale dilation
fusion module after initial feature extraction at various stages of
the ResNet50 network. This module extracts multi-scale feature
representations with enlarged receptive fields through dilated
convolutions with different dilation factors and effectively fuses
them with the original feature maps, thereby better incorporating
both global semantic context and local detailed features present
in the image.

On this basis, we introduced a feature pyramid network (FPN)
structure removing the upsampling branches, used theMDFoutputs
as inputs for each FPN branch, and designed a Multi-segmented
Lesion Localization Fusion Module to realize the refinement of
the feature maps output from the MDF. In view of the inherent
characteristics of retinal OCT images, we innovatively introduced
the strategy of parallel cropping in this module to retain and extract

feature information segment by segment, which effectively enhanced
the localization ability of the lesion region.

Meanwhile, we introduce the MSA module and design the
wavelet subband spatial attention module. Considering that when
the feature map size is odd, the structural distortion may be caused
by the wavelet transform and its inverse transform, the WSSA only
process the feature maps produced by the LLM in the first three
branches of the FPN. This module effectively enhances key edge
information through inter-subband feature interaction and fusion,
while suppressing irrelevant noise interference.

Finally, we perform global average pooling on the feature maps
output from each of the four branches of the FPN to reduce the
spatial dimensionality, and subsequently perform stacked fusion on
them in terms of channel dimensions to achieve deep interaction
and complementary information between features at different scales.
We then feed the fused feature maps into a classifier for retinal
image classification. Through this strategy, our network fully fuses
the local detail information carried by the high-resolution shallow
feature maps with the global semantic information expressed
by the deep feature maps, thereby strengthening multi-scale
contextual relevance and improving classification accuracy and
model robustness.

3.2 Multi-scale dilation fusion module
(MDF)

To obtain a larger receptive field without reducing the spatial
resolution of the feature maps, Yu et al. proposed achieving this
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FIGURE 3
Overall architecture of MDF.

by introducing different dilation factors—that is, by effectively
increasing the spacing between values in the convolution kernel (Yu
and Koltun, 2015; Song et al., 2024). However, due to its sparse
sampling pattern resembling a checkerboard, it is prone to triggering
the grid effect, which leads to the loss of local information and affects
the completeness of feature expression (Mehta et al., 2018). In order
to fuse global and local features more effectively, this paper proposes
amulti-scale dilation fusionmodule (MDF).Thismodule effectively
improves the overall performance of the model by fully fusing the
features extracted by the convolution with different dilation factors
with the original features.

The structure of the MDF is shown in Figure 3. Let the input
feature map be x ∈ RW×H×C, where W, H and C denote the width,
height and number of channels of the feature map, respectively.
First,MDFobtains the new intermediate featuremap F ∈ RW×H× C

2 by
channel compression of the input feature map x. The computational
process is shown in Equation 1.

F = Relu(BN(Conv1×1(x))) (1)

Subsequently, different dilation factors (6, 12, and 18) are used
to perform convolution operations on F to extract multi-scale
context features, which are denoted as Fi ∈ R

W×H× C
2 . To enhance the

complementarity between features at different scales, each branch
of the extracted feature Fi is passed through a 1 × 1 convolutional
layer and a batch normalization (BN) layer, to unify the feature
scales and adjust the weights to obtain F′i , and at the same time, the
same operation is performed on the feature map F to obtain F′The
computational process is shown in Equations 2, 3.

F′i = BN(Conv1×1(BN(Dci−j(F)))) (2)

F′ = BN(Conv1×1(F)) (3)

whereDci–j is the inflated convolutionwith convolution kernel size 3
× 3 and dilation factor j used in branch i. Subsequently, the branch
features are fused and the ReLU activation function is introduced to
enhance the nonlinear representation, and the fused feature map Fr
is obtained. The computational procedure is shown in Equation 4.

Fr = Relu(
3

∑
i=1

F′i + F
′) (4)

Next, the fused features are linearly combined between
channels by pointwise convolution, so as to further mine the
feature relationships between channels and enrich the feature
representation. Finally, the number of channels is reduced to the
original dimension C and summed elementwise with the input
feature map x to finalize the full fusion of features at different scales.
The process is shown in Equation 5.

y = Relu(BN(Conv1×1(PWconv(Fr))) + x) (5)

3.3 Multi-segmented lesion localization
fusion module (LLM)

Considering that, in OCT images, the retina typically appears
as a horizontally elongated structure while lesions usually occupy
only localized regions, we divided the feature map uniformly along
the vertical axis into seven subregions and observed that the retinal
region is primarily contained within four contiguous segments.
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FIGURE 4
Overall architecture of LLM.

To achieve accurate lesion localization, effective extraction of key
features, and suppression of irrelevant background noise, this paper
proposes a multi-segmented lesion localization fusion module
(LLM), as illustrated in Figure 4.

We assume that the original featuremap is q ∈ RW×H×C.The LLM
divides the featuremap into seven subregions along (H).The process
is shown in Equation 6.

H = [h1,h2,h3,h4,h5,h6,h7] (6)

where H is the height on a single channel of the original feature
map and hi is the subregion divided along the height. Then
the four consecutive subregions in the feature map are extracted
sequentially from top to bottom in each of the four branches to
form a subfeature map, i.e., q ∈ RW×Hi×C. The specific Hi is shown
in Equation 7.

Hi = [hi,hi+1,hi+2,hi+3] (7)

Subsequently, the SE channel attention mechanism is
introduced to process the sub-featuremaps of the above four parallel
branches with channel-level features, which further enhances the
key channel features in each branch, and yields QI ∈ RW×HI×C.
In order to enable the model to more accurately identify which
consecutive subregions the lesions are specifically located in,
we restore the SE-processed sub-feature maps to their original
sizes by re-stitching the sub-feature maps with the discarded
portions, i.e., obtaining QOI ∈ RW×HOI×C, and unify the feature
scales and adjust the weights through a 1 × 1 convolutional
layer and a batch normalization (BN) layer. In addition, in order
to more fully realize the complementary advantages of global
and local features, and avoid the situation that a small number
of images may have incomplete feature extraction due to the
local attention mechanism of the model, we additionally add

a fifth branch, which directly performs channel-level feature
extraction on the original feature map q, and undergoes unified
feature scale adjustment and weight fusion operation with
the four parallel cropping branches. The process is shown by
Equations 8–10.

Q′OI = BN(Conv1×1(SE(QOI))) (8)

q′ = BN(Conv1×1(SE(q))) (9)

y =
4

∑
i=1

Q′OI + q
′ (10)

With this fusion approach, lesion localization is further
enhanced, effectively reducing the susceptibility of the traditional
channel-attention mechanism to complex background noise
interference.

3.4 Wavelet subband spatial attention
module (WSSA)

As an effective mathematical approach for addressing
nonstationary signal decomposition, the wavelet transform can
capture information at various frequencies and time positions by
adjusting its scale and translation parameters, thereby reflecting
the local variation characteristics of a signal. In the context of
the commonly used two-dimensional discrete wavelet transform,
the Haar wavelet decomposes the input feature map into four
subbands via low-pass and high-pass filters, which correspond
to the low-frequency subband (LL), horizontal high-frequency
subband (LH), vertical high-frequency subband (HL), and diagonal
high-frequency subband (HH). Among these, the low-frequency
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FIGURE 5
(A) Overall architecture of WSSA; (B) Architecture of MSA.

subband encapsulates the image’s color and structural information,
while the high-frequency subbands contain abundant detail and
texture information. Subsequently, the signal is then reconstructed
through the inverse wavelet transform. During reconstruction,
wavelet-based edge detection is first applied to enhance edge
features in each subband, then thresholding is performed to
eliminate noise.

However, for retinal OCT images, due to their inherent speckle
noise characteristics, it is difficult to effectively denoise them by
simply using traditional wavelet transform methods. Therefore, to
further suppress noise interference and highlight edge features,
we propose the wavelet subband spatial attention module (WSSA)
on the basis of the multiscale attention (MSA) module, which is
structured as shown in Figure 5A.

In this module, we first use the wavelet transform to
decompose the original feature map at multiple scales,
and obtain four subbands containing low-frequency and
high-frequency information, ILL, ILH, IHL, IHH ∈ R

W
2
× H

2
×C. In

order to realize more efficient collaborative modeling and
information interaction between different frequency bands, we
stack the four subbands along the channel dimensions, and
construct the feature map, I ∈ RW×H×4C. The specific process is
in Equation 11:

I = Concat(ILL, ILH, IHL, IHH) (11)

Next, we apply an average pooling operation (AvgPool) to
the fused feature map I to obtain the smoothed feature map Ia.

To further enhance the global dependency modeling capability
of the features, we introduce the Multihead Self-Attention
Mechanism (MSA) to mine the long-distance dependencies
and enhance the feature representation capability. Figure 5B
shows the MSA, and Equation 12 gives its mathematical
expression.

Att = Conv1×1(
3

∑
i=0

MultiChii(DConv5×5(Ia))) (12)

WhereMultiChii denotes the four feed-forward paths illustrated
in Figure 5B, and DConv5×5 denotes a depthwise convolution with
a 5 × 5 kernel (Xiao et al., 2023). The feature map Att obtained
after processing by thismodule is then used to generate the attention
weight map Wq ∈ RW×H×4C by the sigmoid activation function.
Subsequently, we re-divide Wq along the channel dimension into
four sub-modules Wqi ∈ RW×H×C. We then multiply each Wqi with
its corresponding initial wavelet subband and perform inverse
wavelet transform to obtain the output feature map. The specific
process is in Equation 13:

y = IWT(ILL ×Wq1, ILH ×Wq2, IHL ×Wq3, IHH ×Wq4) (13)

This module enables the global structural information
embedded in the low-frequency subbands to effectively guide
the recognition of edge details in the high-frequency subbands,
effectively suppressing noise interference. At the same time,
the fine-grained edge features captured by the high-frequency
subbands feed back to the low-frequency subbands, enhancing their
ability to perceive the edge region.
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4 Results and discussion

4.1 Datasets

We use the publicly available OCT-C8 dataset (Obuli, 2021)
to evaluate the performance of the model proposed in this
paper. The dataset contains a total of 24,000 optical coherence
tomography (OCT) images of seven types of retinal diseases as
well as normal retina: Age-related Macular Degeneration (AMD),
Choroidal Neovascularization (CNV), Central Serous Retinopathy
(CSR), Diabetic Macular Edema (DME), Diabetic Retinopathy
(DR), Yellow deposits under the retina (Drusen), Macular Hole
(MH), and Healthy eyes with no abnormalities (NORMAL). Each
category contains 3,000 images.The official data split is 2,300 images
for training, 350 for validation, and 350 for testing. Considering
that increasing the training sample size can improve the model
generalization ability, in this paper, the original training set and the
validation set are combined as the training set (2,650 images) for
model training, and the test set (350 images) remains unchanged.

4.2 Evaluation metrics

To evaluate the effectiveness of the model, we use Accuracy
(ACC), Precision, Sensitivity, and F1-score as the classification
metrics. The formulas for these metrics are as follows.

Accuracy = n
N

(14)

Precision = TP
TP+ FP

(15)

Sensitivity = TP
TP+ FN

(16)

F1 =
2× Precision× Sensitivity
Precision+ Sensitivity

(17)

where n denotes the number of samples in the test set whose
classifier prediction results match the true labels, and N is the total
number of samples in the test set. In addition, the symbols TP, FP,
and FN used in Equations 14–17 denote the number of samples
that are true positive (both the actual label and the classification
result are in the positive class), false positives (the true label is in
the negative class while the classifier predicts the positive class), and
false negatives (the true label is in the positive class but the classifier
predicts the negative class), respectively.

4.3 Implementation details

The training and testing of this experiment were done on a
single NVIDIA RTX 4090 GPU. In the data preprocessing stage,
we uniformly resize the input feature map to 224 × 224 pixels
and normalize the image using pre-calculated mean and standard
deviation. During the training process, the loss function was chosen
to be cross-entropy loss and the model was optimized using the
Adam optimizer, where the optimizer parameters were set to β1 =
0.9, β2 = 0.999. The weight decay parameter was set to 1× 10−4

to reduce the risk of overfitting. In addition, in this study, the
learning rate was fixed to 0.001, the batch size was set to 64, and

trained for 60 epochs. In order to improve the training efficiency
and reduce the memory consumption, the mixed-precision training
technique provided by PyTorch, i.e., autocast andGradScaler, is used
in the experimental process. In the performance evaluation of the
model, the model weights at the 60th epoch were used for testing,
and the experiments are repeated independently under the same
experimental conditions for six times, and the average of the results
of the six experiments is taken as the performance metrics of the
model. The average of the six experimental results was finally taken
as the model performance index.

4.4 Performance of our proposed method

In this section, we evaluate the classification performance of
the proposed MSLI-Net model on the OCT-C8 retinal image
dataset and analyze it in comparison with several representative
convolutional neural network architectures, including ResNet50
(He et al., 2016), VGG16 (Simonyan and Zisserman, 2014),
GoogLeNet (Szegedy et al., 2015), InceptionV3 (Szegedy et al.,
2016), DenseNet121 (KQ, 2018) and EfficientNetB3 (Tan and Le,
2019), among others. In addition to the classical architectures, we
also compare them with some of the models that have performed
well in the retinal OCT image analysis task in recent years, including
CTransCNN (Wu et al., 2023), MedViT (Manzari et al., 2023)
and MRVM (Zuo et al., 2024). According to the experimental
results shown in Table 1, DenseNet121 has the highest accuracy
of 96.41% on the OCT-C8 dataset among the compared baseline
models, followed by the MRVMmodel with an accuracy of 96.20%.
Our MSLI-Net achieves a classification accuracy of 96.72% and
outperformed the other compared models in all metrics. This
demonstrates clear superiority in performance.

Figure 6 shows the training metrics for MSLI-Net, where
the left graph shows the training-accuracy curve and the right
graph shows the training-loss curve. It can be observed that both
curves eventually stabilize without significant overfitting. Figure 7
further shows the confusion matrix obtained from one
representative experiment. As can be seen, our model achieves
100% classification accuracy on AMD and DR categories, and
relatively lower classification accuracy on CNV, DME and
DRUSEN, but still maintains a high overall level. These results
fully demonstrate the strong generalization capability of MSLI-
Net in the task of automatic classification of multi-category
retinal OCT images, further validating the effectiveness of the
proposed method.

4.5 Ablation study

To evaluate the contribution of each module in the proposed
model to the overall performance, we conducted systematic
ablation experiments on the OCT-C8 dataset, the results of which
were shown in Table 2. The accuracy was 95.08% when using
ResNet50 alone, which we adopted as our baseline. We first built
the ResNet50+MDF architecture by adding the multi-scale dilation
fusion module (MDF) to each stage of ResNet50, at which point
the model accuracy was improved to 96.04%, an improvement of
about 1% from the baseline.Next, we introduced the feature pyramid
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TABLE 1 Performance comparison of the OCT-C8 dataset (%).

Method Accuracy Precision Sensitivity F1

ResNet50 (He et al., 2016) 95.08 95.34 95.08 95.09

VGG16 (Simonyan and Zisserman, 2014) 95.69 95.77 95.69 95.69

GoogLeNet (Szegedy et al., 2015) 95.86 96.00 95.86 95.84

InceptionV3 (Szegedy et al., 2016) 89.72 90.96 89.72 89.76

DenseNet121 (KQ, 2018) 96.41 96.46 96.41 96.40

EfficientNetb3 (Tan and Le, 2019) 92.57 93.13 92.57 92.52

CTransCNN (Wu et al., 2023) 94.69 94.69 94.69 94.94

MedViT (Manzari et al., 2023) 95.96 95.96 95.96 95.95

MRVM (Zuo et al., 2024) 96.20 96.21 96.21 96.19

MSLI-Net (Ours) 96.72 96.75 96.72 96.72

Bold values indicate the best result under each evaluation metric.

FIGURE 6
Accuracy and loss during the training process.

network (FPN) that removes the up-sampling branches, and added
the multi-segmented lesion localization fusion module (LLM) on
top of it to form the FPN-ResNet50+MDF + LLM architecture. The
results showed that this combination further improves the model
accuracy to 96.46%. Finally, we incorporated the Wavelet Subband
Spatial Attention module (WSSA) into the first three FPN branches
to form the full MSLI-Net; this achieved 96.72% accuracy. These
results confirm that each module synergistically enhances overall
performance.

To further verify the impact of each module on the overall
performance, we removed MDF (FPN-ResNet50+LLM + WSSA)

and LLM (FPN-ResNet50+MDF + WSSA) from the full model,
respectively, and analyzed their performance in comparison with
the complete MSLI-Net model. The experimental results show that
after removing MDF and LLM, the classification accuracy of the
model is 95.45% and 95.79%, respectively, both of which show a
decrease compared with the complete structure.This verifies the key
role of each module in the performance improvement. The result
further demonstrate that there is a close synergistic dependency
between the modules, and the absence of any sub-module will
weaken the discriminative ability of the model, thus affecting the
overall performance.
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FIGURE 7
The confusion matrix of the results, with an accuracy of 96.93%.

TABLE 2 Ablation experiment results on OCT-C8 dataset (%).

Method Accuracy Precision Sensitivity F1

ResNet50 95.08 95.34 95.08 95.09

ResNet50+MDF 96.04 96.09 96.04 96.04

FPN-ResNet50+MDF + LLM 96.46 96.51 96.46 96.46

FPN-ResNet50+LLM +WSSA 95.45 95.61 95.45 95.44

FPN-ResNet50+MDF +WSSA 95.79 95.89 95.79 95.78

MSLI-Net (Ours) 96.72 96.75 96.72 96.72

Bold values indicate the best result under each evaluation metric.

In order to verify the effectiveness of the multi-scale
dilation fusion module (MDF) proposed in this paper, we
reproduced three representative dilated convolution modules and
individually replaced the MDF with each of them for comparative
experiments. Specifically, we reproduced the proposed dilated
feature enhancement module (DFE) designed by Bui et al. (2024);
the Multi-scale Context Block (MSCB) proposed by Peng et al.
(2023); and the ASPP module (Lo et al., 2019) used by Lo et al. in
their work.The experimental results are shown in Table 3, where the
model accuracy reached 96.42% when the ASPP was used instead
of MDF, 96.20% when MSCB was used, and only 96.08% when
MDF was replaced by the DFE module. In contrast, using our
proposed MDF within the same network architecture, the model
achieved an accuracy of 96.72%. Moreover, our model contained

89.69 million parameters and 33.46 GFLOPs—an increase relative
to the MSCB model (46.13 million, 20.58 GFLOPs) but still far
smaller than both the DFE (206.67 million, 67.98 GFLOPs) and the
ASPP (228.94 million, 72.94 GFLOPs) counterparts. These results
demonstrate that our MDF effectively enhances feature extraction
and semantic understanding performance while maintaining a
lightweight architecture.

In addition, to evaluate the multi-segmented lesion localization
fusionmodule (LLM), we devised two comparison schemes: one did
not introduce a cropping strategy at all and only used the SE channel
attention mechanism (Hu et al., 2018) for feature processing; the
other used the cropping strategy proposed by Sharma and Vardhan
(2025) in the AELGNet model, i.e., to divided the feature map
into four patches using a four-quadrant partitioning strategy, and
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TABLE 3 Comparison of different inflated convolutional modules on OCT-C8 dataset (%).

Method Accuracy Precision Sensitivity F1 Params(M) FLOPs (GFLOPs)

DFE (Bui et al., 2024) 96.08 96.23 96.08 96.08 206.67 67.98

MSCB (Peng et al., 2023) 96.20 96.26 96.20 96.20 46.13 20.58

ASPP (Lo et al., 2019) 96.42 96.48 96.42 96.41 228.94 72.94

MDF(Ours) 96.72 96.75 96.72 96.72 89.69 33.46

Bold values indicate the best result under each evaluation metric.

TABLE 4 Comparison of different cropping strategies on OCT-C8 dataset (%).

Method Accuracy Precision Sensitivity F1

Cropping Strategy in AELGNet (Sharma and Vardhan, 2025) 95.81 95.93 95.81 95.80

SE (Hu et al., 2018) 96.17 96.28 96.17 96.17

LLM(Ours) 96.72 96.75 96.72 96.72

Bold values indicate the best result under each evaluation metric.

then applied the SE channel attention mechanism to each patch.
The comparison results were shown in Table 4, when only the
SE channel attention mechanism was used, the model achieved
an accuracy of 96.17%. The accuracy dropped to 95.81% when
the AELGNet cropping strategy was used, which may have been
due to the fact that retinal structures in OCT images are usually
distributed in long horizontal strips, and some patches may contain
only background information when dividing the feature map with
this cropping strategy. Meanwhile, the four patches were processed
indiscriminately during the feature extraction process, which led
to the amplification of the interference of irrelevant noise in the
background region, and ultimately reduced the effectiveness of the
model feature extraction. In contrast, our proposed LLM enabled
the model to pay more attention to the features in the retinal region,
and as shown in the experimental results in Table 4, the classification
accuracy and various indexes of themodel when using the LLMwere
significantly better than those of the comparative methods using the
SE module and adopting the cropping strategy in AELGNet, thus
verifying the effectiveness of the LLM in the retinal OCT image
classification task.

To verify the effectiveness of the proposed wavelet subband
spatial attention module (WSSA), we designed two sets of
comparison experiments. In the first set of experiments, we replaced
the WSSA module, in turn, with the following four methods: (1)
using the wavelet transform and its inverse transform (OWT)
(Talukder and Harada, 2010) without any processing; (2) adopting
the WTConv (Finder et al., 2024) proposed by Finder et al.
which involves a convolutional operation for each wavelet subband
individually; (3) replicating the WCAM proposed by Alaba and
Ball (2024), which is processed by fusing the features of the LH
and HL subbands to the LL subband; (4) the MSA (Xiao et al.,
2023) applying independently to each wavelet subband, constituting
the OWT +MSA.

In addition, our WSSA module stacks all wavelet subbands,
extracts subband weights via global average pooling, and then
refines these weights using the MSA module. These weights are
then multiplied with the original subband features to facilitate
inter-subband information interaction. Finally, we perform the
inverse wavelet transform to restore the image size. Therefore,
we further designed a second set of comparative experiments to
comprehensively evaluate the advantages of the WSSA. Specifically,
without altering the remaining process, we independently excluded
each of the LL, LH, HL, and HH subbands—resulting in four
modules referred to as w/o LL, w/o LH, w/o HL, and w/o HH—in
which only the remaining three subbands are stacked and processed.
This setup allows us to analyze the role of each subband in the
process of information fusion.

Table 5 shows the performance comparison results of models
using different modules in the first set of experiments for the
retinal OCT image classification task. The results show that
the classification accuracy of the model using OWT is only
95.92%, indicating that although the wavelet transform possesses
some image processing capability, the lack of subsequent feature
extraction may lead to the disruption of intrinsic structure, which
affects the classification performance. Further, the models using
WTconv andOWT+MSAobtain classification accuracies of 96.04%
and 96.23%, respectively, indicating that there is a close intrinsic
correlation between the wavelet subbands, and it is difficult to
effectively tap the potential complementary information of each
subband by only performing independent feature extraction, thus
restricting the enhancement of the model’s discriminative ability. In
contrast, the classification accuracy of the model using WCAM that
fuses the LH and HL with the LL subband features is 96.44%, which
verifies that the information interaction between the subbands helps
to fully mine the feature information.

Table 6 displays the results of the second set of comparative
experiments. It can be seen that themodel accuracy using the second
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TABLE 5 Comparison of the first set of wavelet strategies on the OCT-C8 dataset (%).

Method Accuracy Precision Sensitivity F1

OWT (Talukder and Harada, 2010) 95.92 96.01 95.92 95.92

WTConv (Finder et al., 2024) 96.04 96.17 96.04 96.03

WCAM (Alaba and Ball, 2024) 96.44 96.48 96.44 96.43

OWT +MSA 96.23 96.32 96.23 96.22

WSSA (Ours) 96.72 96.75 96.72 96.72

Bold values indicate the best result under each evaluation metric.

TABLE 6 Comparison of the second set of wavelet strategies on the
OCT-C8 dataset (%).

Method Accuracy Precision Sensitivity F1

w/o LL 96.12 96.21 96.12 96.12

w/o LH 96.31 96.38 96.32 96.31

w/o HL 96.30 96.36 96.30 96.29

w/o HH 96.23 96.34 96.23 96.22

WSSA (Ours) 96.72 96.75 96.72 96.72

Bold values indicate the best result under each evaluation metric.

set of comparison methods (w/o LL, w/o LH, w/o HL, and w/o
HH) is distributed between 96.12% and 96.31%, highlighting that
the synergistic effect of each wavelet subband in feature extraction
is indispensable. The model accuracy reaches 96.72% when using
our proposed WSSA. This suggests that omitting any sub-band
may degrade feature representation, thereby impairing the model’s
overall discriminative performance. The effectiveness of WSSA in
the retinal OCT image classification task is also demonstrated.

4.6 Robustness of the noise processing
module

OCT image quality varies significantly because acquisition is
affected by external factors such as imaging-equipment performance
and ambient-light interference. Some images even contain severe
speckle noise. These issues pose major challenges for subsequent
image processing and analysis. In order to verify the effectiveness of
ourWSSAmodel for the denoising of retinal OCT images, we added
amultiplicative scattering noisemodel (Huang et al., 2019) to the test
dataset and used the peak signal-to-noise ratio (PSNR) to measure
the noise level. It can be expressed by the following Equation:

F(x,y) = g(x,y) + g(x,y) × u(x,y) (18)

PSNR = 20× lg( Max
√MSE
) (19)

where, in Equation 18, g(x,y) denotes the original image
undisturbed by noise; u(x,y) is a set of Gaussian noise obeying a
mean of 0 and a variance of s (σ2), whose variance increases with
the increase of the gray value of the image; and F(x,y) denotes the
image obtained after adding the noise. Also in Equation 19, Max is
the maximum pixel value of the image and MSE denotes the mean
square error between the image with noise and the original image.

We trained the model using the original training dataset, and
added multiplicative scattering noise of five variance levels (σ2 =
0.12, 0.22, 0.32, 0.42 and 0.52) to the test set during the testing phase.
These noise intensities correspond to PSNR values of 30.85 dB,
25.22 dB, 21.95 dB, 19.66 dB, and 18.01 dB, respectively. Figure 8
demonstrates the retinal OCT images under different degrees of
noise. It can be observed that as noise intensity increases, the PSNR
value gradually decreases, the image quality decreases significantly,
and the noise interference becomes increasingly pronounced. To
verify the robustness of the proposed module in different noise
environments, we used the models in Tables 5, 6 for comparative
analysis. Tables 7, 8 show the test results of each model under
different noise.

As shown in Tables 7, 8, the overall performance of all modules
decreases with the increase of noise intensity. Among them, except
for the MSLI-Net model proposed in this study and its variant
without the HL subband—which both exhibit a performance
degradation within 1%—all other models experience a degradation
exceeding 1%, specifically ranging from 1.11% to 1.68%. In addition,
our model shows significant performance degradation only when
the noise intensity decreases to 19.66 dB, and its fluctuation of no
more than 0.1% between no noise and a noise intensity of 21.95 dB,
demonstrating good stability. Moreover, across all noise levels, the
overall performance of our model is always better than that of other
comparative methods, indicating that the method in this paper has
good robustness under high-intensity noise interference.

In order to verify the robustness of the proposed LLM in noisy
environments, we conducted systematic tests on each module listed
in Table 4 under different noise intensities, and the test results
are shown in Table 9. From the results, it can be seen that the
classification accuracy of the model with the AELGNet cropping
strategy decreases by 0.55% when noise is first added, which is
the largest decrease among the three modules, indicating that the
strategy is more sensitive to noise, and further proving that this
cropping approach may amplify the interference of extraneous
noise in the background region. As noise intensity increases, the
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FIGURE 8
Test dataset after adding different levels of noise.

TABLE 7 Comparison of the first set of wavelet strategies under different noise intensities (dB).

Method

Noise intensitymets

Noiseless 30.85 25.22 21.95 19.66 18.01

OWT (Talukder and Harada, 2010) 95.92 95.92 95.87 95.66 95.22 94.35

WTconv (Finder et al., 2024) 96.04 95.67 95.94 95.61 95.14 94.5

WCAM (Alaba and Ball, 2024) 96.44 96.44 96.19 96.30 96.00 95.33

OWT +MSA 96.23 95.58 95.64 95.68 95.17 95.07

WSSA (Ours) 96.72 96.77 96.68 96.62 96.32 95.82

Bold values indicate the best result under each evaluation metric.

TABLE 8 Comparison of the second set of wavelet strategies under different noise intensities (dB).

Method

Noise intensitymets

Noiseless 30.85 25.22 21.95 19.66 18.01

w/o LL 96.12 95.82 95.69 95.99 95.19 94.44

w/o LH 96.31 96.31 96.17 96.08 95.56 94.73

w/o HL 96.30 96.28 96.31 96.06 95.88 95.49

w/o HH 96.23 96.08 96.04 95.79 95.57 94.87

WSSA (Ours) 96.72 96.77 96.68 96.62 96.32 95.82

Bold values indicate the best result under each evaluation metric.
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TABLE 9 Comparison of the LLM and each module under different noise intensities (dB).

Method

Noise intensitymets

Noiseless 30.85 25.22 21.95 19.66 18.01

Cropping Strategy in AELGNet (Sharma and Vardhan, 2025) 96.30 95.75 95.69 95.39 95.88 95.49

SE (Hu et al., 2018) 96.23 95.96 95.81 95.58 95.57 94.87

WSSA (Ours) 96.72 96.77 96.68 96.62 96.32 95.82

Bold values indicate the best result under each evaluation metric.

FIGURE 9
Visualization and analysis of MDF, DFE, MSCB and ASPP.

performance of the model using only the SE module is more
significantly impaired under high-intensity noise. It is worth noting
that the model (MSLI-Net) using LLM shows better classification
accuracy than the other two strategies across all noise levels, which
fully verifies that the LLM method has stronger noise robustness in
complex noise environments.

4.7 Visualization and analysis

In order to visually assess the effectiveness of the MDF
proposed in this paper in multi-scale feature extraction and its
ability to deeply integrate with the original image features, this
paper introduces the Grad-CAM method to visualize and analyze
the image regions that each of the comparative modules pays
attention to in the classification decision-making process. The
method effectively reveals the ability of eachmodule to pay attention
to the key regions of the input image through the generation
of heat maps.

In this paper, based on eachmodule in Table 3, its corresponding
heat map is generated at different network stages of ResNet50 and
visualized for comparison. As shown in Figure 9, in the layer1 stage
of ResNet50, each module shows high consistency in focusing on

the lesion region. As the network deepens, the MDF consistently
maintains high consistency with the backbone network at all stages
and further enhances its ability to focus on lesion regions. In
contrast, during the first two stages, the MSCB consistently aligns
its focus on the lesion regions with that of the backbone network
and remains relatively stable; however, the region of focus deviates
significantly in the third stage. Conversely, DFE and ASPP show a
tendency of divergence of the total attention region after the first
stage, and although they briefly enhance the ability of layer2 of
ResNet50 to focus on the lesion, by the third and fourth stages, their
ability to focus on the lesion decreases significantly, and neither of
them is able to focus on the lesion portion well.

The comparative results heat map visualization further validates
the advantages of the MDF module in feature fusion and semantic
modeling. Especially In deeper layers, MDF is still able to
maintain a stable and precise attention region, reflecting stronger
discriminative and semantic retention abilities.

Meanwhile, we also visualize and compare the mentioned
models in Table 4. As shown in Figure 10, in the shallow stage (c2
and c3), the models using SE, the cropping strategy in AELGNet,
and the LLM proposed in this paper are able to locate the lesion
region more accurately, which reflects a good initial discriminative
ability. However, in the deeper network stages (c4 and p5), SE and
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FIGURE 10
Visualization and analysis of SE, cropping strategy in AELGNet, and LLM.

cropping strategy in AELGNet gradually demonstrate increased
background attention, compared to LLM which still maintains a
stable focus on the lesion region in the deeper stages.This result fully
demonstrates the effectiveness of our LLM’s performance for lesion
localization.

5 Conclusion

In this study, we propose a novel network architecture called
MSLI-Net for the classification task of retinal optical coherence
tomography (OCT) images. The model effectively enhances the
feature extraction capability of the model for the lesion region
and significantly improves the overall classification performance
through three core modules, namely, the multi-scale dilation
fusion module (MDF), the multi-segmented lesion localization
fusion module (LLM), and the wavelet subband spatial attention
module (WSSA). On the publicly available OCT-C8 dataset, this
method achieves a classification accuracy of 96.72%. We further
confirm the critical role of each of the three modules, MDF,
LLM and WSSA, in network performance improvement through
comprehensive ablation experiments. Meanwhile, MSLI-Net still
exhibits robust performance under stronger noise interference
environment. MSLI-Net architecture not only has practical value
for OCT image classification, but also provides new research
ideas and effective technical references for future network design
for similar tasks.
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