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Pulmonary fibrosis (PF) is a chronic and progressive lung disease, characterized
by excessive deposition of fibrotic connective tissue within the lungs.
Advances in transcriptomics, proteomics, and metabolomics have enhanced
our understanding of PF’s pathogenesis. Recent studies have indicates that
metabolic abnormalities in alveolar epithelial cells (AECs) play a central role
in the pathogenesis of PF. Metabolic reprogramming of AECs affects cellular
senescence, endoplasmic reticulum stress, and oxidative stress in AECs, while
also promoting fibrotic progression through various signaling pathways. This
review focuses on therapeutic strategies targeting the metabolism of AECs.
It comprehensively explores the role of metabolic pathways through glucose
metabolism, lipid metabolism, and amino acid metabolism in the pathogenesis
of PF, aiming to provide novel theoretical support and research perspectives for
preventing and treating pulmonary fibrosis.
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1 Introduction

Pulmonary fibrosis (PF) is a chronic, progressive, and irreversible lung disease
(Koudstaal et al., 2023), encompassing idiopathic pulmonary fibrosis (IPF), connective
tissue disease-related interstitial lung disease (ILD), and many other types (Smith, 2016).
The disease is characterized by diffuse progressive remodeling of the lung parenchyma
with extracellular matrix deposition and irreversible scar formation, which severely impairs
the respiratory function of patients and even threatens their lives (Koudstaal et al., 2023).
Nidanib and pirfenidone, both approved by the FDA in 2014, are the primary antifibrotic
therapeutic agents currently used to treat IPF. However, although these drugs can slow the
decline in lung function in IPF patients, they do not improve lung function or achieve
a complete cure (Salisbury and Wijsenbeek, 2021). Therefore, it is particularly important
to explore new therapeutic strategies. Recent research into the mechanisms underlying
pulmonary fibrosis has identified alveolar epithelial cells (AECs) as key drivers in the
disease’s development (Katzen and Beers, 2020).

AECs consist of 2 cell types, alveolar epithelial type I cells (AEC1), and alveolar
epithelial type II cells (AEC2) (Motohashi and Yamamoto, 2004; Katzen and Beers, 2020;
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GRAPHICAL ABSTRACT

Wong and Johnson, 2013). These cells are critical for maintaining
the lung structure and function. AEC1 cells cover approximately
95% of the alveolar surface and are responsible for gas exchange
and alveolar fluid regulation (Maina and West, 2005; Johnson et al.,
2002). Although AEC2 cells occupy only about 5% of the alveolar
surface area, they are highly specialized and metabolically active,
containing a dense array of subcellular organelles. Importantly,
AEC2 cells serve as the major progenitor cells in the alveoli,
capable of differentiating into AEC1 cells for alveolar repair and
proliferating to support self-renewal (Fehrenbach, 2001). Notably,
dysfunction of AEC2 cells is closely related to the pathogenesis of
ILD and IPF (Parimon et al., 2020). However, the mechanisms by
which AEC2 cell dysfunction contributes to these diseases remain a
challenging question (Figure 1).

During the progression of PF, the morphology and function of
AECs undergo significant alterations involving complex processes
such as abnormal cell metabolism, apoptosis, and necrosis (Roque
and Romero, 2021; Kasper and Haroske, 1996). In particular,
metabolic abnormalities are critical biological processes in PF.
Metabolic abnormalities refer to the disturbances of intracellular
substance metabolism, potentially hindering cellular energy supply
and the synthesis of vital molecules (Geng et al., 2022; Huo et al.,
2024). During the PF process, metabolic pathways such as glucose,
fatty acids, and amino acids are reprogrammed in AECs, thereby
affecting cellular energy production, growth, and survival (Roque
and Romero, 2021).

Abbreviations: PF, Pulmonary fibrosis; AEC, Alveolar Epithelial Cell; IPF,
Idiopathic pulmonary fibrosis; ILD, Interstitial Lung Disease; FDA, Food and
Drug Administration; AEC1, Alveolar Epithelial Cell Type I; AEC2, Alveolar
Epithelial Cell Type Ⅱ; ER, Endoplasmic reticulum; MFN1, Mitofusin 1; MFN2,
Mitofusin 2; LDH, Lactate Dehydrogenase; ACSS3, Acyl-CoA Synthetase
Short Chain Family Member 3; APOA1, Apolipoprotein A-I; PA, Palmitic Acid.

To gain a deeper understanding of the pathogenesis of
pulmonary fibrosis and to provide theoretical support for future
therapeutic strategies, increasing attention is being directed toward
the role of metabolic abnormalities in AECs. This review will
provides a comprehensive overview of the role of AECs, especially
AEC2 metabolic abnormalities, in the pathogenesis of pulmonary
fibrosis. We expect that this review will provide valuable references
for future studies and new ideas and approaches for the treatment of
pulmonary fibrosis.

2 Studies on the role of metabolic
abnormalities in alveolar epithelial
cells during pulmonary fibrosis

The lung is a metabolically active organ that plays an important
role, though its importance is often underestimated. With the
development of transcriptomics, proteomics, and metabolomics,
metabolic reprogramming has been gradually recognized as one of
the central drivers of PF pathology. Recent studies have shown that
the development of PF is closely associated with altered metabolic
pathways in AECs, especially dysregulation of glucose metabolism,
lipidmetabolism, and amino acidmetabolism, which accelerates the
pathologic process.

2.1 Lipid metabolism and pulmonary
fibrosis

Due to the abundance of lipids in lung tissue, lipid
metabolism and its regulation are critical for lung physiological
function (Burgy et al., 2022; Rajesh et al., 2023). In the
lungs, lipids are not only a major component of cell
membranes but also involved in physiological processes
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FIGURE 1
An overview of key events in the progress of research on metabolic alterations in AECs in pulmonary fibrosis.

such as energy storage, signaling, and inflammatory
responses (Wasnick et al., 2023; Berry et al., 2017). PF
is characterized by a unique circulating metabolic profile
with elevated levels of nonesterified fatty acids, long-
chain acylcarnitines, and ceramides, indicating a more
catabolic environment for lipid mobilization and metabolism
(Summer et al., 2024).

2.1.1 Lipid metabolism in pulmonary homeostasis
and fibrosis

AEC2s are the lung’s chief surfactant-producing, lipid-
metabolizing cells (Wasnick et al., 2023). They secrete a lipoprotein
surfactant (∼90% lipid, rich in phosphatidylcholine and cholesterol)
that lowers alveolar surface tension and maintains barrier integrity
(Rindlisbacher et al., 2018; Liang et al., 2024; Chung et al.,
2019; Whitsett et al., 2015; Ikegami et al., 1985).In pulmonary
fibrosis, however, AEC2 lipid homeostasis collapses: single-cell
profiles of IPF lungs show broad downregulation of genes for
fatty-acid synthesis, β-oxidation and cholesterol biosynthesis
in AEC2s, yielding lipid-poor cells and surfactant insufficiency
(Rindlisbacher et al., 2018; Liang et al., 2024; Chung et al.,
2019).In recent years, studies have shown that the abnormal
lipid characteristics present in the serum of IPF patients and
mouse IPF models are mainly the release of damaged AEC2,
which subsequently participates in the fibrotic process (Yang et al.,

2024). Among them, the metabolism of glycerophospholipids and
choline underwent significant changes. The study by Baker DL et al.
(Baker et al., 2006) identified lysophosphatidic acid, (LysoPA) in the
serum of patients with IPF. LysoPC is the precursor of LPA, which
is a bioactive glycerophospholipid. LPA induces pulmonary, renal
and liver fibrosis through epithelial cell death, vascular leakage
and fibroblast migration and proliferation (Alsafadi et al., 2017;
Sakai et al., 2017; Kaffe et al., 2017; Tager et al., 2008). It is worth
noting that after lung injury, dipalmitoyl phosphatidylcholine
(DPPC), as the main surfactant lipid component, is degraded
into LysoPC through the phospholipase A2 activity of AEC2,
further exacerbating the process of pulmonary fibrosis (Beers et al.,
2017; Shi et al., 2024). This change in lipid secretion profile is
closely related to the decline of lung function, among which the
depletion of phosphatidylcholine (PC) is particularly prominent.
The level of PC in bronchoalveolar lavage fluid is significantly
decreased, and it shows a significant negative correlation with the
decline of lung compliance. Meanwhile, the research by Shi X et al.
found that AEC2 can take up cholesterol from extracellular low-
density lipoprotein through the low-density lipoprotein receptor
(LDLR) (Shi et al., 2022). Adipocytes can transport lipids to
AEC2 cells through the parathyroid hormone-associated protein
(PTHRP) signaling pathway, which is activated by tensile-sensitive
AEC2 cells and guides the differentiation of mesenchymal and
alveolar epithelial cells (Chao et al., 2015; Torday and Rehan,
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FIGURE 2
Disturbed lipid metabolism in AECs in PF. When AEC2 is damaged by smoke, viruses, etc., fatty acid biosynthesis, fatty acid β-oxidation, and other
lipid-related components are downregulated, leading to fibroblast activation tissue remodeling, which in turn leads to pulmonary fibrosis.

2002). These lipids may contribute to the synthesis of AEC2
surfactant lipids. To sum up, all these results indicate that the
surfactant phospholipids in PF decrease, thereby exacerbating the
course of IPF.

Furthermore, with the development of transcriptome and
single-cell sequencing, the research results on the role of AEC2
lipid metabolic homeostasis in the development of IPF have
been reported at both the cellular and organ levels. For example,
Rindlisbacher et al. (2018) identified 500 downregulated genes
involved in lipid metabolism, cholesterol handling, and steroid
metabolism in AEC2 cells from PF patients by metabolomics
analysis. Similarly, Liang et al. (2024) observed dysregulated
expression of lipid metabolism genes in AEC2 cells from
homeostatic, aged, and young mice following lung injury, as well as
in PF patients, using scRNA-seq analysis. In particular, genes related
to fatty acid synthesis (e.g., CHKA, SCD, FASN, etc.) and fatty acid
β-oxidation (β-oxidation, a mitochondrial process that breaks down
fatty acids to generate energy; e.g., ACAT1, ACSL) were significantly
downregulated in AEC2 cells from IPF patients (Chung et al., 2019)
(Figure 2).

2.1.2 Organelle dysfunction and lipid metabolic
dysregulation in pulmonary fibrosis

Notably, the regulation of lipid homeostasis in AECs also
closely linked to organelle integrity (Gunasekara et al., 2005;
Mesmin, 2016). Studies have reported that endoplasmic reticulum
(ER) stress is significantly increased in human and mouse AEC2
cells suffering from pulmonary fibrosis. Currently, a recognized
adaptive response to ER stress is the induction of lipid synthesis
by affected cells. For example, a negative correlation between
the expression of lipid synthase and the expression of ER stress
markers was observed in AEC2 cells from a mouse PF model
(Romero et al., 2018a). Specifically, under PF conditions, increased
ER stress in AEC2 resulted in impaired lipid synthesis, in particular
a reduction in unsaturated fatty acid synthesis mediated by
stearoyl coenzyme A desaturase 1 (SCD1) Reduced SCD1 activity
not only impeded resolution of endoplasmic reticulum stress,
but also exacerbated cellular dysfunction, thereby triggering a
fibrotic response (Romero et al., 2018a).

In addition, mitochondrial dysregulation critically impacts lipid
metabolism in PF. Mitochondrial dynamics—a process regulated
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by fission and fusion events—govern cellular energy homeostasis
and functional adaptation (Toyama et al., 2016; Chen et al., 2003).
Key mediators include the outer membrane GTPases MFN1 and
MFN2, which coordinatemitochondrial fusion and directly regulate
phospholipid/cholesterol synthesis in AEC2 (Shi et al., 2022;
Chen et al., 2003). Disruption of this balance impairs surfactant
lipid production, compromising epithelial barrier integrity and
accelerating PF progression (Shi et al., 2022). Concurrently,
diminished expression of CYB5R3 (a redox enzyme modulating
NAD+/NADH equilibrium) in PF-associated AEC2 exacerbates
mitochondrial dysfunction and aberrantly activates TGF-β1
signaling. This dual role positions CYB5R3 upregulation as a
potential therapeutic strategy to restore epithelial stem cell function
and mitigate metabolic derangements in PF (Rahaman et al., 2017;
Hall et al., 2011; Bueno et al., 2023).

Recently, studies have found that autophagy-mediatedmetabolic
reprogramming counteracts the fibrotic development process by
regulating lipid fluxes during injury (Rahaman et al., 2017;
Hall et al., 2011; Bueno et al., 2023; Galluzzi et al., 2017; Levine
and Kroemer, 2019). In lung injury models, active autophagy in
AEC2s shifts metabolism away from lipid storage toward energy
production: autophagy downregulates fatty acid and triglyceride
biosynthesis while upregulating glycolysis and β-oxidation to
meet bioenergetic needs for repair (Araya et al., 2013). This
“lipophagic” reprogramming helps clear toxic lipid intermediates
and provides substrates for new membrane synthesis, thereby
promoting AEC2 proliferation, surfactant regeneration, and barrier
repair (Araya et al., 2013; Margaritopoulos et al., 2013). In contrast,
impaired autophagy leads to accumulation of lipid byproducts
and oxidative stress, which impairs regeneration and amplifies
TGF-β1 signaling (Margaritopoulos et al., 2013; Li X. et al., 2020;
Miller and Freeze, 2003; Hamanaka and Mutlu, 2021). Thus, ER
stress, mitochondrial injury, and autophagy converge on AEC2 lipid
metabolism: balanced regulation of lipid synthesis, desaturation,
and degradation is essential for surfactant homeostasis and for
restraining TGF-β1-driven fibrotic remodeling. (Figure 3).

2.2 Carbohydrate metabolism and
pulmonary fibrosis

Carbohydrate metabolism is critically involved in PF,
influencing cellular energy production, redox balance, and
alveolar epithelial function. Dysregulated glycolysis, mitochondrial
dysfunction, and impaired autophagy contribute to metabolic
imbal-ances that drive fibrotic progression.

2.2.1 Dysregulated glycolysis and lactate
accumulation in pulmonary fibrosis

Carbohydrate metabolism, a cornerstone of cellular energy
supply and homeostasis, is profoundly altered in PF. Under
physiological conditions, lung tissues exhibit a unique metabolic
preference: approximately 40% of glucose is converted to lactate
via glycolysis despite adequate oxygen availability—a phenomenon
reminiscent of the “Warburg effect” observed in cancer (Korfei et al.,
2008; Lee et al., 2004; Hui et al., 2017; Bassett and Fisher, 1976).
In PF, this metabolic signature becomes pathological, with lactate
levels in fibrotic lungs tripling compared to healthy tissues, driven

by both overproduction and impaired clearance (Kottmann et al.,
2012; Burman et al., 2018). AEC2 emerge as central players in this
dysregulation. While healthy AEC2 utilize lactate for mitochondrial
ATP synthesis (Lee et al., 2004), their PF counterparts undergo
metabolic reprogramming characterized by defective oxidative
phosphorylation and a shift toward glycolytic dominance. This
shift is mediated by isoform-specific upregulation of lactate
dehydrogenase (LDH): PF-associated AEC2 predominantly express
LDH4/LDH5 isoforms that favor pyruvate-to-lactate conversion,
contrasting with the LDH2/LDH3 dominance in non-fibrotic
cells (Kottmann et al., 2012). The resultant lactate accumulation
exerts multifaceted pro-fibrotic effects. It enhances TGF-β-induced
myofibroblast differentiation through pH-dependent mechanisms
(Newton et al., 2021), disrupts NAD+/NADH redox balance to
accelerate cellular senescence (Li et al., 2019; Valdivieso et al., 2019;
Massip-Copiz et al., 2021; Cui et al., 2022), and activates ER stress
via the ATF4-Chop axis, triggering AEC2 apoptosis (Sun et al.,
2024). Notably, therapeutic interventions targeting LDHA—a
key glycolytic enzyme—reverse lactate-driven acidification and
restore oxidative metabolism in PF models, mirroring findings
in cystic fibrosis where CFTR mutations similarly elevate
lactate through mitochondrial dysfunction (Newton et al., 2021;
Valdivieso et al., 2019; Massip-Copiz et al., 2021). Collectively, these
insights reposition lactate not merely as a metabolic byproduct, but
as a pivotal mediator bridging glycolytic dysregulation to fibrotic
tissue remodeling.

2.2.2 Carbohydrate metabolism disorder and
imbalance of energy homeostasis in pulmonary
fibrosis

Energy metabolism dysregulation is a hallmark of PF, critically
influencing disease progression. AEC2 responsible for surfactant
production, exhibit profound mitochondrial dysfunction in
PF, characterized by structural abnormalities (e.g., swelling),
impaired mitophagy, and diminished biogenesis (Yan et al.,
2023). These defects disrupt oxidative phosphorylation, reducing
ATP synthesis while amplifying mitochondrial ROS (mtROS)
generation—a toxic byproduct that perpetuates mitochondrial
DNA damage and lipid peroxidation, thereby exacerbating both
energetic crisis and fibrotic remodeling (Larson-Casey et al., 2020;
Kim et al., 2016).

Central to mitochondrial quality control is the PINK1/Parkin-
mediatedmitophagy pathway. In PF, attenuated PTEN expression in
lung epithelia sustains AKT activation and TGF-β signaling, further
compromising epithelial integrity (Bueno et al., 2015). Concurrently,
IL-17A exacerbates PF susceptibility by suppressing PINK1/Parkin
activity, which disrupts mitophagy and amplifies apoptosis through
dysregulated TGF-β, STAT3, and NF-κB pathways (Bueno et al.,
2015). Beyond apoptosis regulation, autophagy sustains AEC2
proliferative capacity post-injury. Enhanced autophagy upregulates
glycolytic enzymes (e.g., PGAM, ENO1, ALDOA) and glucose-6-
phosphate dehydrogenase (G6PDX), boosting NADPH production
to counteract oxidative stress while fueling alveolar repair
(Li X. et al., 2020). This metabolic adaptation ensures redox
homeostasis and maintains AEC2 regenerative potential. (Figure 4).

Glucose metabolism further modulates PF progression through
key regulators. GLUT1 deficiency during lung injury impairs AEC2
proliferation despite compensatory upregulation of glycolysis and
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FIGURE 3
The molecular mechanism of AEC2 lipid metabolism in PF. Specifically speaking, Elovl6 deficiency led to changes in the composition of fatty acid
content in AEC2 cells, including an increase in C16 PA and a decrease in C18 OA and C18 LA, which triggered a disturbance in lipid metabolism; this
metabolic dysregulation further contributed to the progression of pulmonary fibrosis by inducing apoptosis, ROS production, TGF-β1 and
other pathways.

the pentose phosphate pathway (Newton et al., 2021). Similarly,
diminished SIRT3 activity-a mitochondrial deacetylase vital for
mtDNA integrity-promotes mitochondrial dysfunction and AEC
apoptosis, highlighting the interplay between acetylation states and
metabolic resilience (Xiao et al., 2022; Li J. et al., 2020; Bueno et al.,
2018a). Collectively, these findings underscore that restoring AEC2
energy metabolism homeostasis represents a pivotal therapeutic
avenue to mitigate fibrotic progression.

2.3 Amino acid metabolism and pulmonary
fibrosis

Amino acidmetabolism is a crucial biochemical process in living
organisms, encompassing various aspects of synthesis, degradation,
and regulation. This process is tightly controlled and closely
linked to physiological functions such as cell growth, immune
responses, and neurotransmission.

2.3.1 Glutamine metabolism and AEC2
dysfunction

Glutamine plays a pivotal role in antioxidant defense through
multiple mechanisms, including the production of NADPH,
which regulates the synthesis of ROS detoxification enzymes,
and serves as a core component of the cellular antioxidant
glutathione. Studies have demonstrated that significant metabolic
changes occur during glucose metabolism, necessitating cells to
rely on alternative metabolic fuels like glutamine to support
mitochondrial respiration and metabolite production, thereby
inhibiting the progression of PF. Glutamine, an essential metabolic
substrate, exhibits significantly elevated requirements in various
pathological states (Vigeland et al., 2019; Wise and Thompson,
2010). Notably, the expression of key enzymes involved in glutamine
metabolism (e.g., GLS1, GOT2, OGDH, SUCLG) is downregulated
in AEC2 from PF patients and in bleomycin-induced mouse
models of pulmonary fibrosis. This downregulation leads to
inhibited glutamine metabolism and, consequently, impairs the
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FIGURE 4
The molecular mechanism of AEC2 carbohydrate metabolism in PF. For example, AEC2 cells in patients with PF, on the other hand, tend to undergo
inefficient oxidative metabolism, produce more glycolytic lactic acid, and increase TGF-β expression, thereby promoting fibrogenesis.

proliferation and differentiation of AEC2 cells (Wang et al., 2022).
Additionally, Shaghaghi et al. (Shaghaghi et al., 2021) found that
glutamine supplementation reduces the cytotoxicity of bleomycin
on AEC2 cells by restoring mitochondrial respiration in alveolar
epithelial cells. Further investigations revealed that glutamine
addition increases intracellular metabolite levels, including various
tricarboxylic acid (TCA) cycle intermediates and the glycolytic
intermediate lactate, and is associated with reduced DNA damage
and cell death induced by bleomycin. These findings provide new
insights into the role of amino acid metabolism in pulmonary
fibrosis (Pullamsetti et al., 2011) (Figure 5).

2.3.2 Arginine metabolism and nitric oxide
signaling

Abnormalities in amino acidmetabolism are particularly critical
in the context of PF, especially the pathways involved in nitric
oxide (NO) production. Asymmetric dimethylarginine (ADMA) is
a by-product of arginine metabolism and acts as an inhibitor of
endogenous NO synthase, which regulates the production of NO.
Clinical data analysis shows that patients with IPF report higher
levels of alveolar nitric oxide, which are closely related to the severity
of the disease (Zhao et al., 2017; Masri, 2010). Pullamsetti et al.

(2011) discovered that dimethylarginine dimethylaminohydrolase
(DDAH) activity is increased in lung AEC2 cells of bleomycin-
induced fibrotic mice and IPF patients due to an increase in
TGF-β1 and IL-6. In AEC2 cells cultured from bleomycin-
induced fibrotic mouse lung, inhibition of DDAH suppresses
cell proliferation and induces apoptosis in an ADMA-dependent
manner; it also reduces collagen production by fibroblasts in
an ADMA-independent but transforming growth factor/SMAD-
dependent manner (Pullamsetti et al., 2011; Masri, 2010).

2.3.3 Amino acid biomarkers and diagnostic
potential

Recent studies suggest that amino acid metabolism may offer a
rapid and non-invasive way to better characterize IPF and simplify
the diagnostic process. Gaugg et al. (2019) reported increased levels
of proline, a key component of collagen, in the lung tissues of patients
with IPF compared to healthy controls, which was attributed to an
increased production of proline via the ornithine aminotransferase
(OAT) pathway. Previous research has shown elevated lung levels of
4-hydroxyproline, as well as polyamine putrescine and spermidine,
in IPF patients, supporting the notion that ornithine metabolism
is dysregulated in PF (Zhao et al., 2017). In addition, Gaugg et al.
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FIGURE 5
The molecular mechanism of AEC2 metabolism in PF.

(2019) further verified a significant increase in collagen-related
amino acids (e.g., proline and 4-hydroxyproline) in IPF patients,
suggesting that collagen metabolism and elevated extracellular
matrix turnover are key factors in PF progression. By using real-
time breath analysis technology (SESI-MS), this study successfully
detected a variety of amino acids in the breath of PF patients,
including proline, alanine, and lysine. This noninvasive assay is
simpler and more clinically useful compared to traditional lung
biopsies, showing potential as a diagnostic tool for PF. Notably,
higher levels of certain amino acids, such as branched-chain amino
acids (valine, leucine, and isoleucine), were associated with less
severe disease damage, higher diffusion capacity of the lungs for
carbon monoxide (DLco%), and lower composite physiological
index (CPI). In addition to serving as key substrates for energy
metabolism and protein synthesis, these amino acids regulate
growth and energy metabolism by activating the mTOR pathway
(Karna et al., 2020; Romero et al., 2016; Platé et al., 2020). mTOR
is over-activated in fibroblasts and epithelial cells in the PF, making
the relationship between their elevated circulating levels and mTOR
activity in the lungs a subject worthy of further exploration.

In summary, the function of AEC2 cells is precisely regulated
by multiple organelles and proteins to maintain normal amino acid
metabolism. In the context of PF, disruption of these regulatory
mechanisms may lead to abnormal metabolism, which in turn
promotes the process of pulmonary fibrosis. Future studies need
to further delve into the specific mechanisms of the role of these
metabolic processes in pulmonary fibrosis, to provide new ideas and
approaches for the treatment of the disease.

2.4 Effects of metabolic abnormalities on
alveolar epithelial cells

Alveolar epithelial cells, particularly AEC2 cells, are critical
for maintaining lung physiologic function and coping with injury
(de la et al., 2020). Under normal physiological conditions,
these cells ensure the smooth functioning of the respiratory
system by precisely regulating gas exchange and secreting lung
surfactant (Delbrel et al., 2018). However, metabolic abnormalities
can severely impair their function.
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Firstly, metabolic abnormalities may lead to the destabilization
ofmembrane lipid components, which in turn affects cell membrane
integrity and function. This instability may be related to the
enhanced activity of cytochrome P450 reductase (POR), which
promotes the process of lipid peroxidation by accelerating the
cycling between Fe2+ and Fe3+ (Wu and Song, 2020). Meanwhile,
POR and CYB5R1 can also transfer electrons from NAD(P)H
to oxygen to generate hydrogen peroxide and generate reactive
hydroxyl radicals via the Fenton reaction, which further exacerbates
lipid peroxidation (LPO), thus disrupting the integrity of cell
membranes (Zou et al., 2020). Moreover, metabolic disorders
can impair mitochondrial function, leading to reduced energy
production (Rangarajan et al., 2017; Álvarez et al., 2017). For
example, Bueno et al. (2023) found that ATP production was
reduced and mitochondrial ROS production was increased in the
lung tissues of patients with PF. Metabolic disorders may also lead
to a reduced ability of alveolar epithelial cells to respond to oxidative
stress and other external insults. For example, Xie et al. (2015)
discovered that low-density lipoprotein (LDL) enters lung cells
through its receptor (LDLR) and LRP1 to release free cholesterol.
Excess free cholesterol is stored in lipid droplets, triggering lung
cell inflammation and fibrosis manifested by overexpression of
collagen, TGF-β1, TNF-α, and MMPs. This reduced responsiveness
may be associated with activation of the apoptotic pathway and
increased inflammatory response, which affects the stability of the
alveolar epithelial layer. In IPF, necrotic apoptosis predominantly
occurs in AEC2 cells, and the release of cellular contents may
further contribute to the aggregation of pro-inflammatory cells and
amplified tissue damage (Mamazhakypov et al., 2019). Overall, the
effects of metabolic abnormalities on alveolar epithelial cells are
comprehensive and far-reaching, involving multiple dimensions of
cellular structure, function, energy homeostasis, and stress response.
An in-depth understanding of these effects not only helps to reveal
the association between metabolism and lung diseases, but also
provides new ideas for the treatment of related diseases.

3 Strategies and perspectives for the
treatment of pulmonary fibrosis based
on metabolic abnormalities

In recent years, new therapeutic strategies have emerged through
the in-depth studies of the pathogenesis of pulmonary fibrosis.
Increasing evidence suggests that an imbalance in metabolic
homeostasis, caused by repetitive alveolar epithelial injury, is a
potentialmechanismunderlying IPF. Below,we focus on therapeutic
strategies addressing AEC2 metabolic abnormalities and analyze
their potential value and challenges (Figure 5).

3.1 AEC2-based therapeutic strategies for
lipid metabolism

Dysregulated lipid metabolism in AEC2 drives pulmonary
fibrosis by impairing surfactant synthesis and amplifying oxidative
stress. Mitochondrial dynamics imbalance (e.g., MFN1/MFN2
dysfunction) and defective lipid homeostasis exacerbate lipid
peroxidation and epithelial barrier disruption. Emerging

interventions aim to restore lipid metabolism balance through
mitochondrial fusion enhancers, CYB5R3 redox modulation, and
autophagy-driven lipid clearance, offering potential to suppress
fibrotic signaling and promote alveolar repair.

3.1.1 Lipid metabolism enzyme-mediated AEC2
dysfunction and anti-fibrotic targets

Lipid metabolism plays a crucial role in the function of
AEC2 cells and the development of pulmonary fibrosis. Studies
have shown that lipid metabolism not only affects energy
metabolism and membrane stability in AEC2 cells but also is
directly and closely related to the progression of the fibrotic
process. Among them, acetyl coenzyme A synthase short-chain
family member 3 (ACSS3) regulates ECM deposition by reducing
fatty acid oxidation and enhancing anaerobic glycolysis through
carnitine palmitoyltransferase type I alpha (CPT1A) deficiency.
Therefore, ACSS3 is considered a potential therapeutic target for
pulmonary fibrosis (Wang et al., 2024).

Lipid elongation and desaturation, mediated by enzymes like
Elovl6 and stea-royl-coenzyme A desaturase (SCD), are critical for
fatty acid biosynthesis. Elovl6 defi-ciency alters fatty acid composition
in AEC2s, increasing palmitate (C16:0) and reduc-ing oleic acid
(C18:1n-9) and linoleic acid (C18:2n-6), leading tometabolic disturb-
ances that promote apoptosis, ROS production, andTGF-β1 signaling
(Chenetal., 2023;Greenetal., 2010;Moonetal., 2001;Matsuzakaetal.,
2012). Inhibition of lipid biosynthesis through targeted deletion of
fatty acid synthase (FASN) or SCD1 ex-acerbates mitochondrial
dysfunction, ER stress, and fibrosis, while overexpression of FASN
or activation of liver X receptor (LXR) agonists attenuates fibrotic
progression (Chung et al., 2019; Shin et al., 2023). These findings
underscore the importance of lipid metabolism in maintaining
AEC2 function and limiting.

3.1.2 Lipid metabolism-related proteins and
therapeutic targets

Lipid synthesis is regulated by various factors, and beyond
lipid synthases, lipid metabolism-related proteins play an important
role in this process. Apolipoprotein A1 (APOA1), a major protein
component of high-density lipoprotein (HDL), belongs to the serum
apolipoproteins (Kim et al., 2010). Lee et al. (2013) found that
APOA1, in AEC2 cells with PF, may inhibit the production of TGF-
β1 and reduce the number of apoptotic cells by increasing the level
of the lipid mediator LXA4, which may reduce early and established
lung inflammation and fibrosis. Furthermore, Gordon et al. (2016)
revealed that APOA1, in AEC cells in lung tissue, prevents lipid
overload and removes excess lipids from the cells. This further
emphasizes the important role of APOA1 in protecting against lung
injury and fibrosis. With a deeper understanding of the role of
lipid metabolism in PF, more studies are revealing the potential to
intervene in the fibrotic process by modulating lipid metabolism.
The finding thatmetformin, anAMPKα activator and lipid synthesis
inhibitor, has been shown to be effective in reversing the process
of established pulmonary fibrosis in mice further emphasizes the
critical role of lipid metabolism in IPF (Zelcer and Tontonoz, 2006).
In addition, recent studies have shown that the FDA-approved lipid-
lowering drugs fenofibrate and ciprofibrate significantly attenuated
the extent of pulmonary fibrosis and reduced collagen production in
fibroblasts and myofibroblast differentiation in mice (Samah et al.,
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2012), providing new evidence for the use of lipid metabolism
modifiers in the treatment of pulmonary fibrosis. At the same time,
studies have begun to focus on the role of lipid receptors and
lipid delivery systems in the treatment of pulmonary fibrosis. For
example, preclinical studies have shown that blocking certain lipid
receptors (e.g., GPR84, LPA1, or CysLT1), as well as activating
GPR40, may have an anti pulmonary fibrosis effect. In addition,
Gwinn et al. (2011) found that local delivery of liposomes consisting
of L-α-phosphatidylcholine and cholesterol effectively alleviated
bleomycin-induced lung injury in mice. Similarly, Kornilova et al.
(2001) demonstrated that phosphatidylcholine liposomes promoted
wound healing in a guinea pig surgical lung injury model. These
studies further emphasize the important role of lipid metabolism
regulation in the treatment of pulmonary fibrosis and provide new
directions for future therapeutic strategies.

3.1.3 Metabolic abnormalities, ER stress, and
combined therapeutic strategies

Emerging evidence indicates that metabolic derangements
and ER stress form a feed-forward loop that aggravates AEC2
dysfunction in pulmonary fibrosis. High-fat diets enriched in
palmitic acid worsen bleomycin-induced fibrosis by driving
lipid overload, AEC2 cell death, and unresolved ER stress,
thereby potentiating TGF-β signaling and matrix deposition
(Kornilova et al., 2001; Chu et al., 2019). Conversely, restoring
balanced lipid metabolism in AEC2s can mitigate ER stress
and fibrosis. For example, enhancement of SCD1 activity or
supplementation with monounsaturated fatty acids not only
replenishes surfactant phospholipids but also alleviates ER stress
markers (BiP, CHOP) and reduces collagen accumulation in fibrotic
lungs (Summer and Mora, 2019). Similarly, administration of
epoxyeicosatrienoic acids (EETs) via the CYP2J2 pathway improves
redox homeostasis in AEC2s, promotes Nrf2-dependent antioxidant
responses, and indirectly stabilizes ER function by preserving
phospholipid bilayer integrity (Zhang et al., 2023).

Therapeutically, combining lipid-centric strategies with ER
stress modulators yields synergistic benefits. Citrus aurantium
alkaline extract (CAE), for instance, activates ATF3/PINK1-
mediated mitophagy, resets fatty-acid β-oxidation, and lowers
ER stress, collectively enhancing AEC2 survival and reducing
fibrotic remodeling. Likewise, overexpression of Sestrin2 in AEC2s
suppresses ROS and pro-inflammatory cytokine release (TNF-
α, IL-6, IL-1β), prevents lipid peroxidation, and curbs ER-
stress–induced ferroptosis, thereby preserving surfactant synthesis
and barrier integrity (Zhang et al., 2023; Wang et al., 2021).
These findings underscore that targeted restoration of lipid
metabolic homeostasis—in particular, promoting desaturation (via
SCD1), supporting physiologic phospholipid pools, and enhancing
lipophagy—can potently attenuate ER stress (Zhang et al., 2023;
Wang et al., 2021; Dong et al., 2023) (Table 1).

3.2 AEC2-based therapeutic strategies for
carbohydrate metabolism

Targeting AEC2 carbohydrate metabolism offers novel
therapeutic avenues for pulmonary fibrosis. Dysregulated
glycolysis and lactate overproduction in AEC2 exacerbate fibrosis

by disrupting redox balance and impairing alveolar repair.
Current strategies focus on inhibiting glycolytic enzymes (e.g.,
LDHA), enhancing mitochondrial oxidative phosphorylation, and
modulating glucose transporters (e.g., GLUT1) to restore metabolic
homeostasis and halt fibrotic progression.

3.2.1 Lactate accumulation and targeting LDHA
in pulmonary fibrosis

Emerging studies indicate that metabolic reprogramming in
AEC2 contributes to lactate accumulation in pulmonary fibrosis,
which exacerbates fibrotic progression by activating TGF-β/mTOR
signaling and suppressing anti-fibrotic miRNAs such as the miR200
family (Acharya et al., 2019; Abedini et al., 2011; Gilbert et al.,
2015; Song et al., 2022; Middleton et al., 2018; Zhang et al.,
2016; Di Gregorio et al., 2020). LDHA, a key glycolytic enzyme
upregulated in IPF-AEC2, has been identified as a critical driver
of this process. Preclinical evidence demonstrates that LDHA
inhibition via RNAi restores oxidative phosphorylation balance
and normalizes metabolic profiles in fibrotic AEC2, suggesting
therapeutic potential (Newton et al., 2021). This has spurred
interest in repurposing LDHA-targeted small-molecule inhibitors
(currently under investigation in cancer and neurodegenerative
diseases (Acharya et al., 2019; Abedini et al., 2011; Gilbert et al.,
2015)) for IPF treatment. However, systemic LDHA inhibition
carries significant risks: as a central glycolytic enzyme, its broad
suppression may disrupt lactate-dependent physiological functions
in high-demand organs (e.g., heart and skeletal muscle) and
trigger compensatory mechanisms such as ROS-JNK/p38 MAPK
pathway activation, potentially worsening fibrosis. These risks
mirror challenges observed with other metabolic modulators—for
instance, JAK inhibitors (e.g., Ruxolitinib) ameliorate fibrosis but
risk immunosuppression (Song et al., 2022), while epigenetic
agents like Rhein alleviate renal fibrosis yet may perturb DNA
methylation (Middleton et al., 2018; Zhang et al., 2016). Collectively,
these findings highlight the need for tissue-specific delivery
strategies and comprehensive risk-benefit assessments when
targeting LDHA in IPF (Newton et al., 2021; Song et al., 2022;
Middleton et al., 2018; Zhang et al., 2016).

3.2.2 Mitochondrial restoration via the
PINK1/ATF3/IL-17A axis enhances oxidative
glucose utilization

Mitochondrial health is essential for AEC2s to fully oxidize
glycolytic pyruvate and meet high ATP demands during
repair. In IPF, suppressed PINK1 expression—due in part
to ATF3 overexpression—leads to accumulation of damaged
mitochondria, a shift toward anaerobic glycolysis, and lactate
buildup that fuels fibroblast activation and matrix deposition
(Xiao et al., 2022; Moimas et al., 2019; Lawrence and Nho,
2018; Judge et al., 2018). IL-17A further disrupts mitophagy
and exacerbates ER stress, reinforcing the glycolytic bias of
AEC2s and reducing their regenerative capacity (Bueno et al.,
2015; Hartman et al., 2004; Bueno et al., 2018b). Restoring
PINK1 via ATF3 knockdown or IL-17A neutralization re-
establishes mitophagy, increases mitochondrial respiration, and
shifts carbon flux back toward oxidative phosphorylation. This
metabolic rebalancing lowers lactate levels, diminishes TGF-β1
activation, and improves AEC2 survival and barrier function,
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TABLE 1 Overview of therapeutic targets and associated pathways targeting AEC2 in pulmonary fibrosis.

Metabolic type Therapeutic targets Relevant pathway References

LDH5 Maintenance of lactate metabolism
homeostasis

Newton et al. (2021)

MiR-200 Regulation of LDHA maintains lactate
metabolism homeostasis

Moimas et al. (2019)

NAD/NADH Maintaining cellular energy metabolism
and redox balance

Cui et al. (2022)

Carbohydrates metabolism PINK1 Regulates mitochondrial homeostasis
and reduces accumulation of damaged
mitochondria

Bueno et al. (2015)

ATF3 Restoration of PINK1 expression levels
and maintenance of mitochondrial
homeostasis by inhibiting its expression

Bueno et al. (2018a)

IL-17A Increasing PINK1 levels and
maintaining mitochondrial homeostasis
by inhibiting its expression

Xiao et al. (2022)

EETs Inhibition of ER stress, thereby
mitigating senescence in AECs

Zhang et al. (2023)

APOA1 Increased levels of the lipid mediator
LXA4 inhibit TGF-β1 production and
reduce apoptosis

Lee et al. (2013)

lipid metabolism ACSS3 Its overexpression inhibited the
excessive deposition of ECM

Wang et al. (2024)

Elovl6 Promotes apoptosis and reactive oxygen
species and impairs cellular uptake of
long-chain FAs

Levine and Kroemer (2019)

FASN Deficiency inhibits lipid biosynthesis,
leading to AEC2 mitochondrial
dysfunction, epithelial ER stress

Chung et al. (2019)

PPARγ Promotes AEC2 progenitor cell renewal Liang et al. (2024)

Mitofusin 1/2 Maintaining the stability of surfactant
protein genes

Chung et al. (2019)

Glutamine Restoration of mitochondrial
respiration in alveolar epithelial cells to
reduce the cytotoxicity of bleomycin on
AEC2

Shaghaghi et al. (2021)

Amino acids metabolism DDAH Reduced collagen production by
fibroblasts

Pullamsetti et al. (2011)

ADMA Regulation of NO production Pullamsetti et al. (2011)

demonstrating that targeting the PINK1/ATF3/IL-17A axis is a
viable approach to correct carbohydrate metabolism in fibrotic
lungs (Wang et al., 2017; Mi et al., 2011).

3.2.3 Glycolytic and redox interventions to
rebalance AEC2 carbon metabolism

Beyond mitochondrial rescue, direct modulation of glycolysis
and NAD+/NADH balance can further restore AEC2 energy
homeostasis. Inhibition of LDHA reduces lactate production,

preventing extracellular acidification that drives profibrotic
signaling, while supplementation with NAD+ precursors (e.g.,
nicotinamide riboside) enhances sirtuin-mediated mitochondrial
biogenesis and promotes pyruvate entry into the TCA cycle
(Cui et al., 2022). Targeting glucose uptake via conditional
GLUT1 deletion in AEC2s has shown that fine-tuning glucose
influx can prevent excessive glycolytic flux and AEC2 apoptosis
under stress (Bueno et al., 2015). Moreover, ER chaperones that
relieve UPR-induced translational arrest (e.g., 4-phenylbutyrate)
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FIGURE 6
The molecular mechanism of AEC2 glutamine metabolism in PF. Decrease in glutamine and glutamate in damaged AEC2 leads to decrease in α-KG and
AKT hindering cell proliferation and differentiation, on the contrary increase in exogenous glutamine restores normal TCA cycling in mitochondria and
promotes cell proliferation and differentiation.

synergize with glycolytic inhibitors to reduce ATF4/CHOP-
mediated cell death and preserve ATP production through balanced
glycolysis–OXPHOS coupling (Yan et al., 2023; Larson-Casey et al.,
2020; Kim et al., 2016). (Table 1)

3.3 AEC2-based therapeutic strategies for
amino acid metabolism

Recent studies have shown that the regulation of amino acid
metabolism in AEC2 cells plays a key role in the process of
pulmonary fibrosis, especially in glutamine metabolism. Glutamine
not only supports cellular amino acid synthesis and antioxidant
defense as a major nitrogen source but also participates in DNA
repair and gene transcription regulation through conversion to α-
KG (Pullamsetti et al., 2011; Masri, 2010). By optimizing amino
acid metabolism, especially glutamine metabolism, in AEC2 cells,
their antioxidant capacity can be enhanced, reactive oxygen species-
induced damage can be reduced, and cell repair and regeneration
can be promoted. Currently, several studies have been conducted to
target glutamine metabolism to intervene in the strategy of treating
PF, such as supplementation of glutamine or modulation of related
enzyme activities, which can restore the metabolic function of
AEC2 cells, reduce cell death, and promote the synthesis of surface-
active proteins and the repair of alveolar structures after injuries
such as bleomycin (Masri, 2010). In addition to this, the role of

glutamine in regulating the TGF-β signaling pathway and lactate
metabolism makes it a potential therapeutic target, which may help
to alleviate the progression of pulmonary fibrosis (Shaghaghi et al.,
2021; Masri, 2010) (Figure 6).

DDAH activity was increased in lung AEC2 cells from mice
with bleomycin-induced injury and IPF patients, and inhibition
of DDAH could inhibit cell proliferation and induce apoptosis by
suppressing cell proliferation in an ADMA-dependent manner, as
well as decreasing collagen production in fibroblasts (Gaugg et al.,
2019; de la et al., 2020). Therefore, the therapeutic strategy based
on amino acid metabolism in AEC2 cells not only provides a
new idea for the intervention of pulmonary fibrosis but also lays
the foundation for the development of more effective therapeutic
approaches in the clinic (Table 1).

4 Challenges and the future

Although therapeutic strategies targeting metabolic
abnormalities have made some progress in the treatment
of pulmonary fibrosis, there are still many challenges and
unknowns. Current metabolomic studies in PF predominantly
focus on metabolic alterations in myofibroblasts, while research
targeting AEC2 requires further in-depth exploration. AEC2 cells
serves as the key to maintaining lung physiological function
and responding to injury. Metabolic Abnormalities in AEC2,
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FIGURE 7
A diagram of several key scientific issues that remain to be addressed in the future.

especially in lipid metabolism, mitochondrial function, and
lactate metabolism, significantly contribute to cellular injury and
the progression of pulmonary fibrosis. However, most existing
studies concentrate on individual metabolic pathways, lacking
comprehensive investigations into the overall metabolic network
and its interactions.

Secondly, current metabolic modulators and targeted
therapeutic regimens have not undergone extensive clinical
validation, with limited data available on their long-term safety and
efficacy. In addition, Given that pulmonary fibrosis is a complex,
multifactorial disease, a single metabolic targeting strategy may
be insufficient to address its therapeutic challenges fully. Future
research should emphasize the cross-regulation of metabolic
pathways and their combined effects on the disease course. For
example, future studies must elucidate whether and how specific
changes in lipid species alter the function of AEC2, and the fluxes
of lipid metabolism controlled by AEC2 and its ecological niche
supporting the dynamics of lipid biosynthesis, storage, transport,
and depletion (via fatty acid oxidation) in the cell remain unclear
(Bueno et al., 2018b; Kamp, 2018; Sunaga et al., 2013; Romero et al.,
2018b; Proctor et al., 2006). Although lipid supplementation
“rescue” studies are expected to open up new therapeutic strategies,
it is important to decipher the mechanistic basis for a more robust
regenerative response due to membrane biosynthesis (essential for
proliferating cells), cellular bioenergetics (diminished with aging),

or epigenetic programs (regulated by lipid signaling intermediates)
that are lipid-supported. In addition, it is hypothesized that ER
stress and metabolic abnormalities combine to cause damage to
AEC cells and enhance their susceptibility to environmental damage
(Wang et al., 2017; Barreiro et al., 2019; Feng et al., 2024; Yan, 2019).
Although AEC2 appears to be the primary target of ER stress in lung
fibrosis, other cells, including fibroblasts, can regulate the fibrotic
process through UPR activation. Clarifying which UPR pathways
are most critical and how ER stress-induced cellular phenotypes
(inflammation, apoptosis, or EMT) regulate fibrotic remodeling is
essential for designing effective therapies to limit the effects of ER
stress on pulmonary fibrosis.

It is worth noting that acute lung injury (ALI) and
pulmonary fibrosis PF share significant similarities in metabolic
abnormalities: both are characterized by mitochondrial damage,
ROS accumulation, and metabolic reprogramming. For example,
the BCAP31/PINK1/Parkin pathway alleviates inflammation
and oxidative stress by restoring mitochondrial autophagy in
ALI (Vij, 2020; Jiang et al., 2024; Du et al., 2024), whereas
downregulation of PINK1 in PF leads to impaired mitochondrial
clearance and exacerbates the fibrotic process (Zhu et al.,
2024). This commonality suggests that metabolic intervention
strategies targeting mitochondrial autophagy have broad spectrum
applicability. Future studies are needed to further validate the
efficacy of such strategies in different lung disease models and to
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explore tissue-specific delivery systems, such as lipid nanoparticles
targeting AEC2, to reduce systemic toxicity.

In summary, while significant advancements have been
made in understanding the role of metabolic dysregulation
in pulmonary fibrosis, comprehensive studies addressing the
intricate metabolic networks and their interactions within AEC2
cells are necessary. Additionally, rigorous clinical validation of
metabolic modulators and combination therapies targeting multiple
metabolic pathways may offer more effective treatment options for
pulmonary fibrosis (Figure 7).

5 Conclusion

Despite significant advances in our understanding of the
pathobiology of PF over the past 2 decades, existing therapeutic
strategies are primarily aimed at slowing down the disease
progression without achieving a cure. Therefore, there is an urgent
need to develop better and safer alternatives.

Abnormalities in the metabolism of AEC2 are closely associated
with the development of PF, particularly disruptions in lipid
metabolism, mitochondrial function, and lactate metabolism.
Targeting these metabolic pathways holds great potential for the
treatment of PF. For example, Liang et al. (2024) proposed that
abnormal lipid metabolism leads to AEC2 dysfunction, a hallmark
of PF. Notably, their work demonstrated that the regenerative
capacity of aged AEC2 cells in a 3D organoid model could
be rejuvenated through lipid supplementation or activation of
PPARγ agonists. Similarly, Sunaga et al. (2013) showed that Elovl6
levels were reduced in PF lung tissues, and Elovl6 deficiency
in mice resulted in spontaneous thickening of the alveolar wall
and increased susceptibility to bleomycin-induced pulmonary
fibrosis. Romero et al. (2018b) reported that SCD1 levels are
reduced in PF lung tissues and that pharmacological inhibition
of this enzyme leads to ER stress and induces pulmonary
fibrosis remodeling in mice. Although the above studies did
not specifically elucidate the corresponding mechanisms of lipid
metabolism in AEC2, in conjunction with studies in other
areas, we believe they may have direct clinical implications. For
instance, in diabetes, alterations in lipid metabolism favor the
synthesis and accumulation of triglycerides and cholesterol, which
are associated with elevated transforming growth factor β levels
and the development of tubulointerstitial fibrosis (Proctor et al.,
2006). Furthermore, in the field of obesity, it has long been
recognized that organ dysfunction is at least partially due to
the accumulation of saturated fatty acids outside of adipose
tissue, particularly in the cell membranes of cardiovascular tissue
(Barreiro et al., 2019).

Moreover, lactate metabolism and mitochondrial energy
metabolism targeting AEC2 have gradually become emerging
research hotspots. Lactate metabolism may play a key role in
fibrosis by regulating TGF-β signaling and mesenchymal cell
function (Feng et al., 2024). Mitochondrial dysfunction leads
to disturbed energy metabolism and increased oxidative stress,
further contributing to fibrosis progression (Yan, 2019; Vij, 2020;
Jiang et al., 2024; Du et al., 2024). Current studies have found that
restoringmitochondrial function and improving lactatemetabolism
can effectively slow the progression of pulmonary fibrosis.

Additionally, targeting autophagy, antioxidants, or metabolite
supplementation (e.g., glutamine and metformin) has shown
promise in mitigating fibrosis (Zhu et al., 2024; Cheng et al.,
2021). Furthermore, emerging approaches such as stem cell-based
therapies (e.g., microfluid-ic-templated stem cell microcapsules)
have shown potential to reverse fibrosis in animal models, although
their safety and long-term efficacy require further validation
(Wu et al., 2022).

In conclusion, ongoing research continues to demonstrate that
metabolic dysregulation is a key factor in the pathogenesis of
pulmonary fibrosis. Therefore, drugs targeting various aspects of
cellular metabolism—including glycolysis, mitochondrial oxygen
consumption, and lipid metabolism—should be actively pursued as
potential treatments for this debilitating disease.
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