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Large language models, a cutting-edge technology in artificial intelligence,
are reshaping the new paradigm of chronic ocular diseases management. In
this study, we comprehensively examined the current status and trends in
the application of large language models in major blinding chronic ocular
diseases such as glaucoma, cataract, and diabetic retinopathy through a
systematic scoping review approach. We conducted this review based on the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses extended
to characterize the application of large language models in the field of chronic
ocular diseases. The study reveals that large language models demonstrate
comparable efficacy to experts in disease screening, diagnostic decision-
making, personalized precision treatment recommendation, and accessibility
of healthcare resources by integrating multimodal clinical data. However, the
application of the technology still faces a triple challenge: (1) the limitation of
model generalization ability due to the multimodal nature of clinical data; (2) the
ethical controversy caused by the insufficient interpretability of algorithms; and
(3) the lack of a standardized validation framework. Future directions emphasize
the need for specialized model training, multimodal algorithm optimization, the
establishment of a multinational multicenter clinical validation platform, and the
construction of an ethical framework for dynamic regulation. Large language
models are expected to evolve from an assisted decision-making tool to a core
component of precision medicine for chronic ocular diseases, and ultimately
to achieve an ecosystem of energy-efficient full-cycle management of chronic
ocular diseases.

KEYWORDS

large language models, chronic ocular diseases, multimodal data, clinical decision
support, full process management

1 Introduction

1.1 Background

There has been a global surge in chronic ocular diseases, and the two iconic diseases,
cataract and glaucoma, are the two leading causes of blindness globally (Huang Y. J. et al.,
2024). Some studies show that global cataract patients reached about 94 million in 2020, and
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glaucoma patients rose from about 76 million in 2020 to about
111.8 million in 2024 (Hu and Wang, 2022; Su et al., 2025). And
chronic ocular diseases have atypical symptoms in the early stage
and diverse symptoms in the progressive stage (Delsoz et al., 2023),
characterized by high blindness, long duration of disease, and urgent
need for patient education, and uneven distribution of ophthalmic
specialty medical resources globally, the traditional management
model is faced with the challenges of low follow-up adherence and
limited access to health information (Goktas, 2025).

With the rapid development of artificial intelligence technology,
large language models (LLMs), such as ChatGPT-4 and PaLM,
are reshaping the service model in the healthcare field by virtue
of their powerful natural language processing and generative
capabilities (Shi et al., 2024). In the field of chronic ocular
diseases management, which requires long-term follow-up and
personalized interventions, LLMs show remarkable potential. LLMs
are expected to provide innovative solutions for early intervention of
chronic ocular diseases, patient self-management, and telemedicine
through intelligent questioning, health counseling, and medical
record analysis (Wang et al., 2025).

In recent years, studies have been conducted to explore the
application of LLMs in the areas of ophthalmic image recognition
and risk prediction, but the comprehensive value of LLMs in the
chronic ocular diseases full process management (e.g., patient-
doctor communication, medication guidance, and behavioral
interventions) has not yet been evaluated in a systematic manner
(Li J. J. et al., 2024; Shaheen et al., 2025). Most of the existing reviews
focus on the technical aspects or acute ocular diseases, and lack
a comprehensive overview of the application scenarios, practical
effects, and ethical risks of LLMs in chronic ocular diseases. In
addition, the differences in the applicability of LLMs in diverse
populations (e.g., the elderly, patients with low health literacy) and
their integration paths with existing healthcare systems still need to
be further explored (Zhang et al., 2025).

1.2 Aims

The aim of this study is to comprehensively assess the current
status and development trend of the application of LLMs in
the management of chronic ocular diseases through a systematic
scoping review approach in the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) (Figure 1).
Specific objectives include (1) to sort out the key technical
pathways and application scenarios of LLMs in the management
of major chronic ocular diseases (e.g., glaucoma, cataract, diabetic
retinopathy, and telltale myopia, etc.); (2) to analyze the major
technical bottlenecks and barriers to clinical translation in the
current applications; and (3) to explore the future directions of
development, including optimization of the specialization model,
the establishment of a multicenter validation framework, and
the development of ethical norms (4) to discuss the future
development direction, including the optimization of specialized
models, the establishment of multi-center validation framework,
and the formulation of ethical norms.Through this review,we expect
to provide theoretical references for subsequent studies and promote
the standardized application and innovative development of LLMs
in chronic ocular diseases management.

This study utilized a scoping review approach rather than
a traditional systematic evaluation based on the following
considerations: first, the application of LLMs in chronic ocular
diseases is an emerging field and the research evidence is still in a
rapid developmental stage; and second, the methodology allowed
us to capture the diversity of technological development in a more
holistic manner and not only confined to the assessment of efficacy.
Through this approach, we are able to better grasp the full picture of
research and trends in this cross-cutting area.

2 Workflow of LLMs in chronic ocular
diseases

Nowadays, the integration of multimodal algorithms with LLMs
opens up new opportunities for healthcare with chronic ocular
diseases. As an input part, textual data can be directly input into
the large model, while data in other modalities, such as fundus
photography, electro-oculogram, and related videos, need to be
imported into the modality encoder for processing, and then
imported into the connector to be converted into a form that can be
recognized by the LLMs. Q-former, linear projector, and multilayer
perception (MLP) are three common types of connectors. Q-former
is a widely used mapping network that compresses redundant
information through feature alignment. Linear Projector usesmatrix
operations to project other modal data into the same dimensions
as the LLMs (Li Y. X. et al., 2024). multilayer perception is better
at processing nonlinear features, such as image segmentation
(Gao et al., 2023). LLMs output results based on the input data, and
are applied to different scenarios in chronic ocular diseases such
as disease diagnosis, therapeutic regimen, disease education, and
disease progression forecast (Figure 2).

The training process of medical LLMs is a continuous iterative
process between the medical data side and the computer side. A
certain amount of data is the basis for the training of the LLMs.
Figure 3 describes the workflow of medical LLMs in chronic ocular
diseases. The researcher obtains electronic health records (HERs)
that have been privacy desensitization protected from relevant
databases or healthcare centers to extract structured data, such as
demographic information, examination results, and unstructured
data, such as free text medical records, fundus images, surgical
reports, and other multimodal data, and filters and cleanses them
in accordance with certain criteria, to create an initial database for
training (Son et al., 2021; Hu and Wang, 2022; Yu et al., 2022;
Maywood et al., 2024; Kang et al., 2025).

Thedatawill be imported into the computer side, and techniques
such as self-attention mechanism and feed-forward neural network
will be utilized to architect general-purpose LLMs (e.g., BERT,
ChatGPT) or pre-training models in the medical field, and there
are also some researches that incorporate computer vision models
to achieve multimodal recognition (Hu and Wang, 2022; Yu et al.,
2022;Mihalache et al., 2024; Sensoy and Citirik, 2024). According to
the application scenarios of macromodels (e.g., surgery prediction,
patient questions and answers (Q&A), disease progression inference,
etc.) the database is utilized to form macrolanguage models
adapted to the specific domains by performing fine-tuning,
reinforcement learning and other steps (Hu and Wang, 2022;
Yu et al., 2022; Spina et al., 2025). Combine the trained bigram
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FIGURE 1
Overview of the scoping review of PRISMA extension for scoping reviews (PRISMA-ScR) process.

models against human experts to confirm the model performance
(Delsoz et al., 2024; Huang A. S. et al., 2024), then put into clinical
guidance or patient education to generate diagnosis and treatment
recommendations. It is applied to scenarios such as assisting in the
diagnosis of glaucoma (Carlà et al., 2024) and generating educational
materials for chronic ocular diseases (Spina et al., 2025), while users
such as healthcare organizations collect patient feedback to form
a new database, and reintroduce the database into the LLMs for
continuous iterative training to optimize performance.

3 The current research of LLMs in
chronic ocular diseases

The scoping review based on a systematic review of the
global evidence that the use of LLMs in chronic ocular diseases

management is characterized by a dichotomy of “technological
acceleration” and “clinical lag”. Supplementary Table 1 shows the
majority of existing LLMs in chronic ocular diseases management,
and the results are used to deconstruct the current status of LLMs in
screening and diagnosis, clinical support, and health equity. Table 1
lists the performance metrics and explanations for evaluating large
models that appear to be commonly used in the field of chronic
ocular disease.

3.1 Diagnostics and screening

The technological evolution of LLMs in glaucoma diagnosis
and treatment presents a clear innovation path. From unstructured
text parsing to multimodal fusion, from single prediction task
to complex clinical decision support, an intelligent diagnosis and
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FIGURE 2
Operating principle of LLMs in chronic ocular diseases.

treatment ecosystem is gradually constructed. Early on, the potential
of LLMs to integrate fragmented clinical information, such as
the prediction of surgical demand based on the BERT model
(AUC = 73.4%), was verified by mining free text in electronic
health records, laying a methodological foundation for subsequent
technology applications (Hu andWang, 2022).Then, the technology
rapidly penetrates into the core diagnostic process, and several
studies have shown that LLMs reach the level of residents in
terms of triage accuracy (77.9%) and cases (72.7%), initially
realizing the transformation of the role from data tool to residents
(Delsoz et al., 2023; Ming et al., 2024). In 2024, multimodal
technology breakthroughs become a key turning point, with
multi-modal large language models (MLLMs) combining retinal
images with clinical texts to significantly improve their analytical
capabilities and demonstrate a high degree of synergy with expert
decision-making in complex scenarios such as surgical planning
(58% match rate), driving the technology to make the leap from
assistive to collaborative (Carlà et al., 2024; Ghalibafan et al., 2024).
Currently, the application of the technology is further focusing
on clinical operability, with innovative solutions such as the code-
free risk assessment tool, which transforms the complex algorithms
into an intuitive clinical decision support system (Choi and Yoo,
2025). This process not only reflects the technological upgrading of
LLMs from an edge tool to the core of diagnosis and treatment, but
also redefines the standard of precision in glaucoma diagnosis and
treatment through the ability of dynamic learning and integration
of multi-source data, and opens up a new paradigm of personalized
and efficient ophthalmic medicine.

Diabetic retinopathy (DR) is also one of the leading causes
of blindness globally (Wan et al., 2021), and the development of
LLMs technology in DR diagnosis and treatment demonstrates a
technological evolution from data parsing to multimodal synergy.
In the early stage, LLMs took the lead in solving the problem of
standardization of DR clinical data, Yu et al. used the BERT model
to accurately extract DR lesion features from unstructured fundus
reports with a conceptual extraction F1-score of 0.9645, laying the
foundation for subsequent automated diagnosis (Yu et al., 2022).
On this basis, a convolutional neural networks model combining
DR classification and lesion segmentation verifies the potential
of multi-task learning to improve the efficiency of DR analysis
(Hemelings et al., 2021). With the technological advancement,
generative LLMs further empower the full process management
of DR, and the ChatGPT model is not only close to the expert
level of accuracy in identifying symptoms and treatment options
(score 4.84/5), but also can be used for DR severity by automatically
annotating DR severity in unstructured medical records
(Cohen’s kappa 0.975) (Jaskari et al., 2024; Subramanian et al.,
2024). Ultimately, the generative MLLMs, constructed by
integrating fundus images with verbal interactions, improved
DR screening accuracy from 81% to 92.3% for junior doctors
and improved patient by dynamically generating personalized
recommendations adherence (p < 0.05) (Li J. J. et al., 2024),
highlighting its complete technological closure from data-driven to
clinical landing.

LLMs technology also shows potential in the clinical diagnosis
and screening of other chronic ocular diseases, such as age-
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FIGURE 3
Workflow of LLMs in chronic ocular diseases.

related macular degeneration (AMD) and cataracts. Deep learning
models can automatically detect cataract subtypes through
images, and the performance is comparable to that of human
experts, effectively assisting in early screening (Rampat et al.,
2024). In the diagnosis of AMD, the feature fusion framework
combines convolutional neural networks to achieve five-level

classification of macular lesions, and significantly improves the
detection rate of early lesions (Sun et al., 2023). Although these
technologies still need to address challenges, their potential in
improving screening efficiency, reducing the missed diagnosis
rate, and assisting in the analysis of complex cases has been
preliminarily verified.
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TABLE 1 Metrics for evaluating LLMs performance and their definitions.

Metric Definition

AUROC Area Under the Receiver Operating Characteristic Curve, measuring overall classification performance

BLEU Bilingual Evaluation Understudy, evaluating machine translation by comparing the n-gram overlap between the generated text and the reference text. It
calculates the accuracy of different N-grams and introduces short sentences. The range is usually between 0 and 1, with higher values indicating higher
similarity

C1 Reflects Clinical and Scientific Consensus, whether the response aligns with medical and scientific consensus

C2 Likelihood of Possible Harm, risk of the answer causing harm to patients

C3 Evidence of Correct Reasoning, logical rationale behind the answer

C4 Evidence of Correct Comprehension, accurate understanding of the question

C5 Evidence of Correct Retrieval, use of relevant and accurate medical knowledge

C6 Missing Important Content, omission of critical information

CIDE Consensus-based Image Description Evaluation, mainly used for image description tasks. It generates similarity between text and multiple reference texts
by weighted calculation, emphasizing semantic diversity and consensus. There is no fixed range for CIDE scores, but they are usually between 0 and 10,
with higher scores indicating better semantic matching

Cohen’s Kappa A statistical measure that quantifies inter-rater reliability (agreement between evaluators) while accounting for chance agreement

CRIE Chinese Readability Index Explorer, a computational tool designed to assess the readability of Chinese texts. It integrates 82 multilevel linguistic features
(e.g., word frequency, sentence complexity, semantic cohesion) to generate readability scores. These scores categorize texts into grade levels: Levels 1–6:
Elementary school, Levels 7–9: Middle school, Levels 10–12: High school

DISCERN DISCERN Quality Criteria for Judging Patient Information About Treatment Choices, a validated tool for evaluating the quality of health information,
particularly patient education materials

EQIP Ensuring Quality Information for Patients, evaluating the quality of written medical information to ensure that the content is patient friendly, accurate and
easy to understand. Contains 20 questions, with a “yes/no” answer score, with a maximum score of 100

F1 Score Harmonic mean of precision and recall, suitable for imbalanced datasets

FK Flesch-Kincaid, a tool that quantifies the difficulty of reading text to assess the readability of responses from different sources on a scale of (0-100), with
higher scores indicating easier reading of the text

FKGL Flesch Kincaid Grade Level, measuring text readability difficulty, aligning with U.S. grade levels.Formula based on average sentence length and syllables
per word,0–18, higher scores indicate greater difficulty

FRE Flesch Reading Ease, assessing the readability of a text, indicating how easy or difficult it is for readers to understand the content, 0–100 (higher scores =
easier to read)

GQS Global Quality Score, a 1–5 point scoring system designed to evaluate the overall quality of clinical recommendations generated by large language models

Lenient F1 Allow partial overlap or approximate matching (e.g., partial coverage of a concept is considered correct). Focus on detecting the presence of concepts,
relaxing positional precision

Likert scale A psychometric tool designed to measure subjective attitudes or opinions using a graded response system (e.g., 1 = “Strongly Disagree” to 5 = “Strongly
Agree”). It quantifies responses through averaged scores or frequency distributions, widely applied in surveys to assess patient satisfaction, educational
outcomes, or accuracy of information in clinical studies

PEMAT Patient Education Materials Assessment Tool, a systematic method to evaluate and compare the understandability and actionability of patient education
materials. A higher score means that it's easier to understand and easier to act on

PEMAT-A Patient Education Materials Assessment Tool for Actionability, evaluating whether the material is effective in guiding the patient to specific actions (e.g.,
treatment steps, lifestyle adjustments). Evaluation content (7 criteria): clear action suggestions, concrete step breakdown, resource support

PEMAT-U Patient Education Materials Assessment Tool for Understandability, assessing whether medical education materials are easy to understand by patients,
focusing on the language, structure and information presentation of the materials. Evaluation content (17 criteria): language simplicity, structure clarity,
focus, AIDS: use diagrams, examples, etc., to help understanding

(Continued on the following page)
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TABLE 1 (Continued) Metrics for evaluating LLMs performance and their definitions.

Metric Definition

SMOG Simple Measure of Gobbledygook, an index used to assess the readability of a chapter or text. It is calculated on the basis of sentence length and complexity in a
text. The reading difficulty of an article is estimated by counting the number of multi-syllabic words in the article. The higher the SMOG index, the more
difficult it is to read the article. Generally speaking, articles with SMOG scores between 7 and 12 are considered easy to understand, while articles with scores
above 12 are more difficult to understand

SOLO Structure of Observed Learning Outcomes, an educational assessment framework designed to describe the cognitive complexity of learning outcomes. The
SOLO taxonomy uses a 1 to 5 scoring scale, corresponding to its five hierarchical levels of cognitive complexity:1 (Prestructural): Responses are irrelevant or
show no meaningful understanding, 2 (Unistructural): Addresses a single relevant point but lacks depth or coherence, 3 (Multistructural): Includes multiple
relevant points without effective integration, 4 (Relational): Connects ideas logically into a cohesive explanation, 5 (Extended Abstract): Extends understanding
to abstract generalizations or novel insights

SPICE Semantic Propositional Image Caption Evaluation, which evaluates the semantic accuracy of generated text by constructing scene diagrams, including the
matching of objects, attributes, and relationships. SPICE also ranges from 0 to 1, with higher values indicating more semantic accuracy

Strict F1 Requires exact boundary matching between predicted concepts and gold-standard annotations (start and end positions must be identical). Evaluate precise
localization of concept boundaries

3.2 Clinical decision support and process
optimization

LLMs technology systematically optimizes ophthalmic clinical
practice through threemajor pathways: assisted treatment planning,
automated medical record generation, and multimodal data
integration. First, in assisting treatment decision-making, LLMs
predicts the need for glaucoma surgery by parsing unstructured
clinical texts, simulates clinical thinking, and further integrates
fundus images and electronic health records (Hu and Wang, 2022;
Delsoz et al., 2023). Notably, ChatGPT-4o has demonstrated high
accuracy in pediatric myopia management through structured
analysis of disease etiology and symptoms, while maintaining
guidance recommendation safety under professional supervision
(Kang et al., 2025). In the field of automated medical record
generation, LLMs generate discharge summaries and procedure
codes with 88% accuracy (Lee et al., 2023; Singh et al., 2023),
significantly reducing clinical paperwork burden. Ultimately,
through multimodal synergy (e.g., GPT-4V combined with fundus
images to achieve international classification of diseases coding)
LLMs build a full-cycle support system from screening to closed-
loop management (Ghalibafan et al., 2024). LLMs not only optimize
the efficiency of individual diagnosis and treatment, but also
promote the comprehensive transformation of ophthalmic diagnosis
and treatment to precision, efficiency and systematization.

3.3 Patient education and health equity

The evolutionary lineage of LLMs technology in ophthalmic
patient education clearly demonstrates the technological leap from
basic functionality to deep integration. Applications focused on
generating personalized health materials, such as using ChatGPT-
4 to simplify glaucoma literature to a fifth-grade reading level,
significantly improving readability while ensuring content rigor
(Spina et al., 2025) In answering frequently asked questions, LLMs
have evolved from the initial accurate Q&A to clinical decision
support tools, such as integrating multi-source data to construct a

glaucoma risk scoring system (Cheong et al., 2024; Choi and Yoo,
2025). Breakthroughs in multi-language support further promote
health equity, such as the DeepDR-LLM, which provide low-cost in
resource inequality areas through language adaptation and localized
output, high-precision medical information support for resource-
unequalized areas, and reconstruct the accessibility framework of
global health education (Huang A. S. et al., 2024).

4 The challenges of LLMs in chronic
ocular diseases

Currently there are many applications of LLMs in the
field of chronic ocular diseases, while there are still many
challenges. Figure 4 exhibits the limitations of today’s LLMs
applications in chronic ocular diseases scenarios, which are mainly
the technical limitations such as image interpretation capability,
data obsolescence, privacy risk, and algorithmic fairness, and the
incompleteness of legal, ethical, and fairness such as attribution
of responsibility, artificial intelligence (AI) hallucinations, and low
coverage of the diseases.

4.1 Technical limitations

Clinical data tend to be multimodal and nonstandard, especially
ophthalmic free text features tend to be characterized by a lack
of attention to grammar, rich in long strings of terms and
phrases, and low logic between sentences. Clinical data, such as
symptoms, examination results, etc., suffer from the problem of
being difficult to embed into models (Hu and Wang, 2022). MLLMs
drastically improve the problem, but the development of more
adaptive models helps to transform ophthalmic multimodal data
into high-quality recognizable feature data, thus circumventing
the manual annotation that requires senior ophthalmologists and
often inaccurate annotation (Zhao Z. W. et al., 2024). At the same
time, the characteristics of ophthalmic clinical data such as difficult
access and long time span will make it possible for LLMs to
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FIGURE 4
Challenges and future of LLMs in chronic ocular diseases.

have multi-step inference difficulties in training (Ghalibafan et al.,
2024). Currently, some studies have reported attempts to extract
information from generalized data based on labeled or unlabeled
data with noise (Son et al., 2021). LLMs utilizing unlabeled data for
image analysis may be a future direction (Zhao Z. W. et al., 2024).
It has been suggested that the development of deep image learning

algorithms may change the landscape of management of various
ocular diseases (Ghalibafan et al., 2024).

LLMs have the same limitations in terms of accuracy
and reliability. LLMs have lower accuracy and answer
comprehensiveness for open-ended questions, especially complex
questions, and are not yet able to meet clinical requirements
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(Balci et al., 2024). Fortunately, ChatGPT, Google Bard have shown
high performance in the field of zero-shot learning (Cheong et al.,
2024). ChatGPT has performed close to the clinician level in
some aspects of the Q&A session, far beyond other LLMs models
(Delsoz et al., 2023; Ghalibafan et al., 2024). A common problem
is the possibility of hallucinations, such as fabricating literature
to justify one’s generated text, and clinicians consume a a lot of
work to recognize AI hallucinations (Delsoz et al., 2023; Wu et al.,
2024). Alsomodels such asChatGPTmay give unavailable treatment
options without emerging viable treatment options (Maywood et al.,
2024). This uncertainty and lack of global interpretability limits the
use of LLMs in clinical practice.

Surprisingprogresshasbeenmade ingenerating text forChatGPT
responses, with some studies noting that low text readability has been
reduced to a fifth grade level, but there are still some scenarios where
the readability of the text has limitations and requires a high level
of knowledge background, potentially hindering the use of LLMs
at the patient education level (Spina et al., 2025). In recent years,
the performance of LLMs has gradually improved, providing the
ability toprovide relatively reliablediagnostic support inmanychronic
ocular diseases scenarios, but the high standards of medical scenarios
make it impossible for LLMs to take the place of physicians yet
(Ghalibafanet al., 2024).Atpresent, theapplicationofLLMstochronic
ocular diseases is still in its infancy, and there have been attempts to
combine time-series data analysis in cardiology and other fields, but
there have not been many reports on the research of combining time-
series data analysis in the field of ocular diseases (Ding et al., 2024).
The analysis of time-series data in EHR by LLMs. The improvement
of the ability of LLMs to analyze time-series data in EHR may bring a
new revolution of AI diagnosis and treatment.

4.2 Imperfect regulations and ethics

LLMs have become a powerful tool for healthcare and need to
be robustly evaluated for functionality and reliability (Bahir et al.,
2025). However, the industry lacks uniform norms to test the
accuracy of the text generated by LLMS, while also holding them
accountable for the recommendations it provide (Yilmaz andDogan,
2025). For numerous uncommon diseases, the lack of training data
for the models leads to poor performance, and the selection of
training samples may cause bias in conclusions about minorities
(Chang et al., 2024; Ghalibafan et al., 2024). Regional epidemiologic
variability was also rarely considered in the studies included in the
review. Such differentiation may influence modeling judgments.

In addition, medical data are strictly regulated and their
accessibility may receive limitations. LLMs training involves a large
amount of clinical information, and the training process often
adopts patient data anonymization and data desensitization and
encryption to isolate patient privacy and the clinical data itself,
which can also safeguard the privacy and security of patients in
the later application of LLMs (Ghalibafan et al., 2024). However,
due to the complexity of the internal algorithms, researchers still
have to be aware of the ethical risks of data leakage and privacy
breaches of individual processes. Half of the articles in our scoping
review expressed “caution” about the application of LLMs inmedical
practice, and it is clear that although there are breakthroughs in
LLMs in the field of chronic ocular diseases, LLMs models may

require higher capabilities to perform specific clinical tasks due to
the specificity of clinical medicine.

5 Future perspectives

In recent years, LLMs have been developing and gradually
applied in chronic ocular diseases. With the optimization of related
technologies, the completion of clinical feasibility validation, and
the improvement of policy system support in the future (Figure 4),
LLMs will build a new ecology for the diagnosis and treatment of
chronic ocular diseases.

Although LLMs have achieved the initial application of
multimodal integration and dynamic learning in chronic ocular
diseases management (Zhao Z. W. et al., 2024; Choi and Yoo, 2025),
there is still a need to break through the problems of insufficient depth
ofophthalmic specialties (Li J. J. et al., 2024), crossweakgeneralization
of modal alignment algorithms and lack of systematic support for
dynamic learning mechanisms (Alqudah et al., 2024). In the future,
we need to develop more ophthalmology-specific LLMs to explore
the depth of knowledge through specialized model training; develop
ophthalmology-oriented multimodal alignment architectures, such
as combining generative AI and computer vision to strengthen the
multimodal analysis capability; use time-series modeling techniques
such as the transformer timing model to predict the long-term
disease progression, while designing a closed-loop dynamic learning
system to integrate incremental learning and real-time data streams,
breaking through the limitationsof knowledge curing in staticmodels,
overcoming terminology and contextual complexity, and upgrading
LLMs from an assistive tool to the core of domain-wide decision-
making, and ultimately realizing high-precision, low-cost chronic
ocular diseases prevention networks to bridge the global challenge
of uneven distribution of healthcare resources.

LLMs have achieved milestones in the auxiliary diagnosis of
chronic ocular diseases (Delsoz et al., 2024), but their clinical
application still faces two key challenges: the lack of data on
rare diseases and standardized validation. In the future, we need
to design prospective clinical trials, validate the effectiveness of
LLMs in the real world, and solve the problem of insufficient
data on rare diseases through synthetic data, while relying on
the international collaborative network to achieve multicenter
collaboration (Gong et al., 2024), and unify the labeling
specifications to establish a high-quality database of chronic ocular
diseases in multiple regions and all types of diseases, in order to
eliminate the geographical and minority diagnostic and treatment
bias. geographic and minority diagnostic bias. Such systematic
validation will facilitate LLMs to bridge the global healthcare
resource divide and achieve innovation in thewhole chain of chronic
ocular diseases from screening to personalized management.

Although LLMs have taken shape as dynamic regulation
and interdisciplinary collaboration in the policy and ecological
construction of management in chronic ocular disease
(Huang X. Q. et al., 2024; Li J. J. et al., 2024), their clinical application
is still constrained by high-risk regulatory loopholes, data silos at the
grassroots level, and the chronic ocular diseases management relies
on the status quo such as single-visit treatment. In the future, it is
necessary to build a paradigm of “full-cycle management” based on
LLMs through the dual-track strategy of “accurate regulation + open
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collaboration”, enforcing algorithmic traceability, fine-tuning risk
and responsibility stratification, and expediting the formulation of
specialized laws and regulations for LLMs in chronic ocular disease
management, clarifying legal responsibilities and rights in various
scenarios. Build a global ethical framework together and establish a
standardized ethical review criterion, ensuring that the application
of LLMs complies with ethical norms. Integrate home devices,
electronic medical records and genetic data to build personalized
prediction models (Guo et al., 2024), develop digital therapies with
adaptive interventions, and form a closed loop of “monitoring-
warning-intervention”, and ultimately upgrading LLMs into a smart
core of total domain empowerment, which can actively intercept
disease deterioration in chronic ocular diseases such as diabetic
retinopathy through continuous biomarker tracking and behavioral
interventions, and build a new eye health ecosystem that is safe, fair,
and patient-centered.

6 Conclusion

A panoramic overview of LLMs applied research in chronic
oculardiseases througha scoping reviewreveals themultidimensional
potential and ecological challenges of this technology. In terms of
disease screening and diagnosis, LLMs have demonstrated dynamic
learning capabilities that can break through the traditional single-
modality limitations and significantly improve accuracy; while in the
dimension of accessibility of healthcare resources, the personalized
health guides generated by LLMs are reshaping the path of health
management for low-literacy groups. It is noteworthy that the
scoping review also exposes challenges in the implementation of the
technology: on the one hand, the generalization ability of complex
clinical scenarios is limited by the lack of specialization of labeled
data, which leads to the model easily falling into the predicament
of “high accuracy in the lab - low robustness in the clinic”; on the
other hand, there is no global consensus on the ethical risks, from
the dynamic desensitization of patient privacy to the interpretability
of algorithmic decision-making, the existing studies are mostly
theoretical discussions, and there is a lack of practical frameworks that
can be transferred to ophthalmology. In the future, it is necessary to
build a “technology-clinical-policy” collaborative innovation system:
optimize the efficient use of multicenter ophthalmic data through
federated learning, develop more LLMs suitable for chronic ocular
diseasesmanagement scenarios, and truly release their universal value
in chronic ocular diseases applications, so as to promote the global eye
health equity from the vision to the ground.
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