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Objective:This study aims to construct a semantic segmentation-based auxiliary
diagnostic model for thyroid eye disease (TED) focusing on eyelid retraction,
eye movement disorders, ocular inflammation related to Clinical Activity Score
(CAS), facilitating rapid and non-invasive diagnosis for suspected TED patients
and enhancing the efficiency of treatment and diagnosis.

Methods: Data were collected from 153 subjects exhibiting symptoms of eyelid
retraction, eye movement disorders, and ocular inflammation related to CAS.
After quality screening, datasets for the primary position (303 eyes), gaze
positions (1,199 eyes), and a multi-label inflammatory classification dataset
(272 eyes) were constructed. The constructed TBRM-Net adopts a dual-branch
feature extraction and fusion strategy to extract inflammation features for
multi-label classification and recognition; the constructed DSR-Net performs
segmentation of ocular structures and has designed a quantitative diagnostic
algorithm.

Results: The semantic segmentation-based auxiliary diagnostic model for TED
demonstrated a mean pixel accuracy (MPA) of 94.1% in the primary position
dataset and 95.0% in the gaze positions dataset. The accuracy for diagnosing
eye movement disorders, upper eyelid retraction, and lower eyelid retraction
reached 85.4%, 95.1%, and 87.0%, respectively. The accuracy for Redness of
Eyelids, Swelling of Eyelids, Redness of Conjunctiva, Swelling of Conjunctiva, and
Swelling of Caruncle or Plica reaches 81.8%, 78.8%, 90.6%, 73.5%, and 83.9%,
respectively, with an average accuracy of 81.7%. Segmenting and classifying
images of structures affected by ocular inflammation can effectively exclude
interfering features. The designed quantitative algorithm provides greater
interpretability than existing studies, thereby validating the effectiveness of the
diagnostic system.

Conclusion: The deep learning-based auxiliary diagnostic model for TED
established in this study exhibits high accuracy and interpretability in the
diagnosis of ocular inflammation related to CAS, eyelid retraction, and eye
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movement disorders. It holds significant medical value in assisting doctors in
formulating treatment plans and evaluating therapeutic effects.

KEYWORDS

thyroid eye disease (TED), multi-label image classification, semantic segmentation,
feature extraction, automatic quantization, eye digital image dataset

1 Introduction

Thyroid eye disease (TED), also known as Graves’
ophthalmopathy (GO), is a type of autoimmune inflammatory
orbital disease that ranks first in the incidence of adult
orbital diseases (Oculoplastic and Orbital Disease Group of
Chinese Ophthalmological Society of Chinese Medical Association
et al., 2022; Barrio-Barrio et al., 2015; Peter, 2012). The male to
female prevalence ratio of TED is approximately 2:3, with a higher
incidence in females across the general population; however, in
the elderly, the prevalence is higher in males than in females
(Zhang, 2023). The clinical manifestations of TED are complex
and variable, primarily affecting the eyelids, extraocular muscles,
and orbital adipose tissue, leading to eyelid abnormalities, eye
movement disorder, and even compressive optic neuropathy
(Ou et al., 2022). Eyelid abnormalities in TED primarily manifest
as retraction of the upper and lower eyelids, which is one of
the most common signs of the condition and may even lead
to exposure keratopathy. Inflammatory signs include redness of
the eyelids, swelling of the eyelids, redness of the conjunctiva,
conjunctival edema, and inflammation of the caruncle and/or plica.
TED involves four extraocular muscles, with males experiencing
more frequent involvement than females, and the severity
increasing with age (Zhang, 2023), resulting in disturbances of
eye movement. The traditional method for assessing eyelid position
in TED involves clinicians using a ruler for measurements and an
examination light to observe the patient’s eye movements.

There are established diagnostic criteria and management
guidelines for this disease (Oculoplastic and Orbital Disease
Group of Chinese Ophthalmological Society of Chinese Medical
Association et al., 2022). Eyelid retraction is one of the primary
signs for diagnosing TED. The diagnosis of eyelid retraction and
eye movement disorder requires the collaboration of experienced
clinicians and highly cooperative patients. This collaboration
is essential for accurately diagnosing and devising treatment
plans to mitigate or even prevent disease progression. However,
there is a scarcity of specialists in orbital diseases within the
country, and doctors in remote areas often lack experience in
diagnosing and treating TED. Consequently, TED is prone to
misdiagnosis and mistreatment, particularly in the early stages of
the disease. Developing a deep learning-basedmethod for automatic
segmentation of ocular morphology in suspected TED cases with
concurrent quantitative assessment of eyelid retraction and eye
movement disorders, along with automated detection of Clinical
Activity Score (CAS)-associated inflammatory signs (Redness of
Conjunctiva, Redness of Eyelids, Swelling of Coniunctiva, Swelling
of Eyelids, Swelling of Caruncle or Plica), can assist clinicians in TED
diagnosis, standardized staging, and therapeutic optimization. This
approach assists clinicians in diagnosing TED, enhancing diagnostic
efficiency. By combining assessments of eyelid retraction and ocular

motility impairment with the CAS, this method provides accurate
grading of TED severity (Oculoplastic andOrbital Disease Group of
Chinese Ophthalmological Society of Chinese Medical Association
et al., 2022). This approach holds significant value in formulating
treatment plans and evaluating therapeutic efficacy for patients.

In recent years, the advantages of deep learning technology in
image processing have been instrumental in aiding the diagnostic
imaging of TED (Diao et al., 2023; Shao Y. et al., 2023). Xiao et al.
(2022) conducted a classification study based on facial images
to identify eye movement disorders and eyelid retraction, but
the interpretability was limited. Justin et al. (2022) developed
an artificial intelligence platform based on a deep learning (DL)
model that recognizes the presence of TED through ocular
photographs and generates heatmaps to represent pathological areas
within facial images. Jae Hoon et al. (2022) used facial images to
assess the CAS and predict disease activity. Shao Ji et al. (2023)
utilized a deep learning-based analysis system to automatically
calculate comprehensive morphological parameters of the eyelids,
such as palpebral fissure (PF) length and eyelid retraction
distance, to quantify ocular parameters without further diagnostic
interpretation. In terms of ocular structure segmentation, Chen et al.
(2023) employed a lightweight algorithm to segment the sclera,
eyelids, and lacrimal caruncle areas in TED patients. Naqvi et al.
(2020) used SegNet as the backbone network for the segmentation
study of the sclera and iris. Additionally, Hu et al. (2022) diagnosed
eyelid retraction based on regional Hough transform, and Liang
(2021) built upon this for the grading diagnostic study of TED.

This study designed a deep learning system for multi-label
inflammatory classification of TED symptoms and quantitative
assessment of eyelid retraction and eye movement disorders,
enabling rapid, non-invasive preliminary screening. The main work
includes three aspects:

(1) Facial photographs of study subjects were collected, and under
physician guidance, we constructed both primary position
and gaze positions datasets (153 subjects including 100 TED
patients) for quantitative diagnosis of eyelid retraction and eye
movement disorders. Amulti-label structured dataset was built
to classify five CAS-related symptoms.

(2) For the multi-label structured dataset, we performed targeted
cropping of the eyelid structure, conjunctival structure, and
lacrimalmound structure to eliminate irrelevant inflammatory
feature interference.This preprocessed data was integrated into
our classification algorithm, and we have developed a dual-
branch feature fusion network, TBRM-Net, which is based
on MobileViT and residual blocks, for ocular inflammation
feature extraction to achieve higher classification accuracy.

(3) To address quantification challenges in the primary position
and gaze positions datasets, we developed aDSR-Netmodel for
semantic segmentation of ocular structures. By incorporating
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clinical standard-based quantification algorithms with
reference scales, we achieved quantitative evaluation of both
eyelid retraction (including severity degree) and eyemovement
disorders (including impairment extent).

2 Materials and methods

2.1 Data collection

Data in this article were collected from 153 patients with
thyroid ophthalmopathy (TED) and normal controls, including
100 TED patients (51 females) with an average age of 49.5 ±
26 years, and 53 normal controls (33 females). This study was
approved by the Ethics Review Committee of Shanxi Eye Hospital
Affiliated to Shanxi Medical University and was conducted in
accordance with the principles of the Declaration of Helsinki.
Due to the retrospective design of the study, only prior medical
records and facial photographs of patients were used, and all
facial photographs were anonymized and blurred to obscure
identifiable features. Consequently, the Ethics Review Committee
waived the requirement for informed consent. All experiments were
performed in accordance with relevant guidelines and regulations.
Personal information was removed from all images and clinical
data before external processing to ensure strict confidentiality.
The data transmission process was approved by the Ethics Review
Committee.

Based on the standardization of data collection methods, all
facial photographs of the study subjects were taken under natural
lighting conditions using a dedicated smartphone (model Honor
20 Pro) mounted on a special stand at a distance of 25 cm, with
a resolution of 2340 × 1080 pixels. The smartphone used was
equipped with a 48-megapixel rear main camera (aperture f/1.4),
capable of high-quality image acquisition and supporting various
shooting modes. Considering the impact of head stability on image
quality and subsequent research, a specialized head fixation device
was designed to meet the photography requirements. This device,
inspired by the slit-lamp stand, features a base and a headpositioning
frame, with a forehead support at the top and a chin rest at the
bottom. The side vertical rod is an adjustable mechanism that
can be tailored to the patient’s facial shape. A visual target is set
above the head fixation frame to assist in capturing five-position
facial photographs. The side of the device is equipped with a scale
(alternating black and white, each division representing 5 mm),
which serves as a reference for image size restoration during data
processing, providing a basis for quantitative recognition.The use of
a dedicated photography device ensures consistency and stability of
the images during shooting.

The contours for localizing the eye region and drawing the
scale barweremanually delineated using the open-source interactive
software tool LabelMe. The cropped eye images from the primary
position, obtained through Model 1, were annotated for the sclera,
iris, pupil, and lacrimal caruncle and plica regions (LCP). Similarly,
the cropped eye images from the gaze position, also obtained
throughModel 1, were annotated for the sclera, iris, and pupil.These
annotations were used to quantify the diagnosis of TED-related
Eyelid retraction and eye movement disorder. The annotated areas
were then mapped using one-hot encoding in the annotation maps.

The processed multi-label inflammatory classification dataset
includes 278 eyes comprising eyelid structure, conjunctival
structure, and LCP structure. While the semantic segmentation
datasets included 272 eyes in primary position and 1,075 eyes in
gazes position. Notably, the primary position dataset contained
99 eyes with upper eyelid retraction and 115 with lower eyelid
retraction. Both healthy volunteers andTEDpatientswere randomly
allocated into training, validation, and test sets at an 8:1:1 ratio for
model development.The data distribution of each symptom and the
sample data after data enhancement is shown in Table 1.

2.2 Diagnosis method

This study constructs an AI-assisted diagnostic system based
on clinical diagnostic criteria. The system includes the following
modules: the module for localizing the eye region and drawing
the scale bar (Module I), the semantic segmentation module for
the primary position (Module II), the semantic segmentation
module for gaze positions (Module III), the module for quantitative
diagnosis of eye movement disorder (Module IV), and the module
for quantitative diagnosis of Eyelid retraction (ModuleV), themulti-
label classification structure cropping module (Module VI), and
the structural inflammation classification module (Module VII).
The system offers high interpretability in its diagnostic process, as
illustrated in Figure 1.

In Module I, the entire facial image of the patient is input into
the trained DSR-Net, which analyzes the weights to localize the eye
region and the drawing scale bar. The eye region is cropped to a size
of 512 × 512, and the drawing scale bar is processed to obtain the
actual length.

Module II and Module III perform semantic segmentation on
the primary position dataset to identify four structures: sclera, iris,
pupil, and lacrimal caruncle and plica (LCP), and on the gaze
positions dataset to identify three structures: sclera, iris, and pupil,
respectively.The structural boundaries of the ocular images obtained
from thesemodules are then passed toModule IV andModule V for
further analysis.

Module IV is a quantitative model for diagnosing eye movement
disorder, which constructs distinct diagnostic logic based on the
presence or absence of movement impairments in four directions:
upward, downward, leftward, and rightward. In both Module IV and
ModuleV,D represents the pixel reference length, and the quantitative
results are derived by combining D with the ratio measurement
obtained from the drawing scale bar.

ModuleV is a quantitativemodel for diagnosingEyelid retraction,
using the vertical line passing through the center of the pupil as a
reference.The diagnostic logic is constructed based on four levels: the
presence of only upper eyelid retraction (scleral exposure above the
vertical line of the pupil); the presence of both upper and lower eyelid
retraction (scleral exposure above and below the vertical line of the
pupil); the presence of only lower eyelid retraction (scleral exposure
below the vertical line of the pupil); the absence of eyelid retraction.

Module VI performs targeted cropping of the eyelid,
conjunctival, and lacrimal-caruncle-plica (LCP) structures from
primary position, with the cropped structural images corresponding
to specific inflammatory symptom labels for subsequent multi-label
classification in Module VII.
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TABLE 1 Data distribution.

Statistical
Data

Eyelid Inflammation Conjunctival
Inflammation

LCP Primary
position

Gaze
positions

Redness of
eyelids

Swelling of
eyelids

Redness of
conjunctiva

Swelling of
coniunctiva

Swelling of
caruncle or

plica

Eyelid
retraction

Eye
movement
disorder

Quantity 74 186 182 50 102 115 341

Account for 26% 67% 65% 18% 37% 42% 32%

Enhancement 222 186 364 200 306 1,360 1705

FIGURE 1
Diagnostic system framework. The system framework comprises Module I for detecting the eye region and the drawing scale bar, Module II for
identifying ocular structures in the primary position, Module III for identifying ocular structures in gaze positions, Module IV for the quantitative
diagnosis of eye movement disorder, Module V for the quantitative diagnosis of Eyelid retraction, Module VI for the multi-label classification structure
cropping, and Module VII for the structural inflammation classification.

Module VII implements a multi-label classification network
that adopts a dual-branch feature extraction and fusion strategy
to comprehensively characterize inflammatory features, enabling
precise multi-label classification of inflammation corresponding
to specific ocular structures.

2.3 Quantitative standard

The eye structure is shown in Figure 2A. Dup and Ddown are
the distances from the margin of the upper eyelid and the margin
of the lower eyelid to the center of the pupil, respectively, to assist
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FIGURE 2
(A) Eye structure. Dup and Ddown are the distances from the margin of the upper eyelid and the margin of the lower eyelid to the center of the pupil,
respectively, to assist in the diagnosis of eyelid retraction. (B) The annotation of eye and drawing scale for facial image recognition. (C) Structural data
annotation for multi-label classification. (D) Quantitative diagnosis of eyelid retraction and eye movement disorders involved in eye structure labeling.

in the diagnosis of eyelid retraction. Figure 2B is the annotation of
eye and drawing scale for facial image recognition. Figure 2C shows
the structural data of multi-label classification. Figure 2D shows the
semantic segmentation annotation of eye structure.

In current clinical diagnostic practice, the criteria for diagnosing
eye movement disorders (Yang and Fan, 2018) and for assessing
eyelids (Bartalena et al., 2016) are clear. This paper translates these
criteria into quantifiable thresholds for the purpose of conducting
research. The reference point of the medial canthus is converted
to the medial point of the caruncle, and the reference point of the
lateral canthus is transformed to the lateral point of the sclera. The
reference position of the lower lacrimal punctum in the clinical
standard for medial gaze positions (Tao, 2019) is altered to the
intersection point of the lateral side of the fold region with the lower
eyelid margin (Figure 2A), which facilitates the quantification of
eyelid retraction in facial images and the quantitative diagnosis of
eye movement disorders. Under the guidance of ophthalmologists
at the Shanxi Eye Hospital, annotations of ocular structures
are performed, with the caruncle and fold region combined for
annotation to facilitate subsequent research. The conversion of
diagnostic criteria is as follows:

(1) Upward or Downword: Coincidence of the iris with the line
connecting themedial and lateral canthi, with an overlap of less
than 20 pixels, is considered normal (approximately 1.4 mm, as
confirmed by actual diagnostic results).

(2) Right eye left or Left eye right: The distance from the
inner margin of the pupil to the medial canthus minus the
distance from the lower punctum lacrimale to the medial
canthus being less than 0 pixels is indicative of a normal
condition.

(3) Left eye left or Right eye right: The distance
from the outer margin of the iris to the lateral
canthus being less than or equal to 0 is considered
normal.

(4) Upper eyelid retraction: Taking the center of the pupil
as the reference vertical line, when the corneal area
is relatively well exposed, the distance from the lower
palpebral margin to the center of the pupil minus the
distance from the upper palpebral margin to the center
of the pupil is greater than 1 mm, which is considered
normal.

(5) The distance from the lower eyelid margin to the
inferior margin of the cornea being less than 0 mm is
considered normal.

In this study, quantitative diagnosis of eyelid retraction and
eye movement disorder is conducted based on the semantic
segmentation results, with the aid of auxiliary lines and a
scale bar. The boundary coordinates of the segmented ocular
structures are analyzed and input into different diagnostic logics, as
illustrated in Figure 3.
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FIGURE 3
The schematic diagram of the quantitative diagnostic model is shown. Based on the quantitative results, each gaze direction can be classified into
movement disorder or normal movement. Similarly, Eyelid retraction is categorized into four levels according to the diagnostic logic: upper eyelid
retraction, both upper and lower eyelid retraction, lower eyelid retraction, and normal.

2.4 Model framework

The architectural framework of the semantic segmentation
network model DSR-Net is responsible for the operational
integration of Modules I, II, III, and VI. The DSR-Net primarily
consists of five components: the feature encoder module, the feature
decoder module, the SE-Block, the Dense Atrous Convolution
(DAC) block, and theResidualMulti-kernel Pooling (RMP)module.
Initially, the image is processed by the feature encoder module,
which preliminarily extracts features and reduces the spatial
dimensions of the feature map through a 7 × 7 convolution with
a stride of 2, followed by max pooling downsampling and residual
blocks for feature extraction and encoding. Subsequently, the DAC
block and RMP module are employed to extract features of targets
at various scales and global contextual information. The decoder
then progressively restores the feature maps from the encoder
(processed by the SE module) and the high-level semantic feature
maps extracted by the DAC and RMPmodules to the original size of
the segmentation result image through four upsampling steps using
deconvolution.

The multi-label classification network TBRM-Net, responsible
for Module VII, employs a dual-branch feature fusion strategy. The
input images are inflammatory structure segmentation maps. For
eyelid structure images, the network classifies labels into Redness of
Eyelids, Swelling of Eyelids, and normal; for conjunctival structure
images, it classifies labels into Redness of Conjunctiva, Swelling of

Coniunctiva, and normal; and for LCP structures, it classifies labels
into Swelling of Caruncle or Plica and normal. The first branch of
the input image utilizes the MobileViT module to initially extract
features through max pooling and residual connections, and then
delivers the extracted features to the MobileViT module for further
extraction of global features. The second branch employs 3 × 3
convolutional blocks to extract high-dimensional features from the
image, and at each layer, these features are concatenated and fused
with those extracted from the first branch. The features from both
branches are multiplied to achieve feature fusion. Finally, the fused
features undergo channel dimension reduction through a 3 × 3
convolution, followed by global average pooling to compress the
featuremap, and are then flattened to output the results of themulti-
label classification head. The model structure is shown in Figure 4.

The DAC block incorporates four cascaded branches with
dilated convolutions of dilation rates 1, 3, and 5, respectively. In each
dilated convolution branch, a 1 × 1 convolution followed by ReLU
is applied. The branch with a larger receptive field extracts features
of large-sized targets, while the branch with a smaller receptive
field extracts features of small-sized targets. By combining dilated
convolutions with different dilation rates, the DAC block captures
features of targets across various scales, thereby acquiring more
comprehensive and deeper semantic information.

The SE module (Squeeze-and-Excitationmodule) utilizes global
average pooling to compress the input feature maps. By learning the
inter-channel weight relationships through different compression
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FIGURE 4
Model structure.

ratios r, it generates a channel-wise weight vector with values
ranging between [0, 1]. These weights are then multiplied by each
channel of the original input features X, thereby recalibrating the
importance of each channel.The channelweight vector s is expressed
as shown in Equation 1.

s = F(z,W) = σ(g(z,W)) = σ(FC2δ(FC1Z)) (1)

X̃ = s ·X (2)

FC1 represents a fully connected layer that reduces the output
to C/r channels; δ denotes the ReLU activation function; FC2 is
a fully connected layer with an output of C channels; σ signifies
the Sigmoid function, X̃ is the output feature map, as shown in
Equation 2.

The RMP block encodes multi-scale contextual features of
objects extracted from the DAC module by employing pooling
operations of various sizes. It utilizes four branches with different
receptive fields to encode global contextual information, each

branch outputting features of different scales. After each scale-
specific feature, a 1 × 1 convolution is applied to reduce the
feature map size to 1/N of the original size. The low-dimensional
feature maps are then upsampled to match the size of the
feature maps output by the DAC module. Finally, the multi-
scale features are concatenated with the features extracted by
the DAC module along the channel dimension for subsequent
decoding. The structures of each Block are illustrated in
Figure 5.

2.5 Implementation

The experiment was conducted on the integrated development
environment PyCharm 2022.3.2 (JetBrains Inc., Czech Republic),
using the computer programming language Python 3.8 (Guido van
Rossum, Netherlands), and the deep learning framework PyTorch
1.12.1 - cu113 (Facebook Inc., United States). The experiment
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FIGURE 5
(A) DAC _Block structure, (B) SE _Block structure and (C) RMP_Block structure of DSR-Net.

utilized the processor Intel® Xeon® Silver 4210R CPU@ 2.40 GHz
(Intel Inc., United States) and the graphics card NVIDIA GeForce
RTX 3090 Ti GPU (Nvidia Inc., United States).

This paper involves the localization and annotation of facial
images (eye position and drawing scale) and the annotation of
ocular structures. The training model achieves eye positioning
and simultaneously crops the labeled images to a size of 512
× 512 pixels, ensuring the complete display of ocular structures
and facilitating network input processing. Data augmentation is
performed on the eye appearance maps, which includes horizontal
flipping, brightness adjustment with a parameter of 1.5, contrast
adjustment with an alpha of 1.5 and a beta of 0, dilation and
erosion using 3 × 3 convolution kernels, and a probabilistic
deflection within the range of (−20°, +20°) at a probability of 0.5.
This approach simulates the illumination variations and individual
differences in eye growth observed during actual examinations.
The network employs the adaptive moment estimation (Adam)
optimizer, with an initial learning rate of 5 × 10−4, which is
gradually decreased in subsequent epochs. The parameter r in the
SE module is set to 16. The batch size is set to 8, and the training is
conducted for 200 epochs.

The network is optimized using a cross-entropy loss function.
By minimizing the discrepancy between the predicted probabilities
and the actual labels, the model is encouraged to learn more
accurate segmentation; the higher the precision of the prediction
results, the lower the loss value. In this experiment, different
weights are assigned to various eye regions, aiming to give more
learning emphasis to important structures. For the primary position,
the loss function weights were set to (1, 4, 4, 8), corresponding
to the sclera, iris, pupil, and lacrimal caruncle and plica (LCP)
regions, respectively. For the gaze positions, the loss function
weights were set to (1, 4, 8), corresponding to the sclera, iris,

and pupil regions, respectively. Equation 3 represents the loss
function formula.

L = −
N

∑
i=1

C

∑
c=1

wcyi,c log(pi,c) (3)

N represents the batch size, C is the number of classes, yi,c is one
if sample i belongs to class C, and 0 otherwise, pi,c is the probability
that the model predicts sample i belongs to class C. Wc is the weight
for each class C, set to different parameters to enhance learning for
diagnostically important areas, such as the pupil and other regions.

The model’s diagnostic performance was evaluated using
the Python 3.8 programming language, with metrics such as
IoU (Intersection over Union, Equation 4), Dice coefficient
(Equation 5), and MPA (Mean Pixel Accuracy, Equation 6) to
assess the segmentation effectiveness. Both are used to measure
the similarity between the network’s segmentation results and the
gold standard. The diagnostic analysis results were evaluated using
ACC (accuracy, Equation 7), P (precision, Equation 8), and TPR
(true positive rate, Equation 9). i and j represent the target and
non-target classes (such as the pupil region and non-pupil region),
or the positive and negative outcomes of the diagnostic results,
respectively. pii denotes the correctly segmented pixels, which are
true positives, while pij and pji represent false positives and false
negatives, respectively. k is the number of segmentation classes.

IoU =
pii

pij + pji + pii
(4)

Dice =
2pii

pij + pji + 2pii
(5)

MPA = 1
K+ 1

k

∑
i=0

pii
pij + pji

(6)

Acc =
pii + pjj

pij + pji + pii + pjj
(7)
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TABLE 2 Facial location results.

Structure IoU Dice

Left eye 0.811 0.894

Right eye 0.801 0.882

Drawing scale 0.881 0.934

P =
pii

pij + pii
(8)

TPR =
pii

pji + pii
(9)

3 Results

This experiment introduces classic advanced deep learning
models from the fields of natural and medical imaging,
comparing eight models in semantic segmentation task: U-Net
(Ronneberger et al., 2015), SE-UNet (Hu et al., 2018), SegNet
(Badrinarayanan et al., 2017), DeepLab v3 (Chen et al., 2019),
UNeXt (Valanarasu and Patel, 2022), ResNet (Xie et al., 2016), Deep
Pyramid (Johnson and Zhang, 2016), and CE-Net (Gu et al., 2019).
The DSR-Net was trained on the primary position dataset and the
gaze positions dataset, and the weights with the highest Mean Pixel
Accuracy (MPA) on the validation setwere selected for testing on the
test set. In the multi-label classification task, the structural datasets
Eyelid structure dataset, Conjunctival structure dataset, and LCP
dataset were used to compare the accuracy of the proposed model
with classical models such as Resnet (Xie et al., 2016), Resnet50
(Xie et al., 2016), ConvNet (Liu et al., 2022), ShuffleNet_v2 (Ma et al.,
2018), MobileNetv2 (Sandler et al., 2018), and MobileVit (Mehta
and Rastegari, 2021). The weights with the highest accuracy on the
validation set were selected for testing. The results demonstrate that
the two models proposed in this paper exhibit high segmentation
precision and classification accuracy, thereby facilitating clinical
auxiliary diagnosis.

In the tasks of Model I and Models II and III, the facial
localization results are presented in Table 2. The evaluation metrics
IoU and MPA for the segmentation effectiveness of ocular
structures in the tasks of primary position segmentation and gaze
position segmentation are detailed in Table 3 respectively. The Dice
coefficient is presented as shown in Table 4.

The comparative segmentation results of Model II and Model
III are shown in Table 5. Although each classical model can
achieve the segmentation of ocular structures, their handling of
structural edges is less than ideal, with objects four and five being
particularly noticeable. Building upon the U-shaped structure,
the DSR-Net model addresses the distinct color characteristics of
ocular color images by incorporating channel attention modules
into the skip connections. This enhances segmentation accuracy
while maintaining an acceptable inference speed, thereby improving
spatial feature extraction capabilities. The improved segmentation

accuracy subsequently elevates the precision of quantitative
analysis.

The DSR-Net achieved IoU scores of 81.1%, 80.1%, and 88.1%
for the left eye, right eye, and drawing scale bar, respectively,
in Module I, demonstrating its capability to effectively perform
localization and cropping tasks. In Module II, the IoU scores for
the sclera, iris, pupil, and plica regions in the primary position were
88.5%, 94.4%, 84.9%, and 73.1%, respectively. In Module III, the
IoU scores for the sclera, iris, and pupil of the fixation position
were 94.0%, 91.0%, and 83.7%, respectively. Although the IoU for
the iris structure did not surpass Deep Pyramid’s 93.3%, DSR-Net
demonstrated faster inference speed and superior performance in
other aspects compared to Deep Pyramid. This indicates that the
proposed model exhibits better overall performance, validating the
effectiveness of the feature extraction capabilities of the DSR-Net
model. Additionally, theMean Pixel Accuracy (MPA) reached 94.1%
and 95.0%, further confirming the high segmentation precision
of the model.

In the tasks of Model IV and Model V, the quantitative
analysis achieved RMSE values of 0.847 for eye movement
disorder, 0.667 for upper eyelid retraction, and 0.517 for lower
eyelid retraction, As shown in Table 6, demonstrating good
quantitative accuracy. The quantitative differences are illustrated in
Figure 6.

As shown in Table 7, the accuracy in the diagnostic tasks for
eye movement disorder and upper and lower eyelid retraction
reached 85.4%, 95.1%, and 87.0%, respectively, indicating that the
diagnostic results are reliable. Due to individual differences in the
scleral region, shadows between the eyelids and sclera are present
in some patients, and the boundary between the iris and sclera is
relatively distinct, resulting in slightly higher segmentation accuracy
for the iris compared to the sclera. Because TED patients may
have eye lesions such as swelling, segmenting the LCP region in
the primary position is challenging. The diagnostic experiments
for eyelid retraction and eye movement disorder in this paper
are based on the segmentation results, which have good accuracy
and can quickly and conveniently determine whether a patient has
eyelid retraction and eye movement disorder, providing important
assistance for the early diagnosis and prognostic treatment of TED.

The best weights from Model II were selected to execute
the task of Model VI, achieving the recognition and cropping
of ocular structures for use as image input in the multi-label
inflammation classification task of Module VII. TBRM-Net utilizes
residual connections in the main branch to learn deep features and
integrates CNN with Transformer through the MobileViT module
for feature extraction. It employs fewer parameters in the main
branch to integrate local and global features of the input tensor,
and fuses convolutional features between each module of the main
branch and the auxiliary branch, enabling sufficient dimensional
feature interaction. This feature extraction method demonstrates
superior capability compared to other classical networks. As shown
in Figure 7 by Grad-CAM, it can better focus on the structural
regions where inflammation is present. In the tasks of Model VI
and Model VII, the classification evaluation results of TBRM-Net
for the five types of inflammation involved in CAS are presented
in Table 8. The accuracy (Acc) for Redness of Eyelids, Swelling
of Eyelids, Redness of Conjunctiva, Swelling of Conjunctiva, and
Swelling of Caruncle or Plica reaches 81.8%, 78.8%, 90.6%, 73.5%,

Frontiers in Cell and Developmental Biology 09 frontiersin.org

https://doi.org/10.3389/fcell.2025.1609231
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Han et al. 10.3389/fcell.2025.1609231

TABLE 3 Segmentation results of each model (IoU/MPA).

Model Primary position Gaze positions

Scleral Iris Pupil LCP MPA Scleral Iris Pupil MPA

U-Net 0.855 0.934 0.830 0.686 0.897 0.915 0.904 0.796 0.932

SE-UNet 0.827 0.927 0.794 0.640 0.920 0.937 0.917 0.821 0.941

UNeXt 0.809 0.912 0.723 0.635 0.866 0.903 0.865 0.702 0.904

ResNet 0.830 0.853 0.589 0.585 0.933 0.937 0.910 0.807 0.958

DeepLab v3 0.852 0.937 0.827 0.668 0.896 0.931 0.908 0.809 0.938

SegNet 0.842 0.917 0.658 0.673 0.868 0.929 0.904 0.793 0.930

DeepPyramid 0.881 0.944 0.843 0.716 0.930 0.914 0.933 0.834 0.944

CE-Net 0.884 0.937 0.836 0.688 0.940 0.937 0.912 0.828 0.950

DSR-Net 0.885 0.944 0.849 0.731 0.941 0.940 0.910 0.837 0.950

The bold indicates the highest segmentation accuracy of this structure, and underline indicates the accuracy achieved by this model when the segmentation accuracy is not the highest.

TABLE 4 Segmentation results of each model (dice).

Model Primary position Gaze positions

Scleral Iris Pupil LCP Scleral Iris Pupil

U-Net 0.965 0.920 0.903 0.806 0.953 0.949 0.876

SE-UNet 0.904 0.962 0.881 0.940 0.967 0.956 0.892

UNeXt 0.892 0.953 0.831 0.766 0.948 0.926 0.814

ResNet 0.904 0.919 0.731 0.724 0.967 0.952 0.886

DeepLab v3 0.920 0.967 0.901 0.788 0.963 0.952 0.887

SegNet 0.913 0.956 0.778 0.798 0.962 0.949 0.876

DeepPyramid 0.936 0.961 0.910 0.827 0.965 0.955 0.903

CE-Net 0.937 0.967 0.909 0.809 0.967 0.953 0.899

DSR-Net 0.938 0.969 0.914 0.839 0.963 0.952 0.923

The bold indicates the highest segmentation accuracy of this structure, and underline indicates the accuracy achieved by this model when the segmentation accuracy is not the highest.

and 83.9%, respectively, with an average accuracy of 81.7%. The
confusion matrix is shown in Figure 8. The segmentation of the
structures affected by inflammation in the eye can effectively
exclude interfering features, demonstrating superior classification
performance in multi-label classification tasks.

4 Discussion

TED presents with complex clinical manifestations affecting
the extraocular muscles, eyelids, and other tissues (Wiersinga
and Bartalena, 2002), which can lead to eyelid retraction

and eye movement disorder. Consequently, accurate diagnosis
typically requires the expertise of experienced orbital physicians.
However, there is currently a relative scarcity of specialized orbital
physicians, which poses challenges for the diagnosis, evaluation,
and management of TED. Internationally and domestically
recognized diagnostic standards and guidelines already exist
(Bartalena et al., 2021), and characteristic signs can be identified
through imaging studies. This provides a foundation for the
application of artificial intelligence (AI) in auxiliary diagnosis.
Currently, the majority of studies employ professional digital
cameras to capture eye images from patients and develop artificial
intelligence-based diagnostic models. The use of smartphones
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TABLE 5 Visualization of partial segmentation results.

Object Input Label DSR-Net U-Net UneXt DeepLab
v3

SegNet Deep
Pyramid

CE-Net

1

2

3

4

5

TABLE 6 Quantitative result analysis.

Evaluation
index

Eye
movement
disorder

Down Up Right eye
left

Left eye
right

Left eye
left

Right eye
right

Upper
eyelid

retraction

Lower
eyelid

retraction

RMSE 0.847 0.351 0.735 1.276 0.789 0.667 0.517

MSE 0.462 0.163 0.421 0.887 0.394 0.323 0.197

R2 0.889 0.982 0.934 0.682 0.824 0.936 0.914

for eye image acquisition is typically combined with portable
slit lamps or portable fundus camera devices (Vilela et al.,
2024). However, there has been no reported research on utilizing
smartphone-collected eye images specifically for the development
of TED diagnostic models. In this study, five-dimensional
eye images of TED patients were successfully captured using
smartphones, enabling not only the documentation of characteristic
ocular signs but also the detection of eye movements. Two
semantic segmentation data sets were successfully constructed:
primary position and fixation position, and inflammation
classification data set, comparing the segmentation performance
of different deep learning models on the ocular structures of
TED patients and their classification efficacy regarding ocular
inflammation.

The DSR-Net model c in this study captures multi-level and
multi-scale semantic features, enhancing the ability to extract
channel features from color images based on the learning of
spatial information, The diagnosis of related symptoms is based
on eye image segmentation. TBRM-Net employs a dual-branch
strategy to extract and fuse inflammation features at different scales.

Furthermore, this study innovatively introduced a quantitative
recognition model for eyelid retraction and eye movement disorder,
which can identify and quantitatively evaluate these key diagnostic
indicators based on the semantic segmentation results of the eye
structure. The model achieves diagnostic accuracy rates of 85.4%,
95.1%, and 87.0% for TED eye movement disorders and upper and
lower eyelid retraction, respectively. Segmentation preprocessing
was performed on the structures involved in inflammation. In the
classification of Redness of Eyelids, Swelling of Eyelids, Redness of
Conjunctiva, Swelling of Coniunctiva, and Swelling of Caruncle or
Plica, the Accuracy reaches 81.8%, 78.8%, 90.6%, 73.5%, and 83.9%,
respectively, allowing for rapid and convenient clinical assistance in
diagnosing TED conditions. According to the EUGOGO guidelines,
the degree of eyelid retraction and the severity of diplopia are
key factors in evaluating the severity of TED (Bartalena et al.,
2016; Bartalena et al., 2021; Bartalena et al., 2008). The
quantitative recognition model for eyelid retraction, eye movement
disorders, and inflammation classification established in this study
provides valuable assistance in assessing the severity of TED in
patients.
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FIGURE 6
Quantitative differences. The distance quantification and actual distance discrepancies for Eyelid retraction and movement impairments in the upward,
downward, leftward, and rightward gaze directions were analyzed. For the inward gaze position, the quantification involves the lacrimal punctum
location in the primary position and the inner edge of the pupil in the current gaze position, requiring comprehensive consideration of both locations.
This results in a higher number of individuals with significant discrepancies.

TABLE 7 Evaluation indicators of diagnostic results.

Model Eye movement disorder Upper eyelid retraction Lower eyelid retraction

ACC P TPR ACC P TPR ACC P TPR

U-Net 0.828 0.759 0.833 0.855 0.750 0.857 0.887 0.838 0.929

SE-UNet 0.762 0.708 0.715 0.838 0.720 0.857 0.854 0.787 0.928

UNeXt 0.825 0.759 0.833 0.919 0.904 0.857 0.725 0.627 0.999

ResNet 0.770 0.752 0.656 0.870 0.724 0.964 0.838 0.736 0.999

DeepLab v3 0.830 0.778 0.823 0.919 0.863 0.904 0.806 0.710 0.999

SegNet 0.834 0.756 0.882 0.951 0.964 0.857 0.709 0.908 0.999

DeepPyramid 0.834 0.774 0.843 0.919 0.863 0.904 0.867 0.800 0.999

CE-Net 0.826 0.765 0.833 0.951 0.875 0.964 0.854 0.756 0.999

DSR-Net 0.854 0.843 0.843 0.951 0.950 0.904 0.870 0.777 0.999

The bold indicates the highest segmentation accuracy of this structure, and underline indicates the accuracy achieved by this model when the segmentation accuracy is not the highest.

4.1 Standardized acquisition of facial
images

In the clinical management of TED patients, the changes
of ocular inflammatory signs, eyelid retraction, and ocular

motility disorders are very important to evaluate. The assessment
results given by doctors with different experience may be
different. AI-assisted diagnostic system can achieve standardized
assessment, improve diagnostic efficiency and reduce human
error. The standardization of AI diagnostic system is based on
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FIGURE 7
Groups (A,B) represent successful classification cases, while group (C) represents a failed classification case.

TABLE 8 Acc of two label classification of structured data sets in dataset1.

Acc Eyelid Inflammation Conjunctival Inflammation LCP Mean

Redness of
eyelids

Swelling of
eyelids

Redness of
conjunctiva

Swelling of
coniunctiva

Swelling of
caruncle or plica

Resnet34 0.721 0.772 0.826 0.707 0.843 0.773

Resnet50 0.728 0.829 0.834 0.697 0.846 0.786

Convnet 0.606 0.723 0.840 0.620 0.770 0.711

Shufflenet_v2 0.642 0.770 0.901 0.685 0.792 0.758

Mobilenetv2 0.723 0.694 0.827 0.621 0.828 0.739

MobileVit 0.727 0.705 0.820 0.650 0.755 0.731

TBRM-Net 0.818 0.788 0.906 0.735 0.839 0.817

The bold indicates the highest segmentation accuracy of this structure, and underline indicates the accuracy achieved by this model when the segmentation accuracy is not the highest.
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FIGURE 8
Confusion matrix. (A) Redness of eyelids, (B) Swelling of conjunctiva, (C) Redness of conjunctiva, (D) Swelling of eyelids (E) Swelling of caruncle or plica.

the standardization of image data acquisition. In this study, a
standardizedmode of facial image acquisition was established based
on the detailed criteria of EUGOGOguidelines for the assessment of
TED.The standard sets the image size, shooting light, Angle, face to
image ratio, image background and other factors in detail, and tries
to ensure that the photo effect is similar to the actual scene when the
doctor’s clinical diagnosis is made. Compared to Xiao et al. (2022),
who used professional digital SLR cameras (SONY ILCE-7M2) to
capture eye images, this study employed a smartphone for image
collection to enhance the universality and accessibility of the model.
The combination of smartphone and AI is also a research hotspot,
especially in the screening of eye diseases with high blinding rate
such as diabetic retinopathy, retinopathy of prematurity, glaucoma
and age-related macular degeneration (Sharafeldin et al., 2018),
which has shown potential and advantages. In this study, the five-
dimensional external observations of patients were standardized
collected by smartphone and used as the data set for model training.
The screening model established by this method may have a wider
applicability and more audience groups.

The acquisition of stable head position images is helpful to
establish a standardized recognition model and achieve accurate
judgment of eyelid retraction and ocular motility disorders in TED
patients. In two studies that established eye movement detection
models based on the facial images of TED patients and normal
people, the patients were orally asked to maintain a stable head
position during the photo taking (Smith et al., 2023; Lou et al.,
2022). We considered that due to the patient’s compensatory head
position and cooperation degree, it may be difficult to maintain a
stable head position when the eyes move to different eye positions
in the actual photo taking. The position of the patient’s head is very
important in the process of image acquisition. The rise and fall of
the jaw and the tilt of the head will affect the judgment of the results.

A study by Scheetz et al. (2021) showed that compensatory head
position and head tilt would lead to compensatory eye movement
rotation in patients, and the amplitude of rotation was positively
correlated with the degree of head tilt. Therefore, the use of a
special head-fixing device in this study can ensure the stability of the
patient’s head position and avoid the distortion of the measurement
results caused by the change of head position, so as to improve
the stability and consistency of the image. The device, which has
been patented at the same time, can also be used for photographic
measurement of normal human eye movements.

The key to establish the quantitative identification detection
model is to set the scale identification when the image is collected.
There are differences in the quantitative scales used in different
AI quantitative models. Van Brummen et al. (2021) developed an
automaticmeasurementmodelofkeyeyelidparametersbasedondeep
learning, including the distance between the upper eyelid margin and
the pupil center, the distance between the lower eyelidmargin and the
pupil center, etc. In theprocessofdatacollection,a scalebarwithascale
of 10 mmwas placed on the forehead of the patient, whichwas used as
a scale bar for pixel conversion in the data processing stage. Lou et al.
(2022) studied an analysis method for automatic measurement of eye
movementsbasedonfacialphotographsanddeep learning techniques,
which couldobjectively assess the amplitudeof eyemovements. In this
study, a circularmarker patchwith a diameter of 10 mmwas pasted on
theforeheadofvolunteersduringfacial imageacquisitionasareference
for quantification. Referring to the quantitative method of the above
study, a ruler was set on the side of the special fixation device of the
head during the external observation of the patient’s face. In order to
improve the contrast, it was set as a small black andwhite cell, each cell
was 5 mm.The quantitative signs in this study were fixed in position,
and there was no need to paste or place other reference signs on the
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forehead of the patient. It simplifies the photography process while
obtaining reliable and stable data.

4.2 Model identification performance

4.2.1 The recognition performance of
quantitative model V for eyelid retraction

The segmentation model established in this study demonstrated
strong capability in recognizing the sclera, iris, and pupil, with IoU
scores of 0.885, 0.944, and 0.849, respectively, indicating a relatively
high level of AI image segmentation performance and efficiency.
This provided a solid foundation for the subsequent development
of a quantitative model for eyelid retraction. The designed Model
V achieved ACC scores of 0.951 and 0.870 for upper and lower
eyelid retraction, respectively, and RMSE values of 0.667 and 0.517
in quantitative evaluation, reflecting a high level of quantification
accuracy and interpretability.

The TED intelligent diagnostic system based on facial images
developed by Xiao et al. (2022) can accurately identify eyelid
retraction, with a sensitivity of 0.87 and a specificity of 0.88. The
network used for the development of this model is ResNet50, and
the dataset consists of 1,560 patients’ eye appearance photos, with the
model being trained for 100 epochs. Our model achieved accuracies
of 0.951 and 0.870 for upper and lower eyelid retraction, respectively,
and Precisions of 0.950 and 0.777, respectively, using a dataset of 153
patients’ eye appearance photos. During the model training process,
we continuously adjusted parameters and conducted training for
200 epochs. The diagnostic performance of our model for eyelid
retraction is comparable to the results of Xiao et al. (2022), and is
slightly stronger in the diagnostic capability for patients with eyelid
retraction.Thismay be related to the number of times we trained the
model, the use of the DSR-Net network which is more optimized
for edge recognition accuracy, and the fact that the diagnosis of
eyelid retraction is based on the quantitative assessment of eye
structuremorphology, which is more explanatory than classification
evaluation based on a large amount of data.

Accurate measurement of eyelid retraction is crucial for the
diagnosis of TED, grading of disease severity, surgical design for
upper eyelid retraction, and evaluation of treatment efficacy. The
eyelid retraction quantification model established in this study
can not only perform qualitative diagnosis but also quantitative
assessment, with an accuracy of recognition consistent with the
method proposed by Shao Ji et al. (2023). The model established in
this study can quantify eyelid retraction of any degree and has certain
advantages inmeasuringmildTEDpatients. In evaluating the changes
in the condition of TED patients and follow-up of postoperative
efficacy, where observation of eyelid retraction is required, this model
can perform continuous quantitative monitoring.

4.2.2 The recognition performance of
quantitative model IV for eye movement disorder

Extraocularmusclesarethemainsites involvedinthedevelopment
of TED, and ocular movement disorders are caused by inflammatory
cell infiltration. In the later stage, rapid fibrosis leads to reduced
muscle elasticity and then restrictive strabismus (Eckstein et al., 2018).
TED is the most common cause of enlargement and dysfunction
of extraocular muscles, mainly involving the inferior and medial

rectus muscles, which can lead to horizontal and vertical strabismus,
leading to diplopia and seriously affecting the quality of life of
patients (Savino et al., 2020). Ocular motility disorders play a very
important role in the diagnosis and severity assessment of TED
(Bartalena et al., 2016; Bartalena et al., 2021). Therefore, clinical
evaluation of ocular motility disorders can help to judge the severity
of TED, and then conduct personalized treatment for patients.

Theclinical examinationofeyemovements inTEDpatients largely
depends on the experience of doctors, and there is no standardized
tool for detecting eye movements at present (Hanif et al., 2009).
The most commonly used method in clinical practice is that the
examiner uses a flashlight to guide the patient to fixate on eight eye
positions. According to the range of eye movement, and the position
relationship with the anatomical landmarks such as the inner and
outer canthus, the upper and lower lacrimal points, the disorder of eye
movement is determined (Vivian and Morris, 1993). The method is
simple and easy to operate and has strong clinical applicability, but it
is easily affected by the experience of the examiner and the change of
the patient’s head position. With the increasingly powerful function
of deep learning technology for automatic image segmentation, it
can segment and identify structures such as optic disc and blood
vessels according to anatomical landmarks. At present, the commonly
used eye movement examination methods are also based on fixed
anatomical landmarks.Therefore, it is possible to apply deep learning
to the evaluation of eyemovement disorders in TED. In this study, the
five-dimensional external observationof patientswasused to establish
arecognitionmodelofeyemovementdisordersbasedondeeplearning
network. This model can improve the efficiency of eye movement
examination and evaluate the changes of TED patients. The external
facial views of TED patients and normal healthy people used in this
study were taken by smart phones with the assistance of head fixation
devices, which not only considered the influence of the patient’s head
position on the eye position, but also considered the universality and
portability of the model in the future. At present, there is no report
on the evaluation of the eye movements of TED patients based on
external facial observation and deep learning technology. This study
is innovative and practical.

Lou et al. (2022) developed an automatic model for measuring
ocular motility based on nine-directional facial photographs using
a convolutional neural network. This study included 207 healthy
individuals as a test set and compared the results with manual
measurements, showing good consistency between the two methods.
However, the model has not been applied to the recognition of
patients with ocular motility disorders, and its detection performance
requires further clinical validation.Theocularmotilitydisordermodel
established in this study performed well in a test set composed of
healthy individuals and TED patients, with an Accuracy of 0.854
and a Precision of 0.843, indicating excellent diagnostic performance.
The mean RMSE for quantitative diagnosis was 0.847, suggesting a
high level of interpretability based on quantitative diagnosis. This
study included both healthy individuals and TEDpatients with ocular
motility disorders, ensuring good data balance.

4.2.3 The recognition effect of ocular
inflammatory signs model

Currently, there are only a few reports on AI recognition of
TED signs based on facial images. No studies have been reported
on AI recognition using facial photographs of TED patients taken
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with smartphones. The course of TED typically begins with an
inflammatory active phase, during which patients generally exhibit
ocular inflammatory signs such as conjunctival congestion and
edema, eyelid congestion and edema, and swelling of the lacrimal
caruncle folds. In severe cases, patientsmay go blind due to exposure
keratopathy and compressive optic neuropathy (Yamada et al., 2000;
Rundle and Wilson, 1945). The inflammatory active phase usually
lasts for 18 months to 2 years before stabilizing and entering the
fibrotic stage (Bartalena et al., 2020). Early diagnosis and aggressive
treatment can alter the course of the disease and reduce the incidence
of severe cases (Kauppinen-Mäkelin et al., 2002). Therefore, early
diagnosis and treatment of TED have become a focus of research.

The TED intelligent diagnostic system developed by Xiao et al.
(2022) is capable of detecting various signs of the disease. The
model’s AUC for detecting Swelling of Eyelids, Redness of Eyelids,
Redness of Conjunctiva, and Swelling of Conjunctiva are 0.90, 0.94,
0.91, and 0.60, respectively. The model established in this study
identifies and classifies the structures affected by inflammation, with
Accuracy values of 0.818, 0.788, 0.906, 0.735, and 0.839 for Redness
of Eyelids, Swelling of Eyelids, Redness of Conjunctiva, Swelling of
Conjunctiva, and Swelling of Caruncle or Plica, respectively, which
enhances the model’s performance by excluding interference from
inflammation of unrelated structures during feature extraction.

We have proposed an auxiliary diagnostic system for TED that
can quantitatively diagnose disorders of ocular motility and eyelid
retraction, classify and recognize inflammation of CAS in relevant
structures, and compare the results with a test dataset. This system
enables rapid and non-invasive diagnosis based on ocular images,
showcasing potential applications in the clinical diagnosis of TED.

This study has certain limitations. The model demonstrates good
diagnostic performance for inflammation, eyelid retraction, and eye
movement disorders, but exhibits relatively lower precision for lower
eyelid retraction, and poorer quantitative diagnostic results for right
eye leftward rotation and left eye rightward rotation. The diagnostic
accuracy for conjunctival edema is also slightly low. To enhance
the model’s generalizability, we will expand the dataset and conduct
external validation using relevantmulti-center datasets. Future efforts
will focus on further tuning themodel to enhance its ability to extract
featuresandbroadenitsapplicationscope.Additionally, integratingeye
imageswithotherdata, suchasslit-lampanteriorsegmentphotographs
and patient complaints, to assist in the diagnosis of TED will be a key
area of emphasis in our future research.
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