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Changchun, China, 2International School, Beijing University of Posts and Telecommunications, Bei
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Background and objectives: Traumatic optic neuropathy (TON) caused by optic
canal fractures (OCF) can result in severe visual impairment, even blindness.
Timely and accurate diagnosis and treatment are crucial for preserving visual
function. However, diagnosing OCF can be challenging for inexperienced
clinicians due to atypical OCF changes in imaging studies and variability in
optic canal anatomy. This study aimed to develop an artificial intelligence (AI)
image recognition system for OCF to assist in diagnosing OCF and segmenting
important anatomical structures in the orbital apex.

Methods: Using the YOLOv7 neural network, we implemented OCF localization
and assessment in CT images. To achieve more accurate segmentation of
key anatomical structures, such as the internal carotid artery, cavernous sinus,
and optic canal, we introduced Selective Kernel Convolution and Transformer
encoder modules into the original UNet structure.

Results: The YOLOv7 model achieved an overall precision of 79.5%, recall
of 74.3%, F1 score of 76.8%, and mAP@0.5 of 80.2% in OCF detection. For
segmentation tasks, the improved UNet model achieved a mean Intersection
over Union (mIoU) of 92.76% and a mean Dice coefficient (mDice) of 90.19%,
significantly outperforming the original UNet. Assisted by AI, ophthalmology
residents improved their diagnostic AUC-ROC from 0.576 to 0.795 and
significantly reduced diagnostic time.

Conclusion: This study developed an AI-based system for the diagnosis and
treatment of optic canal fractures. The system not only enhanced diagnostic
accuracy and reduced surgical collateral damage but also laid a solid foundation
for the continuous development of future intelligent surgical robots and
advanced smart healthcare systems.
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GRAPHICAL ABSTRACT

1 Introduction

The optic canal is formed by the upper and lower wings of
the sphenoid bone, the outer side of the sphenoid body, and
the outer bone wall of the posterior ethmoid sinus (sphenoid
sinus). Serving as the conduit for the optic nerve and ophthalmic
artery to enter the orbit from the skull, it plays a crucial role in
vision. Optic canal fractures (OCF) typically stems from trauma
to the orbit or face, including scenarios such as blunt trauma, car
accidents, falls, or adjacent skull fractures. When external impact
forces are transmitted to the optic nerve through the surrounding
bone structure, or when fractured fragments directly compress
or puncture the optic nerve, it can result in traumatic optic
neuropathy (TON), leading to partial or complete loss of visual
function (Hokazono et al., 2019; Steinsapir and Goldberg, 2011).
The pathophysiological mechanisms of TON are highly intricate
and have not been completely elucidated to date. When the optic
nerve undergoes mechanical shearing forces, the axons of Retinal
Ganglion Cells (RGC) and the vessels supplying the nerves are
disrupted, resulting in axonal degeneration of RGC. Subsequently,
this triggers a cascade of secondary injuries such as oxidative stress,
inflammation, cell apoptosis, release of kinins, and demyelination

Abbreviations: OCF, Optic canal fractures; TON, Traumatic Optic
Neuropathy; RGC, Retinal Ganglion Cell; CT, Computed Tomography; AI,
Artificial Intelligence; CNNs, Convolutional Neural Networks; ML, Machine
Learning; DL, Deep Learning; SK Conv, Selective Kernel Convolution; TEB,
Transformer Encoder Block; AP, Average Precision; AUC, Area Under the
Curve; ROC, Receiver Operating Characteristic; IoU, Intersection over Union

of axons. These successive damages further exacerbate the injury to
RGC, ultimately leading to visual impairment and loss (Lin et al.,
2021). Research indicates that approximately 50% of TON patients
will experience permanent loss of vision (Reddy et al., 2015).

Imaging examinations play a crucial role in the diagnosis
of TON, particularly with the indispensable use of computed
tomography (CT) and thin-section scans of the optic canal. These
examinations contribute to a comprehensive assessment of the
extent of fractures and potential optic nerve damage, providing
vital references for accurate diagnosis and subsequent treatment
strategies. However, due to the optic canal’s characteristics,
including its deep location, narrow diameter, thin bony walls,
small volume, and complexity of adjacent bony structures, the
subtle changes in imaging for OCF can be elusive. Existing
methods, such as conventional CT imaging, often fail to detect
displaced fractures or deformities in the optic canal, leading to
missed diagnoses. Moreover, current segmentation and detection
techniques are limited in their ability to accurately identify and
segment critical anatomical structures surrounding the optic
canal, such as the internal carotid artery, cavernous sinus, and
optic nerve. Displaced fractures or deformities of the optic
canal and its anatomical structures are often challenging to
detect. Even in the presence of apparent clinical symptoms,
such as visual impairment or loss, imaging examinations may
only reveal subtle fractures in the bones (Nagasao et al., 2018).
Therefore, for less experienced resident physicians, accurately
and rapidly diagnosing OCF remains a challenging task in
clinical practice.
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The optic canal decompression surgery is one of the crucial
therapeutic approaches for TON. Its principle lies in alleviating
the mechanical compression of the visual pathway by removing
the surrounding bony structures, thereby reducing intraneural
pressure and restoring local blood circulation to prevent optic
nerve damage (Li and Guo, 2022). Research indicates that surgical
intervention within 7 days after TON significantly lowers the
long-term risk of visual impairment. Conversely, TON patients
without timely intervention may experience reduced central retinal
artery blood flow and a significant decrease in the thickness
of the retinal nerve fiber layer, resulting in a poorer prognosis
(Lin et al., 2021; Tu et al., 2023; Peng et al., 2011; Li and
Guo, 2022; Tu et al., 2023). Therefore, promptly determining
the extent and severity of OCF and implementing surgery is
crucial for visual recovery. In recent years, with continuous
improvements in microsurgical techniques and instruments,
endoscopic transethmoidal optic canal decompression (ETOCD)
has emerged as the current mainstream surgical method. Its
advantages include a broad field of view, minimal damage, and
rapid recovery (Liu et al., 2023). Retrospective studies suggest
that TON patients undergoing ETOCD exhibit better long-term
outcomes compared to conservative treatment (Horiguchi et al.,
2010; Ma et al., 2018; Yu et al., 2016; Yan et al., 2017).

However, due to the intricate anatomy of the orbital apex, the
diagnosis and surgical treatment of diseases involving this critical
region are often challenging (Lin et al., 2021). The orbital apex
serves as a bony tunnel through which many crucial neurovascular
structures enter the eye socket from the cranial cavity. It houses
cranial nerves III, IV, and VI, the ophthalmic division of the
trigeminal nerve (V1), as well as the superior ophthalmic vein.
The optic canal is situated above the orbital fissure, with its
inner wall exhibiting significant variation due to the degree of
pneumatization of the sphenoid sinus (Dallan et al., 2013; Trevino-
Gonzalez et al., 2023). The internal carotid artery runs adjacent
to the lateral wall of the sphenoid sinus and is a primary blood
supply source to the eye socket. During its course through the bony
canal in the temporal bone’s petrous part, it closely approaches
the optic canal (Asal et al., 2019). In this confined anatomical
region connecting the eye socket and the intracranial space, critical
structures are often only millimeters apart. Inaccurate diagnosis
or surgical procedures may result in compromised visual function
and severe neurovascular complications (Abuzayed et al., 2009).
Therefore, precise identification and assessment of the anatomical
structures related to the sphenoid sinus, internal carotid artery, and
optic canal are crucial to avoid potentially fatal complications such
as internal carotid artery bleeding during surgery (Lin et al., 2021).

The primary goal of Artificial Intelligence (AI) is to
develop models and algorithms capable of simulating human
intelligence, enabling machines to engage in activities such as
learning, reasoning, problem-solving, and decision-making. This
encompasses various technologies, including machine learning,
neural networks, and computer vision. In recent years, the
application of deep learning in accomplishing medical image
recognition tasks has become a research hotspot. Various
Convolutional Neural Networks (CNNs) have demonstrated
remarkable performance in tasks such as image classification,
object detection, and semantic segmentation (Zhang et al., 2023).
Currently, image recognition systems based on Convolutional

Neural Networks (CNNs) find widespread applications in the
diagnosis and treatment of ophthalmic diseases.These systems assist
in the precise analysis of digitized eye CT and MRI images, fundus
images, and Optical Coherence Tomography (OCT) scan images to
aid in the diagnosis and formulation of surgical plans for ophthalmic
conditions. This includes diseases such as ocular tumors, diabetic
retinopathy, glaucoma, and macular degeneration (Leong et al.,
2022; Zhao, 2018; Ahuja et al., 2022; Nanegrungsunk et al., 2022;
Ting et al., 2019; Bi et al., 2019; Xu et al., 2023a; Zhu et al., 2023).
In the realm of orbital diseases, there are currently AI-assisted
diagnostic models tailored for orbital bone fractures, thyroid-
related eye diseases, and intraorbital tumors. Additionally, there
are automatic segmentation models specifically designed for the
orbital region (Li et al., 2020; Song et al., 2021; Hamwood et al.,
2021). However, there is currently a lack of automatic segmentation
models specifically designed for the anatomical structures of the
orbital apex, and there is also a deficiency in artificial intelligence
models that can assist in diagnosing optic canal fractures. It is
worth noting that CNN-based image recognition methods still
have limitations in medical image segmentation and may not
fully meet the requirements for accurate segmentation. Due to
the limited size of the receptive field of convolutional kernels,
many standard convolutional neural networks face challenges in
capturing comprehensive contextual information, especially when
dealing with complex relationships in medical images. Additionally,
due to constraints in the number of samples within medical
image datasets, achieving satisfactory accuracy in medical image
segmentation tasks can often be challenging (Zhang et al., 2023;
ST-Unet et al., 2023; Yamashita et al., 2018).

This study has developed an intelligent diagnosis and treatment
system for optic canal fractures (OCF), which combines a YOLOv7-
based model for detecting optic canal fractures with a novel UNet-
based network for recognizing anatomical structures in the orbital
apex. These components together form a comprehensive OCF
diagnosis and treatment system. Not only does this system serve
as a vital tool for assisting in the diagnosis of OCF, but it also
establishes a foundation for the safety assessment of optic canal
decompression surgeries. Furthermore, the key issue addressed by
this study is the significant challenges posed by existing diagnostic
and segmentationmethods, which often struggle to accurately detect
optic canal fractures and segment the complex anatomical structures
surrounding the optic canal. Current imaging techniques and
manual segmentationmethods are often imprecise or heavily reliant
on the operator’s expertise, resulting in inconsistent outcomes.
This study aims to overcome these limitations by developing
an AI-driven system that automates these processes, providing
clinicians with more accurate, efficient, and reliable diagnostics,
ultimately improving patient outcomes and facilitating timely
surgical interventions.

2 Materials and methods

This study adheres to the principles outlined in the Helsinki
Declaration and has obtained approval from the Ethics Review
Committee of the Second Norman Bethune Hospital of Jilin
University. In this research, the review committee waived the
requirement for informed consent.

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1609028
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Li et al. 10.3389/fcell.2025.1609028

TABLE 1 Baseline demographic characteristics of each group.

Demographic Fracture Non-fracture

Number of patients 93 47

Male 65 20

Female 28 27

Age, in years

Mean ± standard deviation 45.02 ± 14.92 43.5 ± 14.69

Range 20–79 18–80

TABLE 2 Preoperative visual acuity of the patients.

Visual acuity category Number of patients

NLP 8

LP 32

HM 23

FC 17

0.02–0.1 13

NLP: no light perception; LP: light perception; HM: hand motion; FC: finger counting;
0.02–0.1: corresponding standard logarithmic visual acuity chart.

2.1 Database

This study collected CT images of patients who underwent
parallel optic canal CT and enhanced orbital CT examinations at the
Second Norman Bethune Hospital of Jilin University China, from
September 2020 to September 2022, forming two separate datasets.
All patients were of Asian descent and were adults. Inclusion
criteria for optic canal fractures patients included confirmation
of optic canal fractures by radiologists and ophthalmologists, and
undergoing ETOCD. For each patient, 2–6 high-quality consecutive
CT scan images were selected from the CT image sequence. Table 1
shows the baseline demographic characteristics, andTable 2 displays
the preoperative visual acuity of the patients.

2.1.1 Optic canal CT image database
We selected a total of 652 optic canal CT images to form Dataset

1, used for training and testing optic canal fractures detection. The
optic canal CT database includes a total of 509−ΔΔCT images with
signs of optic canal fractures (comprising 185 images with fractures
only in the left eye, 207 images with fractures only in the right
eye, and 117 images with fractures in both eyes). Additionally, 143
images showed no signs of optic canal fractures on either side. On
high-resolution optic canal CT scans, direct signs of optic canal
fractures include discontinuity, displacement, and/or fragmentation
of the canal wall. Indirect signs may include fluid (hemorrhage), or
air accumulation within the sphenoid or ethmoid sinuses. Fractures
involving the ethmoid or sphenoid sinuses and orbital walls, as well

as intraorbital fluid or air accumulation, may also be observed. Optic
nerve damagemaymanifest as swelling, thickening, rupture, irregular
thickening, or atrophy. The CT images with optic canal fractures
in the dataset were independently assessed by three experienced
radiologists.Whenconsensuswas reachedon thediagnosis, bounding
boxes were used to annotate the area of the optic canal containing
the fracture. An additional senior physician was invited to adjust
and correct the bounding boxes in cases where consensus was not
reached among the three radiologists. The optic canal regions in the
CTimageswere labeledusing theonline toolLabelImgandcategorized
into four classes: Fracture(R), Fracture(L), Non-fracture(R), Non-
fracture(L). The dataset was split into training and testing sets in
an 8:2 ratio. In this study, data augmentation techniques including
resizing, random flipping, normalization, and padding were applied
to the training set of Dataset 1.

2.1.2 Enhanced orbital CT image database
For OCF patients undergoing ETOCD included in the study,

we preoperatively evaluated the anatomy of the orbital apex using
enhanced orbital CT scans. From these images, we selected a total of
200 enhanced orbital CT images to form Dataset 2, used for training
and testing the segmentationof important anatomical structures in the
orbital apex. We annotated three anatomical structures: the internal
carotid artery (ICA), the optic canal (OC), and the sphenoid sinus
(SS).The enhanced orbital CT images were independently assessed by
three experienced radiologists. When consensus was reached on the
diagnosis, the corresponding anatomical structures were annotated.
An additional senior physician was invited to determine and annotate
the corresponding anatomical structures in cases where consensus
was not reached among the three radiologists. The LabelMe online
toolwas used to annotate the three anatomical structures in the orbital
apex.The dataset was split into training and testing sets in an 8:2 ratio.
We performed data augmentation on the original dataset, including
geometric transformations, flipping, color space conversions, random
cropping, randomrotations, and introducingnoise, to further increase
the diversity of the training samples.

2.2 Network models and network training

The overall structure and modules of the YOLOv7 network
are depicted in Figure 1. The architecture of the YOLOv7 model
comprises input, backbone network, and head network components.
Initially, the raw input images undergo preprocessing to standardize
their dimensions to 640 × 640, facilitating more efficient feature
extraction by the Backbone network. The Backbone serves as
the primary feature extraction network of YOLOv7, initially
processing the input images to extract features, which are then
received and integrated by the head network. The Backbone
network consists of CBS, MP, and ELAN modules. The CBS
module enhances network learning capability through convolution
operations, data normalization, and the utilization of the SiLU
activation function. The ELAN module controls gradient paths
to enable the network to capture more features effectively. The
MP1 module downsamples through two branches and combines
extracted features using cascading operations. These processes
collectively enhance YOLOv7’s feature extraction ability, leading to
improved overall efficiency and accuracy.
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FIGURE 1
Architectures of YOLOv7. The basic structure of the YOLOv7 network includes the input, backbone network, and head network. It utilizes a
convolutional neural network to simultaneously predict bounding boxes and class probabilities for all objects in an image. The backbone network
consists of CBS, MP, and ELAN modules, which extract features from the input image and gradually reduce spatial dimensions while increasing channel
numbers through convolutional operations for further processing. The head network consists of a series of convolutional layers, fully connected layers,
and activation functions, used to predict the class, position, and confidence of the target objects. The head layer network outputs three different-sized
feature maps, which are processed through Rep (Repetition) and conv (Convolution) layers to ultimately generate the predictions for the targets.
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The head network employs a Feature Pyramid Network (FPN)
structure to enhance feature extraction. Three effective feature
layers obtained from the backbone section are fused within this
network component to integrate feature information from different
scales. Accurate object detection and localization heavily depend
on the head network’s capability to consolidate features into a
cohesive whole. The SPPCSPC module combines Spatial Pyramid
Pooling (SPP) and Cross Stage Partial Connection (CSPC). SPP
expands the receptive field, enabling the algorithm to adapt to
images of varying resolutions. CSPC improves feature transmission
and network efficiency, reducing computational complexity while
enhancing speed and accuracy. ELAN-W is analogous to the ELAN
module, differing in the selection of output channel numbers for the
second branch. MP2 functions similarly to MP1 but with multiple
output channels. The Rep structure is utilized to adjust the number
of image channels in the output features.

The original architecture of UNet comprises two main
components. The first segment entails feature extraction, where
each layer consists of two consecutive 3 × 3 convolutions with
ReLU activation, followed by a 2 × 2 max-pooling layer. The latter
part encompasses the decoding stage and the upsampling process
facilitated by 2 × 2 deconvolutions, resulting in a halving of the input
channel count. At each upsampling iteration, it merges with an equal
number of channels corresponding to the feature extraction phase.

However, due to insufficient consideration for the semantic
gap between the encoding and decoding stages, the original UNet
structure exhibits certain limitations (Zhang et al., 2023). To
address this issue and extract richer semantic information, we have
introduced enhancements to the original UNet architecture, leading
to the modified UNet network illustrated in Figure 2a.

To enhance texture representation within the UNet architecture
(depicted in Figure 2b), we introduce a Texture Enhancement
Module based on Selective Kernel Convolution (SKConv) within
the first three skip connections. SKConv comprises three primary
components: Split, Fuse, and Select. Split generates diverse
paths by employing convolutional kernels of varying sizes,
corresponding to different receptive field (RF) sizes of neurons.
In our implementation, four branches of convolution kernels (1
× 1, 3 × 3, 5 × 5, and 7 × 7) were utilized. Subsequently, the
Fuse operation amalgamates information from these diverse paths
to derive a comprehensive and global representation, crucial for
weight selection. Finally, Select combines feature maps of distinct
kernel sizes based on selection weights. Through the integration
of an attention mechanism within the convolutional kernel,
SKConv enables adaptive alteration of neuron RF sizes during the
inference phase.

Additionally, we incorporate a Semantic Perception Module,
constructed using Transformer Encoder Block (TEB), within the last
two skip connections of the UNet structure, addressing limitations
associated with limited receptive fields (as illustrated in Figure 2c).

2.3 Performance assessments

2.3.1 Object detection model evaluation metrics
After completing the training and testing phases of the model, it

is essential to evaluate its performance using standardized metrics.
For the object detection model used to assist in diagnosing OCF, we

evaluate the performance of the YOLOv7 algorithm by calculating
metrics such as true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). The evaluation metrics
include precision, recall, mean average precision (mAP), precision-
recall (PR) curve, and F1 score. Precision represents the proportion
of samples predicted as positive that are actually positive, reflecting
the model’s accuracy. Recall represents the proportion of actual
positive samples predicted as positive, indicating the model’s ability
to identify positive results. The F1 score is the harmonic mean
of precision and recall, providing a comprehensive evaluation of
the model by simultaneously considering precision and recall. A
higher F1 score indicates a higher model quality. The formulas for
calculating each evaluation metric are shown in Equations 1–3.

Precision = TP
TP+ FP

(1)

Recall = TP
TP+ FN

(2)

F1score = 2∗Precision∗Recall
Precision+Recall

= 2TP
2TP+ FP+ FN

(3)

Drawing the PR curve based on precision and recall values
allows for a more comprehensive evaluation of the model. A larger
area under the PR curve corresponds to higher average precision
of the model. The Average Precision (AP) is the average precision
value of the area under the PR curve and the coordinate axis.
Mean Average Precision (mAP) is the average of AP values for each
detected class. mAP@0.5 refers to the mAP calculated when the
intersection over union (IoU) threshold is set to 0.5.

Furthermore, we utilize the Receiver Operating Characteristic
(ROC) curve and the Area Under the Curve (AUC) of the ROC
curve to evaluate the diagnostic capabilities of both ophthalmology
residents and AI for OCF diagnosis.

2.3.2 Semantic segmentation model evaluation
metrics

We assess the similarity between the UNet model used for
segmentation of orbital apex anatomical structures and manual
segmentation using metrics such as Intersection over Union (IoU)
and Dice coefficient. In this context, the intersection between the
image segmented by the AI model and the manually segmented
image constitutes the true positives (TP), the portion removed
from the AI model’s segmented image constitutes false positives
(FP), and the portion removed from the manually segmented image
constitutes false negatives (FN). The formulas for calculation are
provided in Equations 4, 5.

Dice scores and IoU values closer to 1 indicate that the
AI model’s segmentation results are more similar to manual
segmentation. mIoU represents the average IoU for each class, and
mDice represents the average Dice score for each class.The formulas
for calculation are provided in Equations 6, 7. Here, ‘k' denotes the
total number of classes (in this study, there are three classes: optic
canal, internal carotid artery, and sphenoid sinus).

IoU = TP
TP+ FP+ FN

(4)

Dice = 2TP
2TP+ FP+ FN

(5)

Frontiers in Cell and Developmental Biology 06 frontiersin.org

https://doi.org/10.3389/fcell.2025.1609028
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Li et al. 10.3389/fcell.2025.1609028

FIGURE 2
Architectures of the improved UNet network structure (a) The new network structure, which is an improvement upon the original UNet network. (b)
Schematic diagram of the Selective Kernel Convolution (SK Conv) structure. SK Conv consists of Split, Fuse, and Select components. (c) Schematic
diagram of the Transformer Encoder Block structure.

mIoU =
∑k

i=1
IoUi

k
(6)

mDice =
∑k

i=1
Dicei

k
(7)

2.4 Statistical analysis

We conducted statistical analysis using GraphPad Prism
9.0 software and presented the data as mean ± standard
error. To compare the differences in diagnostic capabilities
and diagnostic time of ophthalmology residents before and
after referencing AI, we employed paired-sample t-tests for
analysis, considering differences with p < 0.05 to be statistically
significant.

3 Results

3.1 Training and evaluation of YOLOv7
model for OCF recognition

As the number of iterations increases, the loss value of YOLOv7
steadily decreases and eventually stabilizes, reaching its optimal
performance after 300 training cycles (Figure 3a). We evaluated
the model’s performance using precision, recall, mAP@0.5, and F1
score. The model demonstrates excellent detection performance for
OCF. For detecting right-sidedOCF, the precision, recall, mAP@0.5,
and F1 score are 0.886, 0.739, 0.868, and 0.806, respectively. For
left-sided OCF detection, the corresponding metrics are 0.75,
0.833, 0.827, and 0.789. The overall precision, recall, F1 score,
and mAP@0.5 of the model are 0.795, 0.743, 0.768, and 0.802,
respectively (Table 3).

Furthermore, the confusion matrix indicates that most
targets are correctly predicted, demonstrating the model’s robust
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FIGURE 3
Evaluation results of the trained YOLOv7 model (a) Variation of each metric in YOLOv7 over 300 epochs. (b) Confusion matrix for the YOLOv7 model.
(c) F1 curve for the YOLOv7 model, with an F1 score of 0.77. (d) Precision-recall curve for the YOLOv7 model, with an mAP_0.5 value of 0.802.
(mAP_0.5: Average Precision, IoU = 0.5).

TABLE 3 Evaluation metrics for YOLOv7 model performance.

Category Precision Recall mAP@0.5 F1-score

All 0.795 0.743 0.802 0.768

Non-
fracture(R)

0.74 0.686 0.71 0.712

Fracture(R) 0.886 0.739 0.868 0.806

Non-
fracture(L)

0.804 0.714 0.802 0.756

Fracture(L) 0.75 0.833 0.827 0.789

classification performance (Figure 3b). The F1 curve and PR curve
of the model are shown in Figures 3c,d, confirming the significant
reliability of the AI model in identifying OCF based on optic canal
CT images post-training.

Figure 4 illustrates the performance of the YOLOv7
network model in identifying optic canal CT images. Five
sample images were randomly selected from the optic canal

CT test set. In Figure 4a denotes the annotated regions and
categories of the optic canal, while Figure 4b presents the
corresponding predicted results of the model, indicating the
predicted lesion regions, categories, and confidence scores. Upon
comparison of Figures 4a,b, our model predicts regions close to
the actual lesions, demonstrating relative accuracy in detecting
lesion areas.

3.2 Comparison of diagnostic abilities
between ophthalmic resident physicians
and artificial intelligence models

We additionally selected two sets of CT images as Test Set 1 and
Test Set 2 (each consisting of 50 optic canal CT images). The CT
images in Test Set 1 and 2 are all from patients with unilateral OCF.
We first evaluated the diagnostic abilities of five ophthalmology
residents (Residents 1–5) using Test Set 1. We calculated the
accuracy, precision, recall, and F1 score for each ophthalmology
resident’s diagnosis (Table 4). Subsequently, we assessed the AI
model’s diagnostic assistance using Test Set 2. After AI identification
of the images, the diagnostic results were annotated in the upper
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FIGURE 4
The detection results of YOLOv7 for OCF (a) The annotated ground truth of the optic canal region. (b) The predicted results of the YOLOv7 model for
the optic canal region.

right corner of the images, and ophthalmology residents were asked
to further diagnose the annotated images. Following the reference to
the AI diagnostic results, there was a significant improvement in all
metrics used to evaluate the residents’ diagnostic abilities (Table 4),
with statistical analysis results shown in Figure 5a. Additionally,
there was a significant improvement in the diagnostic speed of
ophthalmology residents, with a noticeable reduction in the total
time taken to diagnose 50−ΔΔCT scans (Table 4). The results of
the statistical analysis are shown in Figure 5b. The ROC curve
and AUC-ROC values displayed in Figure 5c exhibit a similar
trend. With AI model assistance, the diagnostic capabilities of
each ophthalmology resident significantly improved. Before AI
assistance, the averageAUC-ROCof theAI ophthalmology residents
was 0.5764 ± 0.0192. After referring to the AI diagnostic results,
the average AUC-ROC of the ophthalmology residents increased
to 0.7954 ± 0.0271, indicating that inexperienced ophthalmology
residents can make more accurate diagnoses with AI model
assistance.

3.3 Evaluation of the improved UNet
network for orbital apex anatomy
segmentation

We improved the basic structure of the UNet network to
train it for segmenting important anatomical structures in the
orbital apex, including the optic canal, internal carotid artery
(ICA), and sphenoid sinus. We demonstrated the superiority
of the improved model from both component and overall
perspectives, evaluating each component of the model through
ablation experiments (Table 5). The mIoU and mDice reflect the
overall segmentation performance; IoU-OC and Dice-OC are

segmentation metrics for the optic canal region; IoU-ICA and
Dice-ICA are metrics for the ICA region; IoU-SS and Dice-SS are
metrics for the sphenoid sinus region. To enhance its ability to
extract detailed textural features, we first introduced the SK Conv
module independently, which increasedmIoU from 0.871 to 0.9194.
To address the limited receptive field problem, we attempted to
introduce the TEBmodule alone, increasing mIoU to 0.8988. When
both modules were introduced simultaneously, mIoU increased to
0.9276, which was an improvement of 0.0082 and 0.0288 compared
to introducing SK Conv and TEB alone, respectively. Regarding
the recognition of the optic canal region, the improved model
increased IoU by 0.129 and Dice by 0.3147. For the ICA region,
the improved model increased IoU by 0.0145 and Dice by 0.0241.
For the sphenoid sinus region, the improved model increased IoU
by 0.076 and Dice by 0.1284.

Figure 6 illustrates representative examples of the segmentation
results. The black area represents the background, the red area
represents the optic canal region, the green area represents the
internal carotid artery region, and the blue area represents the
sphenoid sinus region. From Figure 6, it can be observed that
the proposed method can better reflect the real situation and
achieve good segmentation for all three different anatomical
regions. The original UNet network incorrectly segmented some
parts of the sphenoid sinus and internal carotid artery regions
as background, with overlapping edges. The addition of the SK
Conv module improved this but still had some gap compared to
the Ground Truth; UNet + TEB performed poorly in extracting
detailed textural features. After introducing both the SK Conv
and TEB modules, the segmentation results are more accurate
and aligned with actual conditions. The yellow arrows indicate
areas where the AI model’s segmentation results do not match
the actual conditions. These results validate the necessity and
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TABLE 4 Comparison of ophthalmology residents’ diagnostic capabilities before and after referring to AI.

Evaluation metric Ophthalmology residents’ results

Before referring to Al results After referring to Al results

OR1 OR2 OR3 OR4 OR5 OR1 OR2 OR3 OR4 OR5

Accuracy 0.66 0.6 0.48 0.55 0.6 0.87 0.79 0.72 0.82 0.84

Precision 0.733 0.69 0.593 0.643 0.703 0.903 0.794 0.757 0.866 0.892

Recall 0.71 0.645 0.516 0.581 0.613 0.903 0.871 0.903 0.839 0.806

F1-score 0.721 0.667 0.552 0.610 0.655 0.903 0.831 0.824 0.852 0.847

Time (min) 52 62 49 45 58 14 20 13 15 14

FIGURE 5
The AI model effectively assists ophthalmology residents in diagnosing OCF (a) Statistical analysis of Accuracy, Precision, Recall, and F-score for
ophthalmology residents before and after using the AI model for assistance. Results are expressed as mean ± SEM (∗∗: p < 0.01;∗∗∗: p < 0.001;∗∗∗∗: p <
0.0001). (b) Diagnostic duration for ophthalmology residents before and after using the AI model for assistance. Results are expressed as mean ± SEM
(∗∗∗: p < 0.001). (c) AUC-ROC values for each ophthalmology resident before and after using the AI model for assistance. The blue line represents
ophthalmology residents before referring to AI, while the red line represents them after referring to AI. AUC = area under the curve; ROC = receiver
operating characteristic.

superiority of the two introduced modules, demonstrating that
the proposed model has significantly improved segmentation
ability for the orbital apex anatomy compared to the original
UNet network.

4 Discussion

In the realm of computer vision, four fundamental tasks prevail:
image classification, object detection, semantic segmentation, and

instance segmentation. Accurately selecting the appropriate task
type is paramount to optimizing both accuracy and efficiency
in image recognition (Tian et al., 2022). Semantic segmentation
entails pixel-level classification, assigning a category label to each
pixel in an image to finely delineate specific categories and
detect boundaries. In this study, given the distinctive features of
enhanced orbital CT images, we opted for the task of semantic
segmentation. We accomplished this by training and refining
the UNet network to identify specific anatomical structures
within the orbital apex. UNet stands as a widely adopted deep
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TABLE 5 Results of ablation experiments.

Category mIoU IoU-OC IoU-ICA IoU-SS mDice Dice-OC Dice-ICA Dice-SS

UNet 0.871 0.7505 0.8884 0.8544 0.7832 0.5151 0.8453 0.7829

UNet
+SK Conv

0.9194 0.8584 0.893 0.9291 0.8875 0.7907 0.853 0.9093

UNet + TEB 0.8988 0.8754 0.9053 0.8255 0.8512 0.8225 0.8732 0.7217

UNet
+SK Conv
+TEB

0.9276 0.8795 0.9029 0.9304 0.9019 0.8298 0.8694 0.9113

FIGURE 6
Examples of the segmentation results of enhanced orbital CT images from the ablation study. The red region represents the optic canal area, the green
region represents the internal carotid artery area, and the blue region represents the sphenoid sinus area. Original refers to the original CT images,
while Ground Truth represents the actual segmentation. The yellow arrows indicate areas where the AI model’s segmentation results do not match the
actual conditions.

learning convolutional neural network model tailored for image
segmentation. Its architecture encompasses a compression path
for spatial information capture, an expansion path for image
reconstruction, and skip connections that bridge low-level features.
The unique skip connections of UNet effectively capture both local
and global features, ensuring segmentation accuracy, rendering it
particularly adept at segmenting intricate anatomical structures in
medical images (Xu et al., 2023b). Moreover, UNet demonstrates
adaptability to images of varying resolutions and dimensions,
rendering it suitable for the diverse datasets commonly encountered
in medical imaging (Suri et al., 2023; Siddique et al., 2021; Das
and Das, 2023). However, owing to inadequate consideration of
the semantic gap between encoding and decoding stages and
susceptibility to overfitting with limited data, UNet often encounters
challenges in precisely delineating fuzzy boundaries or intricate
anatomical regions (ST-Unet et al., 2023). Consequently, while
the foundational UNet architecture is robust, practical applications
often necessitate enhancements to accommodate diverse medical
image recognition tasks.

Recent advancements in ophthalmic AI, as highlighted by
Gong et al. , emphasize the critical role of tailored algorithmic
improvements and multidisciplinary collaboration in addressing
such challenges (Gong et al., 2024). To enhance the original
UNet network’s capability to extract richer semantic information,
we implemented several improvements. Firstly, we augmented its

ability to extract detailed texture features by integrating a texture
enhancement module based on SKNet into the first three skip
connections of the UNet architecture. In recent years, SKNet
has found increasing application in medical image recognition.
For instance, a study by Jeny et al., in 2020 introduced a
convolutional neural network model based on SKNet, which
effectively classified various types of skin cancers (Jeny et al., 2020).
Similarly, Cui et al. employed a 3D UNet with an SKNet attention
module to achieve tooth segmentation in cone-beam computed
tomography images (Cui et al., 2022). Despite these advancements,
it is noteworthy that SKNet has not been extensively utilized in the
realm of orbital image recognition.

The fundamental concept of SKNet revolves around grouping
features and weighting these features within each group using
an adaptive gating function. This adaptive adjustment mechanism
enables the network to automatically leverage information captured
by effective receptive fields for classification tasks. By employing
SoftMax for fusion, features from kernels of different sizes are
aggregated to acquire a global and comprehensive representation for
weight selection. In our module, we employed four convolutional
operations with varying k-sizes to extract features. Subsequently,
an FFC structure computes attention scores post feature addition,
facilitating attention-weighted fusion of multiple branches. This
augmentation significantly enhances the accuracy and efficiency of
semantic segmentation, thereby contributing to a more detailed and
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comprehensive understanding of the intricate anatomical structures
within the orbital region.

Due to the inherent limitation of convolutional operations
in establishing long-range dependencies and global contextual
connections,methods based on convolutional neural networks often
struggle to capture comprehensive spatial relationships (Azad et al.,
2022). To address this challenge, in the last two skip connections of
the UNet architecture, we introduced a semantic perceptionmodule
constructed with a Transformer Encoder Block. Transformers,
originally prominent in natural language processing (NLP), were
ingeniously adapted to computer vision by Dosovitskiy et al., in
2021, resulting in the Vision Transformer (ViT) (Dosovitskiy et al.,
2020). ViT partitions input images into smaller blocks, transforms
each block into a vector, and concatenates these vectors to
form a sequence. The pivotal component of ViT is a multi-
layer Transformer encoder, comprising a multi-head self-attention
mechanism and a fully connected feed-forward network in each
encoder. The model’s output is subsequently processed by a
classifier. While convolutional layers excel in local operations,
focusing on relationships between adjacent pixels, Transformer
layers with global operations complement convolutional networks
by capturing relationships between all pixels. Transformers have
been increasingly adopted in medical image segmentation studies,
serving as potent encoders for various medical image segmentation
tasks. Integrating Transformer with UNet facilitates the restoration
of local spatial information, thereby enhancing finer details.
Successful applications like TransUNet, which amalgamates the
strengths of Transformer and UNet, have demonstrated impressive
performance across diverse medical segmentation tasks (Yin et al.,
2022). Azad et al. also combined both methods for skin lesion
segmentation and achieved promising results (Azad et al., 2022).

In this study, the UNet model was enhanced to better tackle
the challenges of segmenting complex anatomical structures in the
orbital apex, such as the optic canal, internal carotid artery, and
sphenoid sinus. To achieve this, we incorporated SKConv and TEB
into the UNet architecture. These additions significantly improved
the model’s ability to capture richer semantic information and
overcome limitations such as the semantic gap between encoding
and decoding stages, making UNet more effective at handling the
detailed structures found in CT images.

By seamlessly integrating the TEB into the UNet architecture,
we achieved a notable improvement in segmentation accuracy,
addressing the shortcomings of traditional convolutional
networks. To avoid potential loss of detailed information and
image blurring—especially when processing larger images—we
strategically applied the TEB only in the final two stages, ensuring
maximum effectiveness while maintaining computational efficiency.
The successful application of the TEB in orbital CT segmentation
highlights its potential to advance medical image analysis. The
results of our ablation study demonstrated the significant impact
of these innovations on the model’s performance. Compared to the
original UNet network, the new model’s Intersection over Union
(IoU) increased from 0.871 to 0.9276, and the Dice coefficient
improved from 0.7832 to 0.9019, indicating a high degree of
agreement with manual segmentation results. These improvements
underscore the effectiveness of our enhanced UNet model in
increasing segmentation accuracy and overall performance.

The small, irregular shape and significant variability in the
optic canal region make accurately defining fracture boundaries in
OCF CT images a challenging task. Object detection, which can
precisely identify and locate fractures while providing bounding box
information, offers a clear advantage in this scenario by enabling
accurate localization and size determination. To address these
challenges, we selected YOLOv7 for the automatic recognition of
optic canal fractures. YOLOv7 excels in real-time object detection,
providing both the speed and precision necessary for initial fracture
detection, especially in clinical settings where timely diagnosis
is critical. Its ability to detect multiple objects in a single pass
and generate precise bounding boxes ensures accurate fracture
localization, even in the complex and irregular anatomy of the optic
canal. In this study, after training, YOLOv7 achieved an accuracy
of 0.795 and an overall sensitivity of 0.743. We also evaluated
the diagnostic capabilities of ophthalmology residents before and
after using YOLOv7. The average AUC-ROC increased from 0.5764
± 0.0192 to 0.7954 ± 0.0271, while diagnostic time decreased
from 68 min to 15 min. These results demonstrate that the model
significantly aids ophthalmology residents, particularly those with
limited experience, in quickly and accurately assessing fractures in
the optic canal.

Although the YOLOv7 model demonstrated good accuracy and
sensitivity in detecting optic canal fractures, there are still some
limitations. False negatives may occur, especially when fractures are
minor or located in difficult-to-observe areas of the optic canal, or
when the fracture line is obscured due to poor image quality, such
as low resolution scans or artifacts. To address these issues, we plan
to expand the dataset by incorporating axial and sagittal CT images,
whichwill provide amore comprehensive view of the optic canal and
reduce missed detections. Additionally, we aim to include a wider
variety of fracture types, image qualities, and patient populations to
improve the robustness of the model.

Furthermore, while the improved UNet network can accurately
identify anatomical structures like the internal carotid artery, optic
canal, and sphenoid sinus on 2D CT images, it currently struggles
to reflect the 3D relationships between the internal carotid artery
and optic nerve on the sphenoid sinus wall. In future research, we
will supplement the dataset with 3DCT images for better anatomical
representation and integrate 3D skeletal reconstruction, which will
enhance preoperative assessments and support computer-assisted
surgical navigation systems. Despite these limitations, the model’s
performance is still significantly better than that of less experienced
ophthalmology residents, demonstrating its potential as a valuable
tool for clinical auxiliary diagnosis.

5 Conclusion

Our study applied two image recognition tasks, namely,
object detection and image segmentation, to propose an AI-
assisted image recognition system for aiding in OCF diagnosis
and identifying orbital apex anatomical structures. This system
efficiently segments crucial anatomical structures in the orbital apex,
accurately displaying anatomical details that may be overlooked
by human judgment in CT scans. Importantly, the system holds
promise for integration with existing navigation technologies,
paving the way for a new generation of medical intelligent voice
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navigation systems, further enhancing the intelligence of eye and
nose disease surgeries and laying the technological foundation for
navigated endoscopic robotic surgeries. Moreover, the success of
this specific application inspires broader medical image recognition
tasks. The deployment of these models not only advances our
understanding of orbital anatomy but also lays the groundwork for
the continued development of AI-assisted diagnosis, promising to
improve accuracy and effectiveness across various medical image
recognition domains. Insights gained from refining these models
pave the way for continual advancements in AI-driven diagnostics,
indicating a key role for future technologies in enhancing accuracy,
efficiency, and overall healthcare outcomes in various medical
imaging fields.
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