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Aurora kinase-a expression
heterogeneity and potential
benefit of combination therapy
in prostate adenocarcinoma

Ru Chen† , Qianyi Qiu† , Weiting Xie, Jun Lin, Rong Liu,
Jianhui Chen, Shaoxing Zhu* and Yiming Su*

Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China

Background: Aurora kinase A (AURKA) is aberrantly expressed in a large
number of tumors and promotes tumor progression by regulating the cell
cycle, chromosomal instability, and drug resistance. However, its heterogeneous
expression and combination therapy benefit in prostate adenocarcinoma (PRAD)
is unclear.

Methods: In this study, we integrated TCGA pan-cancer multi-omics data and
GEO data to analyze the RNA, methylation, protein expression, and genomic
alteration characteristics of AURKA. We then used single-cell RNA sequencing
to resolve the functional heterogeneity of AURKA in the PRAD epithelial
cell subpopulation and verified its impact on the malignant phenotype of
desmoplasia-resistant prostate cancer cells in in vitro experiments. This research
also analyzed the prognostic risk stratification of AURKA subpopulations in
combination with various indicators and the potential benefit of AURKA
inhibitors in combination with various treatments.

Results: The pan-cancer analysis demonstrated that AURKA expression
heterogeneity was present among urological tumors at different molecular
levels, and the positive correlation of AURKA alteration with MYC and E2F
pathways was conserved in pan-cancer. Epithelial cell subpopulations with high
expression of AURKA (epi3/4/6) promoted proliferation by regulating cell cycle
and DNA repair, while low expression subsets (epi1/2/7) activated TNF-α and
androgen receptor (AR) pathways to mediate drug resistance. In particular,
AURKAmay serve as a compensatory pathway to support tumor activity after AR
inhibition in prostate cancer, a complex mechanism not seen in other tumors.
AURKA-overexpressing patientswith lowGleason scores or high PSA have a poor
prognosis in clinical analysis. Furthermore, a comprehensive drug sensitivity co-
analysis found that AURKA inhibitors may benefit from targeted therapy, ADC
therapy, and immunotherapy. TMB and CD274 expression were the biomarkers
of AURKA high-expression patients with PRAD for clinical outcome.

Conclusion: AURKA expression heterogeneity has been identified as a critical
factor in the progression of PRAD and the development of drug resistance. The
molecular subtyping of AURKA can serve as a precise strategy for combination
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therapy and provide a theory for the combination of AURKA inhibitors and
targeted/immunotherapy.

KEYWORDS

AURKA, heterogeneity, prostate adenocarcinoma (PRAD), AURKA inhibitor, combination
therapy

1 Introduction

Aurora Kinase-A (AURKA) is a serine/threonine kinase that is
highly expressed in various tumor types (Du et al., 2021). Previous
studies have shown that AURKA promotes aberrant proliferation
of tumor cells mainly by regulating centrosome maturation and
segregation during mitosis, leading to chromosomal instability and
cell cycle deregulation (Lin et al., 2020; Willems et al., 2018;
Polverino et al., 2024; Cacioppo and Lindon, 2022). AURKA
overexpression has been found to correlate withmetastasis and poor
prognosis in several cancers, suggesting that it is a promising target
for treatment and a prognostic biomarker (Du et al., 2021; Yang et al.,
2023). The functional role of AURKA has been extensively studied
in breast (Fuentes-Antrás et al., 2024), lung (Chang et al., 2024), and
gastrointestinal (Cheng et al., 2021; Zhou et al., 2024)cancers, but its
understanding of prostate adenocarcinoma (PRAD) is still lacking.

Recent studies have demonstrated that AURKA can not only
promote tumor progression but is also associated with drug
resistance. AURKA phosphorylates and inhibits p53 activity,
promoting apoptosis and cell survival (Naso et al., 2021).
Furthermore, AURKA induces epithelial-mesenchymal transition
(EMT) and promotes tumor cell migration and invasion by
activating signaling pathways such as PI3K/AKT andWnt/β-catenin
(Grisetti et al., 2024; Lv et al., 2024). In terms of its role in promoting
drug resistance, AURKA is associated with resistance to several
chemotherapy drugs (e.g., paclitaxel, cisplatin) (Cheng et al., 2021;
O'Shaughnessy et al., 2021; Li et al., 2025). AURKA-based resistance
may involve increased DNA repair capacity, activation of autophagy,
and upregulation of anti-apoptotic pathways (Zheng et al., 2023;
Shao et al., 2023). In addition, AURKA may also enhance tumor
escape by modulating the tumor immune microenvironment
(Liu et al., 2025). However, further research is required to fully
elucidate the clinical significance of AURKA abnormalities at
different omics levels. Prostate cancer is a highly heterogeneous
hormone-driven malignancy (Kneppers et al., 2022). The prognosis
prediction of AURKA-driven molecular subtypes in different

Abbreviations: AURKA, aurora kinase-A; PRAD, prostate adenocarcinoma;
TIME, tumor immunemicroenvironment; CSC, cancer stem cell; TMB, tumor
mutational burden; HRD, homologous recombination deficiency; PARPi,
PARP inhibitor; ICB, immune checkpoint blockade; AR, androgen receptor;
TNF-α, tumor necrosis factor-α; EMT, epithelial-mesenchymal transition;
ADC, antibody-drug conjugate; GDSC, genomics of drug sensitivity
in cancer; scRNA-seq, single-cell RNA sequencing; GI, gastrointestinal;
TGCT, testicular germ cell tumor; LUAD, lung adenocarcinoma; BRCA,
breast cancer; THCA, thyroid cancer; KIRP, kidney renal papillary cell
carcinoma; CHOL, cholangiocarcinoma; SNV, single-nucleotide variant;
COAD, colon adenocarcinoma; ACC, adrenocortical carcinoma; READ,
rectum adenocarcinoma; OV, ovarian cancer; KEGG, Kyoto encyclopedia of
genes and genomes; GEO, gene expression omnibus; CNAs, copy number
variations; SVs, structural variants.

populations has considerable potential to guide the development
of precision clinical therapy in the future.

AURKA small-molecule inhibitors (e.g., alisertib) have entered
clinical trials, while many challenges remain. AURKA inhibitor-
based clinical trials have been reported in several solid tumors
with partial success (Haddad et al., 2018; Falchook et al., 2019;
Zhang et al., 2024; Haddad et al., 2023). However, a study of
AURKA inhibitors in prostate cancer suggests that monotherapy
with AURKA inhibitors is not effective in improving patient
prognosis which may be partly due to compensatory survival
pathways (Beltran et al., 2019). These studies suggest that AURKA
inhibitor-based therapy requires precise stratification in patients
with prostate cancer, and combination therapy is a future trend in
prostate cancer (Nikhil and Shah, 2024).

In this study, we revealed the heterogeneity of AURKA
expression in epithelial cells and the potential benefits of
combination therapy for prostate cancer. The results demonstrated
that AURKA expression exhibited a positive correlation with
tumor malignancy and high expression was associated with poor
prognosis. The results indicated that the high-expressing epithelial
cells were highly heterogeneous. The abnormally high AURKA-
expressing subset promoted tumor cell proliferation and migration
by regulating cell cycle and mitosis. In contrast, the relatively
low AURKA-expressing subset regulated the TNF-α and the
ANDROGEN (AR) response pathway to induce drug resistance.
Notably, the high-expressing AURKA group showed a better
prognosis in PSA-high andGleason-low for prostate cancer patients.
Furthermore, we have predicted that the AURKA high-expressing
population may be suitable for combination with target, ADC, and
immune therapy. The accurate population stratification of AURKA
subgroups in prostate cancer can facilitate personalized treatment.

2 Methods

2.1 Data collection

TheRNA, DNA,methylation and protein data of theTheCancer
Genome Atlas Consortium (TCGA) pan-cancer expression data
were all downloaded fromXenabrowser of GDC hub. Bulk RNA-seq
cohorts were downloaded from Gene Expression Omnibus (GEO)
websites (GSE46602 (Sun et al., 2021), GSE54460 (Long et al.,
2014), GSE70768 (Ross-Adams et al., 2015) and GSE70769 (Ross-
Adams et al., 2015) and Cbioportal (prad_mskcc (Taylor et al.,
2010) and prostate_dkfz_2018 (Gerhauser et al., 2018)). Single-cell
datasets from prostate cancer tumor samples used in this study
include: GSE137829 (Dong et al., 2020), GSE141445 (Chen et al.,
2021), GSE157703 (Ma et al., 2020), GSE181294 (Hirz et al., 2023),
GSE185344 (Wong et al., 2022), GSE193337 (Heidegger et al., 2022),
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GSE206962 (Cheng et al., 2024), GSE221603 (Huang andYin, 2025),
GSE230282 (Watanabe et al., 2023), GSE250189 (Pan et al., 2024),
GSE264573 (Zaidi et al., 2024).

2.2 Single cell data processing and batch
correction

Single-cell RNA sequencing (scRNA-seq) data were processed
using the Seurat package (version 4.1.0) in R (Satija et al., 2015),
with each sample subjected to the following filtering criteria:
genes expressed in at least three cells were retained (min.cells =
3), cells with ≥200 detected genes were included (min.features
= 200), and cells exhibiting >15% mitochondrial gene content
were excluded (percent.MT < 15%). To address batch effects,
data were standardized via the scaleData function in Seurat,
followed by identification of the top 2,000 variable genes using
FindVariableFeatures. Batch correction was performed through
Principal Component Analysis (PCA) combined with Harmony
(version 1.2.3) (Korsunsky et al., 2019), after which Uniform
Manifold Approximation and Projection (UMAP) visualization was
applied based on Harmony-reduced dimensions. The number of
principal components (PCs) was determined using the ElbowPlot
function in Seurat, and cell sub-clustering was conducted using
FindNeighbors and FindClusters algorithms. Cell clusters were
annotated based on canonical marker genes, including PTPRC
(CD45) for lymphocytes; CD4, CD8A, FCGR3A (CD16), and
NCAM1 (CD56) for T/NKcells; CD19 andMZB1 for B/plasma cells;
CD68 and TPSAB1 for myeloid/mast cells; EPCAM for epithelial
cells; VWF for endothelial cells; and FAP for fibroblasts.

2.3 Identification of malignant epithelial
cells

Cell differentiation initial states and evolutionary directions
were defined using CytoTRACE (version 1.0.0) (https://github.
com/digitalcytometry/cytotrace2/releases), used for the assessment
of cancer cell stemness.

Malignant copy number variation (CNV) events in epithelial cells
were determined via the inferCNV package (version 1.14.2) (GitHub,
2023). Inthisworkflow,Tcellsweredesignatedasthespike-inreference
control population, with the minimum average read count per gene
among reference cells set to 0.1. Clustering was performed using
Ward.D2 hierarchical clustering, and CNV prediction was executed
in denoising mode. Genes exhibiting fold change values below 0.9 or
exceeding1.1, asdeterminedbythedistributionof foldchangemetrics,
were classified as CNV events.

2.4 Differential expression analysis and
functional enrichment analysis

Differential gene expression analysis was implemented using
the Seurat package’s FindMarkers function to delineate cluster-
specific marker genes, with selection criteria encompassing three
thresholds: (1) gene expression prevalence exceeding 25% within
the focal cell cluster, (2) a log2 fold change (log2FC) ≥ 0.25,

and (3) an adjusted p-value threshold of <0.05. For functional
annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment was executed via the clusterProfiler package
(v4.12.1) (Yu et al., 2012), with the top five enriched pathways
per cluster selected to define their biological roles. Pseudo-bulk
expression profiling involved first computing mean transcript levels
per sample using the AverageExpression function, followed by
differential expression testing through limma (v3.56.2) (Smyth et al.,
2005). Gene Set Enrichment Analysis (GSEA) for Gene Ontology
(GO) terms was performed using clusterProfiler’s gseGO function,
while pathway-based clustering patterns were visualized via the
aPEAR package (v1.0.0) (Kersev et al., 2023).

2.5 Functional gene set expression analysis

To evaluate functional gene set expression in scRNA-seq data,
the irGSEA package (v2.1.5) (Fan et al., 2024) was employed
to analyze three predefined gene set categories: (1) the built-in
tumor hallmark gene set, (2) a curated myeloid cell functional
status gene set, and (3) a fibroblast cell functional gene set. For
pathway expression quantification, both UCell and AUCell methods
were adopted (Andreatta and Carmona, 2021), with results from
these complementary approaches integrated to ensure reliability.Only
pathways demonstrating concordant significance (Wilcoxon test, two-
tailedp-value<0.05) across bothmethodswere subsequently depicted
in a cluster-specific hallmark pathway expression heatmap.

2.6 Transcription factor (TF) analysis

Transcription factor (TF) regulatory activity was analyzed using
the SCENIC (v1.3.1) and pySCENIC (v0.11.2) pipelines (Aibar et al.,
2017). The workflow proceeded in three stages: (1) GRNBoost2 was
first applied to construct a gene regulatory network, identifying
potential target genes regulated by each TF; (2) RcisTarget was
then utilized to enrich transcription factor binding motifs within
the regulatory regions of these targets; and (3) regulon activity
quantification was performed via AUCell, with thresholds for
significant TF activation determined automatically based on area
under the curve (AUC) metrics (activation in ≥20% of cells).

For regulon-based clustering, the Connection Specificity Index
(CSI) was employed to identify five distinct co-expression modules.
Subsequently, the calcRSS algorithm was applied to pinpoint TFs
specifically associated with subcluster identities and drug resistance
phenotypes. To elucidate functional implications, KEGG pathway
enrichment analysis was conducted on PPARX2 and its high-
confidence target genes (co-expression network edge weights >10),
revealing candidate regulatory pathways involved in these biological
processes.

2.7 Drug sensitivity analysis

Drug responsiveness was evaluated using the GDSCv2
database (https://www.cancerrxgene.org/), with inter-group IC50
discrepancies analyzed via the oncopredict package (Geeleher et al.,
2017). For pathway-level drug-target enrichment analysis,
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hypergeometric statistical testing was implemented, incorporating
Benjamini–Hochberg adjustment to control the false discovery rate
(FDR) of p-values.

2.8 Cell cultures and transfection

Human prostate cancer cell lines (PC3, DU145, and
LnCAP) were purchased from the Cell Resource Center
Affiliated with the Chinese Academy of Medical Sciences.
These cell lines were resuscitated, subsequently subjected to
centrifugation, and resuspended in complete medium (DMEM
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin). The culture medium was changed
daily based on cell density, and cells were passaged every
3 days. When cells reached the exponential growth phase,
they were passaged at a ratio of 1:3. For gene modulation,
small interfering RNAs (siRNAs) targeting AURKA and non-
targeting negative control siRNA (siCtrl) were purchased from
GenePharma (Shanghai, China). The siRNA sequences used were as
follows: AURKA-siRNA (1#,5′-CCTGTCTTACTGTCATTCGAA-
3’; 2#,5′-GAGTCTACCTAATTCTGGAAT-3’; 3#,5′-
CACATACCAAGAGACCTACAA-3′),

siCtrl: 5′-TTCTCCGAACGTGTCACGT-3′. The siRNAs were
added to cells using Lipofectamine™ 3000 reagent for gene silencing
experiments. The cells were then cultivated in a cell incubator to
conduct downstream experiments.

2.9 Clone formation assay

Treated cells were incubated onto six-well plates (1000 cells per
well) cultured for 2 weeks. Subsequently, colonies were fixed with
paraformaldehyde and stained with crystal violet. Finally, images
were captured using a digital camera, and clones were counted. This
experiment was repeated at least three times.

2.10 Migration and invasion assays

Cell migration and invasion were evaluated using the Transwell 

®system (Corning, Inc., Corning, NY). For assay preparation, the
lower chamberwasfilledwith 500 μL completemedium(Ham’s F-12K
andMEMmedium supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin/streptomycin (P/S)). Following a 24-h incubation
period, cells were washed with phosphate-buffered saline (DPBS,
Servare Biotech Inc., Hangzhou, Zhejiang, China), fixedwith absolute
ethanol, and stainedwith 0.1%crystal violet (Sigma-Aldrich, St. Louis,
MO) for 20 min. Finally, migrated/invasive PC3 and DU145 cells
were quantified under an invertedmicroscope (ICX41,Ningbo Sunny
Instruments Co., Ltd., Yuyao, Zhejiang, China).

2.11 Statistical analysis

Statistical analyses were performed using R version
4.3.1. Survival outcomes were evaluated using the
Survival (v3.8.3) (Therneau and Grambsch, 2000) and

Survminer (v0.5.0) (Kassambara et al., 2024) packages for survival
analysis and visualization. Kaplan-Meier survival curves were
generated to compare survival outcomes, while Cox proportional
hazards regression models were fitted to evaluate survival
associations. The cox-ph model was applied for survival testing, and
forest plots were constructed using the forestplot package (v3.1.6)
to visualize hazard ratios and confidence intervals.

Differential gene expression between control and knockdown
groups was assessed using Student’s t-test, with paired comparisons
analyzed via the Wilcoxon signed-rank test. Spearman’s rank
correlation coefficient was utilized to quantify nonlinear
associations between variables. Group comparisons involving two
cohorts were performed using the Wilcoxon rank-sum test, and all
correlation analyses employed Spearman’s nonparametric method.
Results are presented as mean ± standard error of the mean (SEM),
with statistical significance defined as p < 0.05.

3 Results

3.1 AURKA expression inter-tumor
heterogeneity across pan-cancer

A comprehensive analysis of AURKA expression was performed
in 33 cancer types, comparing normal and tumor samples from
the TCGA dataset. The research revealed significant variations
in the different molecular levels of AURKA expression across
pan-cancer, such as at the RNA, methylation, and protein levels.
AURKA expression was higher in gastrointestinal tumors (e.g.,
READ and COAD) and lower in endocrine or nervous system
tumors (e.g., THCA and LGG) at the RNA level (Figure 1A). The
AURKA expression was highly heterogeneous across urinary tract
tumors, with higher expression in TGCT and lower in PRAD.
Conversely, neuroendocrine tumors (LGG) showed higher levels of
methylation (Figure 1B). Urological tumors exhibited comparatively
lower methylation levels, while PRAD expression was high. A
negative correlation between methylation and RNA expression was
observed in most cancers, which was consistent with the prevailing
conventional understanding. Among the examined tumors, the
negative correlation was most pronounced in gastrointestinal
tumors (e.g., STAD, PAAD), PRAD, LUAD, and BRCA (Figure 1D).
At the protein expression level, gastrointestinal cancer (e.g., READ,
ROAD) showed relatively higher expression, while the urinary
system (e.g., PRAD) and LUAD tumors showed lower expression
(Figure 1C). In the majority of tumors, AURKA RNA levels
showed a positive correlation with protein expression. However,
the correlation was weak in THCA, PRAD, KIRP, and CHOL
(Figure 1D). Nevertheless, AURKA expression was found to be
upregulated in the majority of tumors (Figure 1E), suggesting a
critical role in tumor development and progression.

Next, we investigated the genomic characteristics of AURKA
in pan-cancer. The distribution of gene mutation sites indicated
that AURKA mutation sites were dispersed along the entire gene
sequence, with certain regions exhibiting a higher mutation density
(Figure 2A). Further analysis of the AURKA mutation preferences
reveals that missense mutations are the predominant mutation type,
accounting for a much higher proportion than other types such as
nonsense mutations, insertions/deletions, etc. Among the various
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FIGURE 1
AURKA expression at various molecular levels in pan-cancer. Differential (A) mRNA, (B) methylation and (C) protein expression of AURKA in pan-cancer.
(D) The Spearman correlation between AURKA mRNA expression and DNA methylation levels (left column), as well as between AURKA mRNA and
protein expression levels (right column) in pan-cancer. (E) Differential mRNA expression of AURKA in cancer compared with normal tissues.

mutation types, single-nucleotide variants (SNVs) and the C>T
transition were the most prevalent (Figure 2B). As illustrated in
Figure 2C, a clear pattern of AURKA alterations was observed in
different cancer types. The predominant variation types of AURKA
were CNVs (amplification/deletion) and Structural Variants (SVs),
with the proportion of SNVs being the lowest. Notably, high-
frequency CNVs were observed in BRCA and TGCT, while SVs
were significantly enriched in COAD and ACC. AURKA exhibited
both CNV amplification and SV abnormalities in READ and OV,
suggesting that its genomic instability may be related to specific
tumor microenvironments. Furthermore, our findings revealed that

READ, OV, and BRCA showed mainly heterozygous amplifications,
whereas the frequency of heterozygous deletions was significantly
higher in TGCT than in other cancers when analyzing the
CNV situation of AURKA (Figure 2D). Taken together, AURKA
showed no significant genetic variation in urological cancer
(e.g., PRAD) (Figures 2C,D).

The profile of AURKA was heterogeneous, and its function
affects or depends on the specific tumor microenvironment (TME).
The heterogeneity is particularly evident in urologic tumors,
where the mechanism of AURKA involvement may be more
complicated.
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FIGURE 2
Analysis of the AURKA variations in pan-cancer. (A) AURKA variation distribution and (B) variation analysis. (C) Structural variation of AURKA in
pan-cancer. (D) Amplification and deletion of AURKA in pan-cancer.

3.2 Association between AURKA and
immune infiltration in pan-cancer

We investigated the correlation of AURKA with the tumor
immune microenvironment (TIME) to uncover insight into the
biological pathways involved in AURKA. In the correlation analysis
with hallmark pathways, the AURKA expression had a strong and

positive correlation with pathways such as MYC targets, G2M
checkpoint, and E2F targets in the majority of cancers (correlation
coefficients > 0.6) (Figure 3A). This observation suggested a degree
of conservatism in the specific function of AURKA. Furthermore,
the expression levels of AURKA in different cancers showed
discrepant correlations with 28 immune cell types. Notably, AURKA
expression showed a predominantly positive correlation with
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FIGURE 3
The factors associated with AURKA and the immune microenvironment. (A) Bubble plot of AURKA’s association with Hallmark pathways and (B) Bubble
plot of AURKA’s association with 28 types of immune cells, as well as (C) immune checkpoints in pan-cancer. (D) Relationship between AURKA
expression and DNA Stemness Score (DNAss) and (E) RNA Stemness Score (RNAss) in pan-cancer.

activated CD4+ T cells and T helper 2 cells across cancer types
(Figure 3B). In addition, AURKA expression was significantly
and positively correlated with immune checkpoint targets such
as CD274, LAG3, and CTLA4 in most cancer types (Figure 3C).
The results revealed that AURKA was actively involved in
the tumor immune microenvironment (TIME). The observed
positive correlation between activated CD4+ T cell levels and the
expression of most immune checkpoint inhibitor targets provides
a theoretical basis for combining AURKA inhibitors with other
treatments.

Tumor stem cells are characterized by their ability to proliferate
indefinitely, metastasize, and resist chemical toxicants.The stemness
index serves as an indicator of the similarity between tumor cells
and stem cells, which is associated with a higher degree of tumor
dedifferentiation (Zhang et al., 2020; Mengistu et al., 2024). A
correlation analysis between AURKA and cancer stemness at the
RNA level revealed a coefficient of 0.7 for UCEC and BRCA
(Figure 3D). At the DNA level, for OV and UVM, the correlation
coefficients were 0.35 and 0.28, respectively (Figure 3E). This
finding suggested that AURKA overexpression promoted tumor

progression. Our analysis confirmed that AURKA-high had a worse
prognosis (Supplementary Figure 1).

Hence, further analysis of the mechanisms and roles of AURKA
in different subsets may help us in precision therapy with AURKA
inhibitors, especially in urological tumors such as prostate cancer.

3.3 AURKA expression heterogeneity in
epithelial cells through single-cell RNA
analysis in PRAD

We explored the heterogeneous expression of AURKA and its
mechanism and function in PRAD. The analysis of single-cell RNA
results revealed that AURKAwas distributed widely among different
cell types, with the highest expression observed in epithelial cells
(Figures 4A,B; Supplementary Figure 2A). UMAP map showed that
AURKA expression levels were significantly increased in Epi3, Epi4,
and Epi6 subsets (Figure 4C; Supplementary Figure 3). Based on
the mean value of AURKA expression in each sample compared
with the mean value of AURKA expression in the overall epithelial
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cells, we divided the samples into the AURKA high and low
expression groups. Further analysis indicated that the proportion
of Epi3, Epi4, and Epi6 subsets was higher in the AURKA-high
group (Figure 4D). Our results showed that Epi6, Epi4, and Epi3
were enriched mainly in E2F and MITOTIC pathways, which are
mainly associated with cell cycle regulation, mitosis, and DNA
repair (Figure 4E). These subsets had higher cell stemness and
CNV events, suggesting that these AURKA-expressing subsets
may promote tumor development and progression (Figures 4F,G).
However, Epi1, Epi2, and Ep7 were mostly enriched in the TNF-
α and ANDROGEN response pathways, suggesting that they
were associated with drug resistance (Figure 4E). Moreover, the
results showed that AURKA may be involved in the compensatory
mechanismofmaintaining tumor aggressiveness afterANDROGEN
deprivation therapy. In addition, deconvolution analysis revealed
that different AURKA-driven epithelial cell subsets had different
clinical prognoses. Among them, Epi6-high had a worse prognosis,
and the percentage of Epi6 could be used as a prognostic marker for
prostate cancer (Figure 4H).

The epithelial cells were divided into high and low Cancer
Stem Cell (CSCs)-epi groups according to the median stemness
score. By combining Epi3, Epi4, and Epi6 into one group,
we found that there were different genes between them and
the remaining subtypes (Figure 4I), and these genes are mainly
involved in biological processes such as cell cycle regulation, DNA
repair, and cell adhesion. KEGG pathway enrichment analysis
further elucidated the critical role of these genes in activating
key pathways, including “cell cycle,” “mismatch repair,” and “p53
signaling pathway” (Figure 4J). Additionally, the analysis identified
specific co-expressed transcription factors (TFs), including RFX2
and BRCA1, that play critical roles in cell cycle regulation and
differentiation (Figure 4K). Further analysis of the KEGG pathway
enrichment of these TFs and their target genes reveals that they
are involved in the regulation of pathways such as “cell cycle,”
“apoptosis,” and “drug metabolism” (Figure 4L). Furthermore, Gene
Ontology (GO) pathway analysis indicates that high expression of
AURKA is associated with the regulation of antigen presentation-
related pathways (Figure 4M). PPI network analysis revealed that
AURKA was located in a relatively central position in the
network and was closely associated with ANXA family genes,
which are involved in antigen presentation, immune recognition
(such as HLA-E, HLA-A, B2M), and signal transduction (such
as HSP90AA1, TMP1, VIM). These interactions suggested the
potential for AURKA to regulate cell adhesion, signal transduction,
and immune response through its influence on these genes. In
addition, the presence of cytoskeletal proteins (such as VIM) and
signaling molecules (such as EFHD2) in the network suggested
that AURKA may affect cell migration and invasion by regulating
cytoskeletal remodeling and signaling (Supplementary Figure 2B).

The expression of AURKA in epithelial cells exhibited significant
heterogeneity. Its high expression in specific epithelial cell subgroups
is closely related to multiple malignant phenotypes of tumor cells,
such as proliferation capacity and stemness characteristics. The
potential interaction of AURKA with the AR pathway provided the
complexity of tumor progression and drug resistance. Therefore, in-
depth research on AURKA will help to analyze its function and
mechanism in different populations.

3.4 Validation of AURKA for promoting
tumor progression in prostate cancer

Based on the heterogeneity of AURKA expression in specific
epithelial cell subsets, we investigated the relationship between
AURKA expression and clinical information in PRAD. We found
that the higher AURKA expression tended to be associated with
higher T/N stage, Gleason score, and prostate-specific antigen (PSA)
level (Figure 5A). The Gleason score is an important pathological
indicator to evaluate the degree of differentiation and prognosis
of PRAD. The higher the Gleason score, the more aggressive and
malignant the tumor (Haddadin and Sun, 2025). The increased
serum PSA level is one of the most important screening and
diagnostic biomarkers for PRAD, and its level is associated with the
tumor burden and progression of PRAD (Qiu et al., 2021). Further
multivariate survival analysis showed that AURKA expression could
be an independent risk factor for PRAD patients (HR = 1.46, 95%
CI: 1.08–1.98, p = 0.01), indicating that high expression of AURKA
was independently associated with a poorer survival prognosis
(Figure 5B).With increasing T stage, the expression level of AURKA
increased significantly (p = 3.6 × 10−10). Patients with a higher
N stage (N1) had significantly higher AURKA expression than
patients with a lower N stage (p = 0.00017). A higher Gleason
score or PSA level was associated with significantly higher AURKA
expression (Figure 5C).

To further validate the promoting influence of AURKA on
the malignant phenotypes of PRAD cells, we performed in vitro
experiments to assess the proliferation, migration, and invasion
abilities of DU145, PC3, and LnCAP cell lines. In the proliferation
experiment, the knockdown of AURKA significantly suppressed the
proliferation ability of DU145, PC3, and LnCAP cells (Figure 5D).
The colony formation experiment showed that the number of
colonies in the siAURKA group was significantly lower than that in
the control group (siCtrl) (Figure 5E). The invasion and migration
experiment showed that the invasion and migration ability of
DU145, PC3, and LnCAP cells were significantly decreased after the
AURKA knockdown (Figures 5F,G).

Taken together, the results obtained from cell models are
consistent with our conclusion of the tumor-promoting role of
AURKA in prostate cancer development.

3.5 AURKA-based subpopulations
population stratification aids prognosis
prediction and combination therapy

AURKA expression in combination with other indicators helps
to stratify recurrence risk in patients with prostate cancer. By
analyzing different datasets from TCGA as well as combined GEO
data, we found that AURKA-high patients had a faster biochemical
relapse (BCR) (Supplementary Figure 1; Figure 6A) and the
AURKA-high cluster has a higher percentage of tumor-associated
macrophage and Treg cell in TIME (Supplementary Figure 4A).
In the combined survival analysis, the combination of AURKA
expression and clinical factors can predict the prognosis of patients
with more precision. For instance, the combined AURKA and
Gleason score analysis showed that patients with high AURKA
expression and high Gleason score had a worse prognosis. In
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FIGURE 4
Characterization analysis of AURKA expression and cancer stemness-related subpopulations in scRNA-seq data. (A) UMAP plot of total cell annotation
of merged PRAD single-cell data, different colors represent different cell types and (B) the distribution of AURKA expression. (C) UMAP plot of the
epithelial cell (Epi) subpopulations of merged PRAD single-cell data. (D) Proportion of each Epi subpopulation in low- and high-AURKA expression
groups. (E) Heatmap of hallmark pathway enrichment scores (UCell) across epithelial subpopulations. (F) Histogram chart comparing the cancer
stemness of epithelial cell subtypes evaluated by CytoTRACE. (G) Violin plot of malign CNV events across epithelial cell subpopulations. (H) Association
between Epi 6 expression levels and disease-free survival (DFS), as well as the forest plot of DFS prognostic analysis of Epi subsets. (I) DEGs of high
CSCs Epi (Epi 3/4/6) group and low CSCs Epi (Epi 1/2/5) group. (J) Lollipop plot of differentially enriched KEGG pathways between high and low CSCs
Epi. (K) Rank points of transcription factors (TFs) specifically enriched in AURKA low and AURKA high groups. (L) KEGG pathway enrichment of TFs and
their target genes. (M) GO pathway analysis of TFs and their target genes: biological process (BP, blue), cellular component (CC, purple), and molecular
function (MF, orange).

contrast, lower Gleason score patients had a better BCR (Figure 6B).
In addition, AURKA-low and PSA-low patients had longer
survival, whereas AURKA+/PSA- or AURKA-/PSA + had a worse
prognosis (Figure 6C). This finding suggested that AURKA may

be a compensatory pathway for AR to support tumor activity. We
conducted an analysis of the risk stratification of AURKA expression
in combination with the common clinical targets AR and CD274
(PD-L1) expression (Figures 6D,E). The findings indicated that the
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FIGURE 5
The clinical relevance and functional impact of the AURKA. (A) Donut chart of the association between AURKA and five clinicopathological variables
(age, T-stage, N-stage, Gleason score, and PSA level). (B) Forest plot of multivariate survival analysis of AURKA in clinicopathological variables. (C)
Histogram of the association between AURKA and five clinicopathological variables. (D) Relative AURKA mRNA level across siCtrl and siAURKA. (E)
Colony formation assay showing inhibition upon AURKA knockdown in DU145, PC3, and LnCAP cell lines. Transwell assay demonstrating reduced
invasion (F) and migration (G) after AURKA knockdown.
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FIGURE 6
Correlation analysis of AURKA expression with prognosis, clinical characteristics, and drug sensitivity. Kaplan-Meier survival curve of subsets signatures,
(A) AURKA low and high, (B) AURKA with Gleason score, (C) AURKA with PSA level, (D) AURKA with AR, (E) AURKA with CD274, with the optimal
threshold for stratification. (F) Bubble plot of delta IC50 values between AURKA expression groups for drug target pathways. (G) Spearman correlation
analysis between AURKA high pefer (left) and AURKA low pefer (right) scores. (H) Violin plot of the expression of ADC drug target genes across AURKA
expression groups.

most unfavorable prognosis was observed when both AURKA and
the target exhibited high levels of expression. However, patients with
AR-high or CD274-high with AURKA-low had a good prognosis.

Next, we analyzed the combination treatments that might
benefit from AURKA inhibitors. We performed drug sensitivity
analysis of different AURKA subsets. The IC50 values of the
AURKA high-expression group for multiple drug-related pathways
are significantly higher than those of the low-expression group,
including WNT, Mitosis, Apoptosis regulation, and others. These

pathways are associated with crucial biological processes, including
cell cycle regulation, signal transduction, genomic stability, and
apoptosis regulation (Figure 6F). This result correlated with
different expression genes across differential AURKA levels
(Supplementary Figures 4B,C). Patients with high expression of
AURKA may be better suited for AURKA inhibitors combined
with targeted therapy, such as kinase inhibitors (Wee1 inhibitors,
savolitinib, AZD6738), apoptosis-targeting inhibitors (AZD5991,
WEHI.539), and epigenetic& signaling pathwaymodulators (BRD9,
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FIGURE 7
The disparities in DNA between the high and low expression groups of AURKA in the bulk RNA-seq. (A) Waterfall map presents of the AURKA high and
low group. (B) Forest plot shows the gene mutation frequencies of the AURKA high and the low group. (C) Bar plot shows the CNA of the AURKA high
and the low group, orange indicates amplification (AMP), and purple indicates deletion (DEL). Histogram of the association between AURKA and (D)
TMB and (E) CNV. Kaplan-Meier survival curve of subsets signatures, (F) AURKA with CNA, (G) AURKA with TMB, with the optimal threshold for
stratification. TMB, tumor mutation burden. CNV, copy number variation.

ML323, WIKI4) (Figure 6G). At the same time, we evaluated the
possibility of combination therapy of AURKA inhibitors withADCs.
The results revealed that TACSTD2, MET, ESR1, and ERBB3 were
highly expressed in the AURKAhigh-expression group (Figure 6H).

In summary, AURKA-based population stratification
contributed to personalized precision therapy, especially AURKA
inhibitors with specific targeted therapy and antibody-drug
conjugate (ADC) therapy may have better clinical benefit.

3.6 AURKA subgroup of genomic alteration
differences and contributions for
combination therapy strategies

We conducted an analysis of DNA landscapes via AURKA high
or low groups in PRAD. The subsequent genome-wide mutational
analysis of PRAD revealed somatic mutations that differed between
the high expression group (n = 264) and the low expression group

(n = 219) of AURKA (Figure 7A). The mutation rate of the SPOP
gene reached 17% in the high expression group, while it was only
5% in the low expression group. Furthermore, there were notable
differences in the mutation frequencies of genes such as TP53 and
PTEN between the two groups, which might reflect distinct tumor
evolutionary trajectories. The mutation rate of the SPOP gene in the
high expression group was found to be significantly higher than that
in the low expression group (ratio = 4.283, p = 0.001). Additionally,
the mutation rate of the TP53 gene in the high expression group
was found to be significantly higher than that in the low expression
group (ratio = 3.631, p= 0.001) (Figure 7B). In terms of copy number
variations (CNAs), the high expression group of AURKA exhibited
higher frequencies of gene amplification and deletion (Figure 7C).

Tumor mutational burden (TMB) is a pivotal factor in
tumorigenesis and progression and serves as an essential biomarker
for immunotherapy (Sundaresan et al., 2025). AURKA expression
levels exhibited a substantial correlation with TMB, with the
TMB in the high expression group demonstrating a significant
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increase compared to the low expression group (p = 6.5 × 10−10)
(Figure 7D). Furthermore, AURKA-high/TMB-high patients had
a relatively better prognosis than AURKA-high/TMB-low patients
(Figure 7F). This finding indicated that AURKA-high patients
may benefit from the combination of AURKA inhibitor and
immunotherapy (Figures 3C, 6E). A high CNV burden has been
associated with homologous recombination deficiency (HRD),
which may affect tumor invasiveness, metastasis capacity, and
response to PARPi treatment (Figure 7E) (Strickler et al., 2021).
As demonstrated in Figure 7G, patients exhibiting high AURKA
expression and a high CNV burden and a poorer prognosis
(p = 0.034).

4 Discussion

AURKA has been validated as a driver of chromosomal
instability and drug resistance in various tumors. In contrast, its
role in the tumor microenvironment has not been fully understood
in prostate cancer. In this study, we confirmed that AURKA
overexpression is associated with an invasive tumor phenotype
and poor prognosis in prostate cancer, consistent with pan-cancer
(Shi et al., 2023). However, prostate cancer exhibits a unique
dependence on AR and tumor stemness, which may enhance the
role of AURKA in promoting genomic instability and maintaining
tumor invasiveness after AR deprivation (Miralaei et al., 2021).
AURKA-driven E2F etc. Pathways are conserved across tumors, but
its interaction with the AR pathway in prostate cancer provides
a complexity not seen in other malignancies (He et al., 2013).
Consequently, further exploration of the role of AURKA in
prostate cancer is required to guide precision therapy with AURKA
inhibitors.

Our study revealed a heterogeneity of AURKA expression in
prostate cancer that was previously not identified. The AURKA-
high expressing subset mainly showed mitogenic activity and
cell proliferation. However, the AURKA-low subgroup revealed
an increased correlation between the AR and TNF-α pathways.
This finding suggests that maintaining cells survival under the
stress of treatment is an adaptive mechanism. Notably, AURKA
overexpress patients with high PSA or low Gleason scores have
a better prognosis. This complexity reflects a further interaction
of AURKA subset cell with the tumor microenvironment that is
worthy of further investigation. These findings contribute to a more
nuanced understanding of the heterogeneity of AURKA subsets and
the importance of molecular stratification.

AURKA inhibitors have limited efficacy as monotherapy in
prostate cancer, consistent with observations in other solid tumors
(Beltran et al., 2019). The efficacy of treatment can be limited owing
to compensatory pathways such as AR reactivation and upregulation
ofDNA repair (Wu et al., 2025; Formaggio et al., 2021).The potential
exists for combination strategies to capitalize on the role of AURKA
in upregulating surface antigens or modulating immune evasion.
High expression subset of AURKA may benefit from combination
therapy with kinase inhibitors, or ICIs. TMB, CD274 expression
was the biomarker of AURKA-high expression patients with PRAD
for clinical outcome. Therefore, molecular stratification of AURKA
subtypes may help AURKA inhibitors in clinical applications.

However, our study still has limitations. Our analysis was
conducted exclusively using bulk data, which may lack an
understanding of the longitudinal and spatial heterogeneity of
AURKA. In addition, in vivo and in vitro experiments, and clinical
cohort validation with specific treatments are needed.

5 Conclusion

In summary, our study highlighted the various oncogenic
roles of AURKA in prostate cancer, and the heterogeneity of
its expression has different molecular characteristics and clinical
prognosis. AURKA expression-based subset for precise stratification
can facilitate personalized treatment. In the future, clinical precision
therapy will entail the combination of various combination therapy
strategies based on different stratifications.
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