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1Vision X Medical Technology Co., Ltd., Shanghai, China, 2National Clinical Research Center for Ocular
Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China, 3Shanghai E-Vision Eye Clinic,
Shanghai, China

Objective: To develop and validate machine learning (ML) models for predicting
cycloplegic spherical equivalent refraction (SER) using non-cycloplegic
parameters, addressing challenges in pediatric ophthalmic assessments.

Methods: A prospective cohort of 2,274 Chinese children (4,548 eyes) aged
3∼16 years was stratified into development (n = 1819) and validation (n = 455)
datasets. Six ML models (linear regression, random forest, extreme gradient
boosting, multilayer perceptron, support vector machine, and light gradient
boosting machine) were trained on demographics, non-cycloplegic refractive
error, and ocular biometrics. Model performance was evaluated using R2, mean
error (ME), mean absolute error (MAE), and clinical accuracy (proportions within
±0.50 D/±1.00 D).

Results: In the validation dataset, ML models predicted cycloplegic SER with
high R2 (0.920∼0.934), low ME (−0.004∼0.015 D) and MAE (0.385∼0.413 D).
The multilayer perceptron model achieved the highest accuracy (R2 = 0.934,
MAE = 0.385 D), with 73.08% and 94.29% of predictions within ±0.50 D and
±1.00 D, respectively. Performance was optimal in children aged 7∼10 years
(77.17∼79.70% within ±0.50 D) and those with low myopia (−3.00 to −0.50 D;
83.09∼83.56% within ±0.50 D). Non-cycloplegic measurements systematically
overestimated myopia (mean difference: −0.39 ± 0.71 D, P < 0.001), particularly
in younger children and hyperopic eyes.

Conclusion: ML models provide accurate estimates of cycloplegic SER using
non-cycloplegic parameters, offering a practical alternative for pediatric
refractive assessments when cycloplegia is infeasible.
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1 Introduction

Accurate refractive error assessment in pediatric populations
necessitates cycloplegic refraction to eliminate accommodation-
induced measurement errors, establishing it as the clinical
gold standard for both diagnosis and epidemiological studies
(Morgan et al., 2015; Doherty et al., 2019; Flitcroft et al., 2019).
However, application of cycloplegia faces practical challenges in
large-scale pediatric research, including time constraints, resource
limitations, and potential contraindications, often precluding its
routine use in population-based screenings. To address the conflict
between the necessity of cycloplegic refractive examination and
the difficulty of performing cycloplegia in practice, emerging
studies have explored statistical models to predict cycloplegic
refractive error using non-cycloplegic parameters. These models
exhibit inconsistent performance (R2 ranging from 0.26 to 0.935)
(Ip et al., 2007; Kimura et al., 2007; He et al., 2015; Foo et al., 2016;
Sankaridurg et al., 2017; Magome et al., 2021; Wang et al., 2022;
Du et al., 2023; He et al., 2023; Ying et al., 2024), likely attributable
to methodological heterogeneity, variable predictor selection, and
population-specific biases.

Machine learning (ML), a branch of artificial intelligence, offers
unparalleled capabilities in identifying complex patterns within
high-dimensional datasets. Unlike conventional regression models
constrained by linear assumptions, advanced ML algorithms (e.g.,
random forest [RF], support vector machine [SVM] and gradient
boosting models) are capable of modeling intricate and non-
linear relationships between predictors and outcomes, and have
demonstrated great potential for application in ophthalmology and
vision research (Wu et al., 2021; Cao et al., 2022; Wu et al., 2022;
Chandra and Ying, 2023; 2024). Recent advancements highlight ML’s
ability topredict key refractiveparameters suchas spherical equivalent
refraction (SER) and axial length (AL) in pediatric cohorts. For
instance,Zhuet al. (2023)demonstrated thatMLmodels couldpredict
SER and AL changes in children with high accuracy (R2 up to 0.90),
leveraging longitudinal data to inform myopia progression. These
studies collectively emphasizeML’s capacity to address bothdiagnostic
and prognostic challenges in pediatric ophthalmology, particularly
when traditional methods are constrained.

This study aimed to develop and validate ML models for
predicting cycloplegic refractive error in Chinese children aged
3–16 years old using readily obtainable non-cycloplegic parameters,
encompassing demographics, non-cycloplegic refractive error, and
ocular biometric measurements. By leveraging the predictive power
of ML, this work seeks to provide a clinically practical solution for
determining true refractive status in pediatric populations where
cycloplegic examinations are impractical.

2 Materials and methods

2.1 Participants

A prospective cohort of 2,274 children (4,548 eyes) aged
3–16 years was recruited from the EyeHospital ofWenzhouMedical
University between October 2021 and March 2024. Inclusion
criteria included: (1) parental consent for cycloplegic procedures;
(2) availability of pre-/post-cycloplegic clinical data. Exclusion

criteria comprised ocular organic diseases, strabismus, amblyopia,
prior ocular surgery, or hypersensitivity to 1% cyclopentolate
hydrochloride. Participants were stratified by age and refractive
status and randomly allocated into development (80%, n = 1819
children) and validation (20%, n = 455 children) datasets to ensure
proportional representation.

The study protocol was approved by the Institutional Ethics
Committee of the Eye Hospital of Wenzhou Medical University
(approval no. 2021-233-K-203-03) and adhered to the tenets of the
Declaration of Helsinki. Written informed consent was obtained
from all participants’ parents or guardians.

2.2 Data collection

Demographic information (age, gender, and height) and
ocular parameters were collected under non-cycloplegic conditions.
Comprehensive ophthalmic examinations included: distance visual
acuity test using retro-illuminated logMAR charts with tumbling-
E optotypes, slit-lamp examination of the anterior segment,
fundus examination with ophthalmoscopy, intraocular pressure
measurement and the assessment of ocular biometrics under non-
cycloplegic conditions (e.g., AL, corneal curvature [CR], central
corneal thickness [CCT], aqueous depth [AD], lens thickness
[LT], and corneal astigmatism) using the AB-800 optical biometer
(Hangzhou Weixiao Medical Technology Co., Ltd., Hangzhou,
China). AL measurements were retained if intra-test variability was
≤0.02 mm.

Cycloplegia was induced by administering two drops of 1%
cyclopentolate (Alcon, Fortworth, TX, America) at 5-min intervals.
Autorefraction (KR 800, Topcon, Tokyo, Japan) was performed pre-
cycloplegia and 30 min after application of cyclopentolate (following
confirmation of adequate pupillary dilation [>6 mm] and loss of
light reflex). For both conditions, three consecutive autorefraction
measurements were averaged, with repeat assessments if any
spherical or cylindrical component differed by > 0.50 D between
readings. All data underwent dual-entry verification (EpiData
3.1, Odense, Denmark) with source document reconciliation for
discrepancies.

2.3 Machine learning models

The cycloplegic SER was calculated as sphere +0.5∗cylinder.
Six ML models were evaluated for cycloplegic SER prediction: (1)
linear regression: identifies linear relationships through coefficient
optimization, offering interpretability but constrained to additive
patterns (Ludwig Fahrmeir and Lang, 2009). (2) RF: combines
predictions froman ensemble of decision trees tomitigate overfitting
(Breiman, 2001). (3) extreme gradient boosting (XGBoost): utilizes
gradient-boosted trees and trained additively to enhance predictive
accuracy (Chen and Guestrin, 2016). (4) multilayer perceptron
(MLP): a feedforward neural network employing weighted linear
summations and nonlinear activation functions for hierarchical
feature transformation (Abu-Mostafa and Hsuan-Tien Lin, 2012).
The MLP architecture comprised three fully connected layers: an
input layer (11 neurons), a hidden layer (32 neurons), and an output
layer (1 neuron). (5) SVM: predicts a continuous outcome with high
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TABLE 1 Characteristics of participants in the development and validation datasets.

Characteristics Development dataset (n = 1819) Validation dataset (n = 455) All (n = 2,274)

Age (y), n (%)

 3 24 (1.32) 7 (1.54) 31 (1.36)

 4 122 (6.71) 30 (6.59) 152 (6.68)

 5 200 (11.00) 50 (10.99) 250 (10.99)

 6 348 (19.13) 87 (19.12) 435 (19.13)

 7 450 (24.74) 113 (24.84) 563 (24.76)

 8 313 (17.21) 78 (17.14) 391 (17.19)

 9 159 (8.74) 39 (8.57) 198 (8.71)

 10 95 (5.22) 24 (5.27) 119 (5.23)

 11 58 (3.19) 14 (3.08) 72 (3.17)

 ≥12 50 (2.75) 13 (2.86) 63 (2.77)

 Mean ± SD 7.58 ± 1.95 7.55 ± 1.92 7.58 ± 1.94

Male: Female (%) 50.25:49.75 47.25:52.75 49.65:50.35

Cycloplegic SER (D), n (%)

 ≤−6.0 36 (0.99) 8 (0.88) 44 (0.97)

 >−6.0, ≤−3.0 176 (4.84) 46 (5.05) 222 (4.88)

 >−3.0, ≤−0.5 1369 (37.63) 343 (37.69) 1712 (37.64)

 >−0.5, ≤+0.5 693 (19.05) 169 (18.57) 862 (18.95)

 >+0.5, ≤+2.0 956 (26.28) 245 (26.92) 1201 (26.41)

 >+2.0 408 (11.21) 99 (10.88) 507 (11.15)

 Mean ± SD −0.04 ± 2.12 −0.05 ± 2.07 −0.04 ± 2.11

Non-cycloplegic SER (D), n (%)

 ≤−6.0 40 (1.10) 7 (0.77) 47 (1.03)

 >−6.0, ≤−3.0 182 (5.00) 56 (6.15) 238 (5.23)

 >−3.0, ≤−0.5 1563 (42.96) 376 (41.32) 1939 (42.63)

 >−0.5, ≤+0.5 1149 (31.58) 301 (33.08) 1450 (31.88)

 >+0.5, ≤+2.0 489 (13.44) 114 (12.53) 603 (13.26)

 >+2.0 215 (5.91) 56 (6.15) 271 (5.96)

 Mean ± SD −0.43 ± 1.86 −0.43 ± 1.84 −0.43 ± 1.85

Height (cm) 126.46 ± 12.68 126.50 ± 13.10 126.47 ± 12.76

Axial length (mm) 23.24 ± 1.13 23.23 ± 1.09 23.23 ± 1.12

Corneal curvature radius (mm) 7.79 ± 0.27 7.79 ± 0.29 7.79 ± 0.27

Corneal astigmatism (D) −1.38 ± 0.78 −1.40 ± 0.76 −1.39 ± 0.77

(Continued on the following page)
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TABLE 1 (Continued) Characteristics of participants in the development and validation datasets.

Characteristics Development dataset (n = 1819) Validation dataset (n = 455) All (n = 2,274)

Axial length/corneal curvature radius ratio 2.98 ± 0.14 2.98 ± 0.13 2.98 ± 0.14

Central corneal thickness (μm) 537.63 ± 32.23 537.04 ± 32.98 537.51 ± 32.38

Aqueous depth (mm) 2.97 ± 0.30 2.96 ± 0.31 2.97 ± 0.30

Lens thickness (mm) 3.62 ± 0.26 3.63 ± 0.26 3.62 ± 0.26

FIGURE 1
Differences between non-cycloplegic versus cycloplegic refraction based on age (A), refractive error (B), axial length (C).

generalization ability by transforming data to high-dimensional
spaces (Cortes and Vapnik, 1995). (6) light gradient boosting
machine (LightGBM): accelerates gradient boosting via histogram-
based tree construction and leaf-wise growth, prioritizing efficiency
for large datasets (Ke et al., 2017).

The predictors for the ML models were: demographics (age,
gender, height), non-cycloplegic SER, biometric parameters (AL,
CR, AL/CR ratio, CCT, AD, LT, and corneal astigmatic value).
Hyperparameters were tuned for each of the models through
5-fold cross-validation on the development dataset to reduce
overfitting risks and optimize R2 (the coefficient of determination).
Final models were trained on the entire development dataset
using optimized hyperparameters. The independent validation
dataset was strictly reserved for final performance evaluation,
thereby ensuring an unbiased assessment of the models’
generalizability.

2.4 Statistical analysis

Myopia was defined as cycloplegic SER -0.50 D or worse.
Emmetropia was defined between −0.50 D and +0.50 D and
hyperopiawas defined as greater than +0.50 D. Continuous variables
were expressed as mean ± standard deviation (SD). Paired t-test
was performed to compare the differences between non-cycloplegic
and cycloplegic SER across the entire cohort and in subgroups
based on age, refractive error, axial length. Model performance was
evaluated using R2, correlation coefficient r, mean error (ME), and
mean absolute error (MAE) of differences between predicted and
measured cycloplegic SER (calculated as predicted–measured), as
well as the clinical accuracy proportions (predictions within ±0.50
D/±1.00 D). The predicted and measured cycloplegic SER were also
statistically compared using paired t-test. For the best-performing
model (selected based on the performance in the validation dataset),
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TABLE 2 Performance of Machine Learning models in the development
and validation datasets.

Model Development
dataset (n = 1819
children, 3,638
eyes)

Validation dataset
(n = 455 children,
910 eyes)

R2

Linear 0.935 0.928

Random forest 0.966 0.920

XGBoost 0.954 0.929

MLP 0.948 0.934

SVM 0.945 0.930

LightGBM 0.956 0.931

ME, mean ± SD

Linear −0.003 ± 0.541 0.015 ± 0.557

Random forest −0.005 ± 0.392 0.014 ± 0.584

XGBoost −0.008 ± 0.456 −0.004 ± 0.551

MLP −0.008 ± 0.484 −0.004 ± 0.533

SVM −0.005 ± 0.495 0.002 ± 0.548

LightGBM −0.010 ± 0.442 0.008 ± 0.544

MAE, mean ± SD

Linear 0.405 ± 0.359 0.404 ± 0.383

Random forest 0.292 ± 0.262 0.413 ± 0.414

XGBoost 0.319 ± 0.326 0.391 ± 0.389

MLP 0.354 ± 0.330 0.385 ± 0.368

SVM 0.363 ± 0.338 0.389 ± 0.385

LightGBM 0.334 ± 0.290 0.387 ± 0.382

subgroup analyses were conducted by age and refractive error
magnitude.

ML models implementation utilized Python 3.8 (scikit-learn
version 1.3.0), while the statistical analysis was performed with IBM
SPSS Statistics software version 27 (IBM, Armonk, NY). A P value
of <0.05 was considered statistically significant.

3 Results

3.1 Participant characteristics

Data from 2,274 children (4,548 eyes) were included in the
analysis, with a mean age of 7.58 ± 1.94 years (range: 3∼16 years).

Females accounted for 50.35% of the study population. Participants
were stratified into development (n = 1819 children, 3,638 eyes;
mean age: 7.58 ± 1.95 years) and validation (n = 455 children,
910 eyes; mean age: 7.55 ± 1.92 years) datasets. The two datasets
exhibited comparable distributions in age, gender, height, and ocular
biometric parameters (all P values > 0.05). Demographic and ocular
characteristics of participants in the development and validation
datasets were summarized in Table 1.

3.2 Mean difference between
non-cycloplegic and cycloplegic SER

Overall, there was a mean paired difference of −0.39
± 0.71 D (95% confidence intervals: −0.41 to −0.37D, P <
0.001) between non-cycloplegic and cycloplegic SER, with
the non-cycloplegic SER resulting in a more myopic (or less
hyperopic) refractive error. Figure 1 illustrated the mean paired
differences in non-cycloplegic and cycloplegic SER by age,
cycloplegic refractive error, axial length. The bias was greatest
with younger age, hyperopic refractive error and shorter axial
length. Differences approached zero when cycloplegic SER
measures were myopic, and became increasingly negative with
emmetropia and hyperopia (all P < 0.05, except for the high myopia
subgroup, P = 0.491).

3.3 Machine learning model performance

With the clinical parameter values obtained from the
development dataset, we developed and evaluated 6 ML models
for predicting cycloplegic SER. In the development dataset, all 6 ML
models predicted cycloplegic SER well with R2 ranging from 0.935
(linear) to 0.966 (random forest), the correlation coefficient r of
0.952 (linear) to 0.973 (random forest),MEof −0.010 D (LightGBM)
to −0.003 D (linear), and MAE of 0.292 D (random forest) to
0.405 D (linear) (Table 2). The random forest model performed
best (R2 = 0.966, MAE = 0.292 D), followed by LightGBM (R2 =
0.956, MAE = 0.334 D). In the validation dataset, the MLP model
outperformed others (R2 = 0.934, r = 0.956, MAE = 0.385 D), with
LightGBM model ranking second (R2 = 0.931, r = 0.955, MAE
= 0.387 D), and the random forest model performed worst (R2 =
0.920, r = 0.951, MAE = 0.413 D) (Table 2). Paired t-tests confirmed
no significant differences between predicted and measured SER
across all models (P = 0.430 for linear, P = 0.927 for RF, P = 0.652
for XGBoost, P = 0.459 for MLP, P = 0.836 for SVM, P = 0.830
for LightGBM).

3.4 Subgroup analysis of the
best-performing model

We further evaluated the performance of the best-performing
ML model in the validation dataset (MLP) by assessing its
performance across subsets stratified by age and cycloplegic SER
magnitude. The importance of features in MLP model was shown
in Supplementary Figure 1. Non-cycloplegic SER, AL/CR ratio, and
AL were the top three predictors for predicting cycloplegic SER.
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FIGURE 2
The scatter plot for the predicted versus measured cycloplegic spherical equivalent based on the MLP model. The scatter plot in the development
dataset ((A) 3,638 eyes from 1819 children) and in the validation dataset ((B) 910 eyes from 455 children).

The scatter plot (Figure 2) illustrated a highly positive correlation
between predicted cycloplegic SER by MLP model and measured
cycloplegic SER values, with R2 of 0.948 in the development dataset
and 0.934 in the validation dataset.

The overall ME between predicted and measured cycloplegic
SER was −0.008 ± 0.484 D and −0.004 ± 0.533 D in two
datasets (Table 3). In the development dataset, the ME was
within 0.037 D and the MAE within 0.399 D across all age
subgroups. When evaluating differences between predicted
and measured based on magnitude of cycloplegic SER, the
model exhibited the lowest MAE (≤0.328 D) for low myopia
and emmetropia, and the highest MAE for high myopia and
hyperopia > +2.00 D. Similar trends were observed in the validation
dataset (Table 3).

To assess the clinical value of the ML model predictions of
the refractive error, we evaluated the proportions of prediction
errors within ±0.50 D and ±1.00 D compared with cycloplegic
SER. The MLP model achieved clinical accuracy rates of 76.83%
(±0.50 D) and 95.52% (±1.00 D) in the development dataset, and
73.08% (±0.50 D) and 94.29% (±1.00 D) in the validation dataset.
Peak performance was observed in the subgroup of children
aged 7–10 years (77.17∼79.70% within ±0.50 D) and for eyes with
cycloplegic SER ranging from −3.00 to −0.50 D (83.09∼83.56%
within ±0.50 D).

4 Discussion

This study developed and validated 6 ML models to predict
cycloplegic refractive error using non-cycloplegic parameters in a
large cohort of Chinese children. The results showed successful
predictions of ML models in both the development and validation
datasets, demonstrating the promising potential and practical value
of ML-based tools to circumvent the challenges of cycloplegia
in pediatric refractive assessments while maintaining diagnostic
precision.

All the ML models performed well in predicting cycloplegic
SER in the validation datasets (R2 ranging from 0.920 to

0.934), with the MLP model performed best. Several studies
have employed statistical prediction models to estimate
cycloplegic refractive error in pediatric populations, utilizing
diverse predictors such as demographics, ocular biometric
parameters (Magome et al., 2021), non-cycloplegic refractive error
(Sankaridurg et al., 2017; Wang et al., 2022), and uncorrected
visual acuity [UCVA](Sankaridurg et al., 2017), alongside modeling
methodologies ranging from traditional regression to advanced
ML techniques. However, the heterogeneity in study designs and
populations has resulted in widely variable predictive performance
(R2: 0.26∼0.935) (Ip et al., 2007; Kimura et al., 2007; He et al.,
2015; Foo et al., 2016; Sankaridurg et al., 2017; Magome et al., 2021;
Wang et al., 2022; Du et al., 2023; He et al., 2023; Ying et al., 2024). In
particular, Du et al. (2023) developed 4 ML models (Support Vector
Regression, Random Forest Regression, AdaBoost Regression, and
Deep Neural Network) in 2,467 Chinese children aged 6–18 years,
achieving R2 of 0.899∼0.927 and MAE of 0.372∼0.436 D. Among
them, AdaBoost regression model exhibited the best overall
prediction performance, with R2 = 0.927 and MAE = 0.372, slightly
inferior to the optimal MLP-based model in our study. However,
some predictors used in their models (e.g., the accommodation
lag data) may not be easily available in clinical practice, which
would limit the models’ applicability. Ying et al. (2024) also
developed and validated 6 ML models based on 3,414 Chinese
children ages 5–18 years by using age, gender, non-cycloplegic
refractive error, biometric measures (AL, CR, AL/CR ratio, CCT,
and anterior chamber depth), UCVA, intraocular pressure, and
glasses-wearing status. The models predicted cycloplegic SER
with R2 of 0.913∼ 0.935, and MAE of 0.393∼0.480 D, with top
performance comparable to ours. Notably, while the ML methods
used in our study were largely similar to those employed by
Ying et al., the optimal model diverged (MLP vs. XGBoost).
This discrepancy may be attributed to cohort differences: their
population comprised older children (5∼18 years), with nearly 50%
was low hyperopia (+0.50∼+3.00 D); whereas ours encompassed
younger ages (3∼16 years old), dominated by low myopia (−3.00∼-
0.50 D) and low hyperopia (+0.50∼+2.00 D). In comparison to
prior work, our study prioritizes clinical practicality by exclusively
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incorporating parameters easily obtainable without cycloplegia,
while maintaining robust accuracy (MLP model: R2 = 0.934). This
balance between simplicity and precision positions our framework
as a scalable solution for population-based studies, particularly
in resource-limited settings where cycloplegic examinations
are challenging. Furthermore, the included younger children
(3–16 years old) with varied refractive status (from −16.13 to
+7.88 D) enhances the model’s clinical relevance for early myopia
risk stratification.

Substantial evidence demonstrates clinically significant
discrepancies between cycloplegic and non-cycloplegic
measurements, with non-cycloplegic SER systematically
overestimated myopia (Zhao et al., 2004; Fotedar et al., 2007;
Hu et al., 2015; Sankaridurg et al., 2017; Gu et al., 2022).
Consistent with previous studies, such bias was also observed
in our study: the mean SER changed from −0.04 ± 2.11 D to
−0.43 ± 1.85 D under the non-cycloplegic condition with a
mean difference of 0.39 ± 0.71 D toward myopia. Our systematic
analysis of paired differences between cycloplegic and non-
cycloplegic refraction across ages 3–16 years and all types of
refractive error revealed that the overestimation of myopia
or underestimated hyperopia with non-cycloplegia is greater
in younger individuals, emmetropic or hyperopic eyes, and
shorter AL. Accommodation significantly impacts the accurate
measurement of refraction data in children. Age-related norms
for accommodative responses in eyes without significant refractive
error suggest that accommodative responses are quite variable
under high accommodative demands, especially in younger
individuals (McClelland and Saunders, 2004). Consequently,
predicting refractive error without cycloplegia is challenging in
young children. The inclusion of children under 5 years of age in
this study provides a basis for addressing the difficulty of predicting
cycloplegic refractive error in this age group.

The MLP model demonstrated robust clinical accuracy,
with 73.08% and 94.29% of predictions falling within ±0.50 D
and ±1.00 D of measured cycloplegic SER, respectively. This
performance outperformed the traditional regression-based
approach by He et al. (2023), which achieved an accuracy of 47%
within ±0.50 D and 79% within ±1.00 D, using limited predictors
(age, gender, AL and AL/CR ratio). While Du et al. (2023) reported
marginally higher precision (75.2% within ±0.50 D) in their best-
performing model, our framework maintains comparable efficacy
while prioritizing clinically accessible parameters. Notably, the
accuracy of MLP model peaked in children aged 7∼10 years
(77.17∼79.70% within ±0.50 D) and those with low myopia
(83.09∼83.56% within ±0.50 D). These subgroups represent
pivotal stages for myopia surveillance and early intervention
to mitigate progression to high myopia. These results position
the ML model as a pragmatic tool for large-scale screenings in
resource-limited settings.

There were several limitations in the present study. First, this
study used the AB-800 optical biometer in a cohort of Chinese
children, which may restrict the generalizability of the findings
to other types of biometers or children of different races or
ethnicities. External validation across diverse populations and
devices is warranted. Second, the reduced accuracy in high myopia
(≤−6.0 D) and moderate/high hyperopia (>+2.0 D) limits utility for
these subgroups. Expanding data with extreme refractive errors and

retraining models on enriched cohorts could improve performance
and enhance the model’s applicability. Finally, the current ML
models predict the cycloplegic refractive error at a single timepoint.
Future longitudinal studies can evaluate themodels’ capacity to track
refractive progression over time.

5 Conclusion

This study developed and validated 6 ML models for predicting
cycloplegic refractive error using readily available demographics
and non-cycloplegic biometric parameters in a large cohort of
Chinese children (3∼16 years). Among the evaluated algorithms,
the MLP model demonstrated superior performance (R2 = 0.934),
and exhibited enhanced accuracy in children aged 7–10 years and
those with low myopia—key populations for myopia surveillance
and intervention. These ML models address practical challenges
in pediatric refractive assessments, offering a scalable tool for
clinical practice and large-scale epidemiological research where
administering cycloplegia is not feasible.
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