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occlusion
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Youxin Chen1*
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Visionary Intelligence Ltd, Beijing, China, 3Key Lab of DEKE, Renmin University of China, Beijing, China

Aims: The aim of this study is to generate post-therapeutic optical coherence
tomography (OCT) images based on pre-therapeutic OCT by using generative
adversarial networks (GANs). The synthetic images enable us to predict
the short-term therapeutic efficacy of intravitreal injection of anti-vascular
endothelial growth factor (VEGF) in retinal vein occlusion (RVO) patients.

Methods: The study involved patients with RVO who received intravitreal anti-
VEGF injection from 1 November 2018 to 30 November 2019. The OCT
images taken before and shortly after treatment, with an interval of 4–8 weeks,
were collected and randomly divided into the training set and test set at a
ratio of approximately 3:1. The model is constructed based on the pix2pixHD
algorithm, and synthetic OCT images are evaluated in terms of the picture
quality, authenticity, the central retinal thickness (CRT), the maximal retinal
thickness, the area of intraretinal cystoid fluid (IRC), and the area of subretinal
fluid (SRF). Three supporting models, namely, the macular detection model,
retinal stratification model, and lesion detection model, were constructed.
Segmentation of macular location, retinal structure, and typical lesions were
added to the input information. After verifying their accuracy, supportingmodels
were used to detect the CRT, the maximal retinal thickness, IRC area, and SRF
area of synthetic OCT images. The output predictive values are compared with
real data according to the annotation on the real post-therapeutic OCT images.

Results: A total of 1,140 pairs of pre- and post-therapeutic OCT images obtained
from 95 RVO eyes were included in the study, and 374 images were annotated.
Of the synthetic images, 88% were considered to be qualified. The accuracy of
discrimination of real versus synthetic OCT images was 0.56 and 0.44 for two
retinal specialists, respectively. The accuracy to predict the treatment efficacy of
CRT, the maximal retinal thickness, IRC area, and SRF area was 0.70, 0.70, 0.92,
and 0.78, respectively.

Conclusion: Our study proves that the GAN is a reliable tool to predict
the therapeutic efficacy of anti-VEGF injections in RVO patients. Evaluations
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conducted both qualitatively and quantitatively indicated that our model can
generate high-quality post-therapeutic OCT images. Consequently, it has great
potential in predicting the treatment efficacy and providing guidance to clinical
decision-making.

KEYWORDS

generative adversarial networks, retinal vein occlusion, anti-vascular endothelial
growth factor, optical coherent tomography, therapeutic efficacy prediction

1 Introduction

Retinal vein occlusion (RVO) is a significant cause of vision loss
in elderly individuals worldwide and is the second-most common
cause of vision loss due to retinal vascular disorders (Rogers et al.,
2010; Romano et al., 2023). Central retinal vein occlusion (CRVO)
is caused by blockage of the central retinal vein, usually due to
thrombus formation; whereas branch retinal vein occlusion (BRVO)
is caused by blockage of one of the branches of the central retinal
vein, often occurring at arteriovenous crossings. Macular edema
(ME) is a common complication of RVO, which severely affects
central vision. ME is manifested as central retinal thickness (CRT)
and the presence of intraretinal cystoid fluid (IRC) and subretinal
fluid (SRF).The primary goal in the treatment of patients with RVO
is to maintain central vision, with a particular focus on minimizing
or preventing the formation of macular edema (Schmidt-
Erfurth et al., 2019; Hogg et al., 2021). Current evidence suggests
that intravitreal injection of anti-vascular endothelial growth factor
(VEGF) is most efficient against ME-related visual impairment
(Zhang, Liu, and Sang, 2022). Optical coherence tomography (OCT)
images provide high-resolution image modality for quantifying
retinal thickening and fluid accumulation and monitoring the
treatment efficacy (Rayess et al., 2019). However, the response to
anti-VEGF treatment shows significant heterogeneity in clinical
practice (Tao et al., 2024; Wecker et al., 2017; Korobelnik et al.,
2021), making it difficult to predict anatomic changes after
anti-VEGF treatment.

Generative adversarial networks (GANs) involve a zero-
sum competition between a generative model, which generates
images, and a discriminative model, which evaluates whether the
image came from real training data rather than being generated
(Waisberg et al., 2025). It has been harnessed for image-to-
image translation in ophthalmology to predict the responses to
treatment by generating individualized post-therapeutic OCT
images after anti-VEGF treatment for fundus diseases such as
age-related macular degeneration (AMD) (Liu et al., 2020),
RVO (Xu et al., 2022), and diabetic macular edema (DME)
(Liu et al., 2023; Baek et al., 2024). Yet previous studies did not
develop quantitative methods to assess the quality of synthetic
images in an anatomical perspective. Herein, we established a
series of supporting deep learning models to further evaluate
the predictive performance of the GAN model so as to certify
that our model can generate high-quality post-therapeutic
OCT images.

2 Materials and methods

2.1 Study design and participants

Patients with RVO complicated by ME who underwent
intravitreal anti-VEGF drug therapy at the Department of
Ophthalmology, Peking Union Medical College Hospital, from
November 2018 to November 2019, were retrospectively included
in the study. The inclusion criteria were as follows: (1) patients
diagnosed with ME secondary to RVO. The diagnosis was
independently confirmed by at least two retinal specialists. (2)
Patients who were administered intravitreal injections of anti-
VEGF drugs. (3) Pre-therapeutic and post-therapeutic retinal
OCT images were obtained within 4–8 weeks. The exclusion
criteria were as follows: (1) a history of previous intraocular
operation, laser photocoagulation, or intraocular injections of
medications other than anti-VEGF agents. (2) A history of other
ocular disorders, including glaucoma, pathological myopia, age-
related macular degeneration, and other disorders involving
systemic diseases.

This study was approved by the Clinical Research Ethical
Committee of Peking Union Medical College Hospital, Chinese
Academy of Medical Sciences (Project Number: S-K631). The
research implementation adhered to the principles of the
Declaration of Helsinki.

2.2 Dataset creation

2.2.1 Pairs of OCT images
Pre-therapeutic and post-therapeutic swept-source OCT (SS-

OCT) images were captured in a 16-line 9-mm radial macula
pattern by a Topcon Deep Range Imaging (DRI) OCT Triton
device (Topcon, Tokyo, Japan) with a resolution of either 1,024
× 875 pixels or 1,024 × 992 pixels. The images before and after
the treatment were scanned at the same location using the follow-
up mode and were matched by two retinal specialists. Images
with motion artifacts or insufficient quality for clinical assessment
were excluded. The OCT image pairs were randomly split into the
training set and test set at a ratio of approximately 3:1. Double
checks were made to ensure that images from the same patient
were not distributed to the training set and test set simultaneously.
All OCT images included in the study were anonymized to protect
patient privacy.
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2.2.2 Annotation of OCT images
The OCT images were subjected to a secondary screening to

identify those with the following characteristics for further image
annotation: (1) OCT images with typical lesions of IRC and SRF.
(2) OCT images with the maximum CRT measurement from the
16-line pre-therapeutic scans, along with its corresponding post-
therapeutic image. Taking sample balance and training efficiency
into consideration, no more than four pairs of OCT images were
selected for each eye.

The following annotations were obtained to provide additional
segmentation information: (1) normal retinal structures: upper
limit of the inner limiting membrane (ILM), upper limit of the
retinal pigment epithelium (RPE), and lower limit of the choroid.
(2) Retinal thickness-related structures: central foveal position. (3)
Major lesions: IRF and SRF.

The central foveal position was marked using a circular point,
while the normal retinal structures, IRF and SRF, were annotated
at the pixel level using multi-point polygon annotation. High-
quality segmentation was accomplished by two retinal specialists,
and the findings were cross-verified. Disagreements between
specialists were resolved through consultation with a senior retinal
specialist. Annotated OCT images were separated randomly into
the training set and test sets at a ratio of 3:1. Three supporting
models were developed based on annotated OCT images. No
images of the same patient were simultaneously assigned to the
two data sets.

2.3 Deep learning framework

All experiments were conducted with PyTorch deep learning
framework (version 1.1.0) and Python (version 3.5) using the Linux
operating system, Intel® Xeon® CPU E5-2680 v3 @2.50 GHz, and
GeForce RTX 2080 Ti.

2.3.1 Image synthesis model training
The image synthesis model was constructed based on

pix2pixHD, a variant of conditional GAN, which consists of a
coarse-to-fine generator and multiscale discriminators to generate
high-resolution images. The network framework of the pix2pixHD
model is shown in Figure 1. Using pairs of real pre-therapeutic
and post-therapeutic images as input images, the image synthesis
model was trained to generate a synthetic post-therapeutic OCT
image as output information. The discriminative model was
employed to distinguish the real post-therapeutic OCT images
from the synthetic fake post-therapeutic OCT images. After the
termination of the training, the generator network is capable of
translating any given pre-therapeutic OCT image into the synthetic
post-therapeutic image.

2.3.2 Supporting model training and evaluation
Four anatomical parameters, namely, the central retinal

thickness (CRT), the maximal retinal thickness, the area
of IRC, and the area of SRF, were measured in order
to comprehensively evaluate the synthetic images. Three
supporting frameworks, the macular detection model, retinal
stratification model, and lesion detection model, were constructed
correspondingly.

2.3.2.1 Macular detection model training and evaluation
The high-resolution networks (HRNets) algorithm yielded

satisfactory performance in preservation of accurate position and
was, therefore, adopted to detect the position of macula. The model
took OCT image pairs and abscissa of macular annotations from the
training set as input information and output the accurate horizontal
ordinate of the macular position.

Thedifference between the gold-standard label and the predicted
values was calculated as the data sample, and a 95% confidence
interval was computed. The accuracy of the model is calculated by
the percentage of correctly identified macular positions.

2.3.2.2 Retinal stratification model training and evaluation
The U-Net algorithm gained wide application in the field of

image segmentation and achieved better results even with relatively
sparse annotation data due to the combination of the encoder
and decoder. The retinal stratification model was constructed
using U-Net and was trained based on OCT image pairs and
segmentation information of ILM, RPE, and choroid annotated by
retinal specialists. It ultimately outputs three categories, which were
named class 0 (background), class 1 (from the upper limit of ILM to
the upper limit of RPE), and class 2 (from the upper limit of RPE to
the lower limit of choroid). The retinal stratification model has laid
the foundation for precisemeasurement of CRT andmaximal retinal
thickness.

The performance of the test set in the trained retinal
stratification model was compared with the results of two retinal
specialists in terms of recall, precision, intersection over union
(IOU), and Dice coefficient.

2.3.2.3 Lesion detection model training and evaluation
TheU-Net algorithmwas applied to develop the lesion detection

model in order to achieve accurate measurement of IRC and SRF
areas. OCT images from the training set and segmentation of IRC
and SRF were inputted. Three categories, class 0 (background),
class 1 (SRF), and class 2 (IRC), were outputted during the
training process.

The constructed model recognized the OCT images of the test
set and categorized each pixel point in the image into three classes.
The lesions annotated by ophthalmologists were considered the
ground truth labels. Subsequently, recall, precision, IOU, and Dice
coefficient were calculated.

2.4 Evaluation of synthetic images

2.4.1 Quality of synthetic images
Synthetic images were assessed by two retinal specialists

independently to determine whether they are qualified for clinical
interpretation, such as retinal structure defects and repeated retinal
structure. Notably, synthetic images with insufficient quality were
excluded for further evaluation.

2.4.2 Authenticity of synthetic images
OCT images that adhered to the basic image regulation

underwent evaluation of authenticity. All images were processed to
remove irrelevant information, including contrast differences and
pixel variations.The real post-therapeutic images and corresponding

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1609567
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Feng et al. 10.3389/fcell.2025.1609567

FIGURE 1
A conceptual illustration of the pix2pixHD-based solution used in this study for generating post-therapeutic OCT images from pre-therapeutic
OCT images.

synthetic post-therapeutic images were simultaneously displayed to
two retinal specialists in a random sequence without any mark,
while the pre-therapeutic images were labeled for reference.The two
retinal specialists were required to identify the synthetic images.The
proportion of correct judgments made by the two doctors was then
calculated separately.

2.4.3 Structural evaluations of synthetic images
The verified macular detection model, retinal stratification

model, and lesion detection model were applied to recognize post-
therapeutic OCT images generated from the GAN model, and
predicted values of CRT, maximum retinal thickness, SRF area, and
IRC area were obtained.The retinal thickness and area annotated by
retinal specialists on real post-treatment imageswere regarded as the
gold standard.

Quantitative evaluation of synthetic images was conducted
by comparing the predicted values with the gold standard. If
the predicted value of the synthetic post-therapeutic OCT image
exceeded the gold standard value of the pre-therapeutic OCT image
by 10%, it was recognized as an “increase.” If the gold standard
value represented a 10% increase over the predicted value, it was
regarded as a “decrease.” If the predictive value and gold standard
measurements differed by ≤10% (absolute difference), two retinal
specialists independently evaluated theOCT images and output data
to determine the treatment trend.The absence of SRF and IRC both
before and after the treatment was defined as “no change” (both 0).
The gold standard value of the real post-therapeutic OCT image
was also compared with that of the pre-therapeutic OCT image.
The accuracy to predict the treatment efficacy was referred to as

the proportion of synthetic post-therapeutic images that showed the
same trend as the real post-therapeutic images, compared with the
pre-therapeutic images.

2.5 Evaluation metrics and statistical
analysis

Open-source Python library scipy.stats (version 0.14.0, The
Scipy community) was applied for statistical analysis. For categorical
variables, classification accuracy and the 95% confidence interval
(CI) were calculated. The Shapiro test was used to determine
whether the differences between the gold standard and the predicted
values followed a normal distribution. A paired t-test was employed
for significance analysis if the variables were identified as normally
distributed. Otherwise, a Wilcoxon test was used for significance
analysis. A p-value less than 0.05 was considered of significant
differences.

3 Result

3.1 Dataset of synthetic images

According to the inclusion and exclusion criteria, the study
finally included 726 pairs of OCT images for BRVO eyes and 307
pairs for CRVO eyes. A total of 570 pairs of OCT images from 49
cases of BRVO eyes and 226 pairs of OCT images from 21 cases
of CRVO eyes were included in the training set. Additionally, 157

Frontiers in Cell and Developmental Biology 04 frontiersin.org

https://doi.org/10.3389/fcell.2025.1609567
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Feng et al. 10.3389/fcell.2025.1609567

FIGURE 2
(A–C) illustrated three cases with image quality issues. A1–C1 represent pre-therapeutic OCT images, A2–C2 represent synthetic post-therapeutic
OCT images, and A3–C3 represent the real post-therapeutic OCT images. RPE discontinuity is shown in A2 (green line), retinal neuroepithelium
discontinuity is shown in B2 (yellow arrow), and the entire retinal discontinuity is shown in C2 (red arrow).

pairs of OCT images from 15 cases of BRVO eyes and 80 pairs of
OCT images from eight cases of CRVO eyes were assigned into
the test set.

3.2 Quality of synthetic images

Among 237 generated post-therapeutic OCT images, 29 images
from 10 cases failed to meet the basic image regulation and were
excluded from further evaluation. Therefore, 208 out of 237 images
(87.86%) were identified as qualified for clinical interpretation. All
29 unqualified images were related to abrupt structural rupture, with
16 images showing retinal neuroepithelium discontinuity, 8 images
showing retinal pigment epithelium discontinuity, and 5 images

showing entire retinal discontinuity. Three cases of incompetent
synthetic images are shown in Figure 2.

3.3 Authenticity of synthetic images

A total of 208 synthetic images and real images were shown
to the retinal specialists to validate the authenticity. The rate to
discriminate between synthetic and real images successfullywas 0.56
(95% CI 0.47–0.65) for specialist 1 and 0.44 (95% CI 0.34–0.54) for
specialist 2. It is challenging to distinguish between synthetic and
real images, indicating that the GAN model has achieved eligible
results. Six cases of pre-therapeutic, real post-therapeutic, and
synthetic post-therapeutic OCT images are displayed in Figure 3.
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FIGURE 3
(A–C) Three cases of pre-therapeutic, real post-therapeutic, and synthetic post-therapeutic OCT images. A1–C1 represent pre-therapeutic OCT
images, A2–C2 represent synthetic post-therapeutic OCT images, and A3–C3 represent real post-therapeutic OCT images.

3.4 Verification of supporting models

3.4.1 Dataset pf supporting models
After a second screening, 280 OCT images from 64 eyes with

BRVO and 94 OCT images from 29 eyes with CRVO were included
in the annotation dataset. Less than four pairs of OCT images were
selected for each eye. Two retinal disease specialists were assigned
to annotate the OCT images, and there were no disagreements upon
cross-validation.A total of 226OCT images from49 eyeswith BRVO
and 74 OCT images from 21 eyes with CRVO were involved in the
training set. The test set consisted of 54 OCT images from 15 eyes
with BRVO and 20 OCT images from 8 eyes with CRVO.

3.4.2 Verification of the macular detection model
The difference of the macula position between the synthetic

image and the real image was calculated. The mean difference was
0.0204 ± 0.0604 for BRVO eyes, 0.0060 ± 0.0054 for CRVO eyes,
and 0.0165 ± 0.0521 for RVO eyes. The accuracies of the macular
detection model were 75.93% for BRVO eyes, 80.00% for CRVO

eyes, and 77.03% for all RVO eyes. Overall, the model demonstrated
relatively accurate detection of the macular center position. Figure 4
illustrates four cases of the detection.

3.4.3 Verification of the retinal stratification
model

Table 1 reports the performance of the retinal stratification
model, and Figure 5 illustrates two examples of the stratification.
Among them, class 1 represented the thickness of the retina, which
was of great concern in our study. The recall, accuracy, IOU, and
Dice coefficient of class 1 were 0.99, 0.99, 0.98, and 0.99, respectively,
for BRVO, CRVO, and RVO eyes.Therefore, the retinal stratification
model demonstrated accurate identification for retinal thickness and
was eligible.

3.4.4 Verification of the lesion detection model
In the lesion detection model, class 1 (SRF) and 2 (IRC)

represented the quantitative areas of lesions, which was highly
indicative of treatment efficacy. As for eyes with BRVO, the recall,
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FIGURE 4
(A–D) Four cases of macular detection. A1–D1 represent the macular position annotated by retinal specialists (red circle). A2–D2 represent the macular
position detected by the model (green circle). A3–D3 show the overlap between the annotated and detected positions.

accuracy, IOU, and Dice coefficient were 0.87, 0.84, 0.76, and 0.85
for class 1 and 0.90, 0.66, 0.61, and 0.76 for class 2, respectively.
When it came to eyeswithCRVO, the recall, accuracy, IOU, andDice
coefficient were 0.68, 0.87, 0.62, and 0.76 for class 1 and 0.63, 0.94,
0.61, and 0.75 for class 2, respectively. Overall, the lesion detection
model exhibited competent recognition capabilities for IRC and
SRF lesions, meeting the requirements of the study. Table 2 presents
the results of the lesion detection model, and Figure 6 displays two
examples of the detection.

3.5 Structural evaluations of synthetic
images

3.5.1 Dataset of structural evaluation
The annotations made by two retinal specialists on real post-

therapeutic OCT images were considered the gold standard.
Therefore, only images with annotations could be used for structural
evaluations. Since the evaluation required the application of
three supporting models, the images from the training sets of
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TABLE 1 Performance of the retinal stratification model.

Diagnosis Categories Recall Accuracy IOU Dice coefficient

BRVO

Class 0 0.9967 0.9893 0.9861 0.9930

Class 1 0.9872 0.9899 0.9773 0.9885

Class 2 0.9258 0.9737 0.9032 0.9491

Average 0.9699 0.9843 0.9555 0.9769

CRVO

Class 0 0.9836 0.9959 0.9797 0.9897

Class 1 0.9890 0.9891 0.9783 0.9891

Class 2 0.9695 0.8917 0.8674 0.9290

Average 0.9807 0.9589 0.9418 0.9693

RVO

Class 0 0.9932 0.9910 0.9843 0.9921

Class 1 0.9877 0.9896 0.9776 0.9887

Class 2 0.9374 0.9497 0.8930 0.9435

Average 0.9728 0.9768 0.9517 0.9748

FIGURE 5
(A–B) Two cases of retinal stratification. A1–B1 represent the original OCT images. A2–B2 represent the retinal stratification annotated by retinal
specialists. A3–B3 represent retinal stratification detected by the model. A4–B4 show the overlap between the annotated and detected stratification.
Black indicates class 0, green indicates class 1, and red indicates class 2.

the aforementioned models were not included in the test set
to ensure the accuracy of evaluations. Therefore, the division
of the structural evaluations dataset should be consistent with
the above models. A total of 37 post-therapeutic OCT images
generated by the GAN model were input into the macular
detection model, retinal stratification model, and lesion detection
model. The following parameters were outputted: (1) CRT: the
macular detection model located the macular position, and the

retinal stratification model identified the corresponding retinal
thickness. (2) Maximal retinal thickness: the retinal stratification
model recognized retinal thickness, and maximal thickness
within a single OCT image was reported. (3) SRF area: the
lesion detection model identified SRF lesions and outputted
the specific area of the SRF. (4) IRC area: the lesion detection
model identified IRC lesions and outputted the specific area
of the IRC.
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TABLE 2 Performance of the lesion detection model.

Diagnosis Categories Recall Accuracy IOU Dice coefficient

BRVO

Class 0 0.9979 0.9995 0.9973 0.9987

Class 1 0.8743 0.8360 0.7463 0.8548

Class 2 0.8973 0.6570 0.6111 0.7586

Average 0.9232 0.8308 0.7849 0.8707

CRVO

Class 0 0.9994 0.9950 0.9944 0.9972

Class 1 0.6786 0.8743 0.6183 0.7641

Class 2 0.6308 0.9373 0.6052 0.7541

Average 0.7696 0.9355 0.7393 0.8385

RVO

Class 0 0.9983 0.9983 0.9965 0.9983

Class 1 0.8394 0.8413 0.7247 0.8404

Class 2 0.7554 0.7578 0.6085 0.7566

Average 0.8643 0.8658 0.7766 0.8651

FIGURE 6
(A–B) Two cases of lesion detection. A1–B1 represent the original OCT images. A2–B2 represent the lesions annotated by retinal specialists. A3–B3
represent the lesion detected by the model. A4–B4 show the overlap between the annotated and detected lesions. Black indicates class 0, green
indicates class 1, and red indicates class 2.

3.5.2 Evaluation of CRT
Evaluation of the predictive performance on the trend of

CRT is shown in Table 3. The accuracy in predicting the trend
of CRT changes in post-therapeutic OCT images was 0.70.
There were no significant differences between the predicted
values and the gold standard CRT for BRVO, CRVO, and

RVO eyes, as shown in Table 9. The distribution of CRT
is shown in Supplementary Figure S2. Bland–Altman analysis
demonstrated that 89.2% predicted values were distributed within
the 95% limits of agreement (LoA). This indicated that our model
could predict changes inCRT after treatmentwith anti-VEGF agents
with precision.
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TABLE 3 Evaluation of the predictive performance on the trend of CRT.

Comparison of real post-therapeutic images with
pre-therapeutic images

Decrease in CRT Increase in CRT Total number

Comparison of synthetic
post-therapeutic images with

pre-therapeutic images

Decrease of CRT 23 4 27

Increase of CRT 7 3 10

Total number 30 7 37

TABLE 4 Evaluation of predictive performance on the trend of maximal retinal thickness.

Comparison of real post-therapeutic images with
pre-therapeutic images

Decrease in maximal
retinal thickness

Increase in maximal
retinal thickness

Total number

Comparison of synthetic
post-therapeutic images with

pre-therapeutic images

Decrease in maximal retinal
thickness

24 6 30

Increase in maximal retinal
thickness

5 2 7

Total number 28 8 37

TABLE 5 Evaluation of predictive performance on the presence of SRF.

Real post-therapeutic images

Without SRF With SRF Total number

Synthetic post-therapeutic images

Without SRF 32 4 36

With SRF 1 0 1

Total number 33 4 37

TABLE 6 Evaluation of the predictive performance on the trend of the SRF area.

Decrease in SRF area

Comparison of real post-therapeutic images with
pre-therapeutic images

No change Increase in SRF area Total number

Comparison of synthetic
post-therapeutic images with

pre-therapeutic images

Decrease in SRF area 10 0 0 10

No change 0 24 3 27

Increase in SRF area 0 0 0 0

Total number 10 24 3 37

3.5.3 Evaluation of maximal retinal thickness
Evaluation of the predictive performance on the trend of

maximal retinal thickness is shown in Table 4. The accuracy
in predicting the trend of maximal retinal thickness changes in

post-therapeutic OCT images was 0.70. There were no significant
differences between the predicted values and the gold standard
maximal retinal thickness for BRVO, CRVO, and RVO eyes, as
shown in Table 9. The distribution of maximal retinal thickness
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TABLE 7 Evaluation of predictive performance on the presence of IRC.

Real post-therapeutic images

Without IRC With IRC Total number

Synthetic post-therapeutic images

Without IRC 19 10 29

With IRC 3 5 8

Total number 22 15 37

TABLE 8 Evaluation of the predictive performance on the trend of IRC area.

Decrease in IRC area

Comparison of real post-therapeutic images with
pre-therapeutic images

No change Increase in IRC area Total number

Comparison of synthetic
post-therapeutic images with

pre-therapeutic images

Decrease in IRC area 23 1 5 29

No change 0 5 1 6

Increase in IRC area 1 0 1 2

Total number 24 6 7 37

is shown in Supplementary Figure S2. Bland–Altman analysis
demonstrated that 94.6% predicted values were distributed within
the 95% LoA. The predictive performance of our model on changes
in maximal retinal thickness was qualified.

3.5.4 Evaluation of the SRF area
The accuracy in predicting the presence of SRF in post-

therapeutic OCT images was 0.86, as shown in Table 5. The
specificity was 0.97 (95% CI 0.82–1), while the sensitivity was 0
(95% CI 0–0.60). Out of the 37 synthetic OCT images, only one
revealed SRF. This suggested that our model had limited capability
in predicting SRF after treatment, highly likely due to the limited
dataset of SRF. Evaluation of the predictive performance on the trend
of SRFarea is shown in Table 6.The accuracy in predicting the trend
in SRF area changes in post-therapeutic OCT images was 0.92. It
yielded satisfactory achievements in predicting a decrease or no
change in SRF but made errors in predicting an increase in three
cases. There were no significant differences between the predicted
values and the gold standard for the SRF area in BRVO, CRVO,
and RVO eyes, as shown in Table 9. The distribution of the SRF
area is shown in Supplementary Figure S2. Bland–Altman analysis
demonstrated that 97.3% predicted values were distributed within
the 95% LoA.

3.5.5 Evaluation of the IRC area
The accuracy in predicting the presence of IRC in post-

therapeutic OCT images was 0.65, as shown in Table 7. The
specificity was 0.86 (95% CI 0.64–0.96), but the sensitivity was 0.33
(95% CI 0.13–0.61), which was slightly superior compared with that
for the SRF area. Evaluation of the predictive performance on the
trend of IRCarea is shown in Table 8. The accuracy in predicting

the trend of IRC area changes in post-therapeutic OCT images was
0.78. Among 37 cases; our model mistook an increase for a decrease
or no change in six cases. The GANmodel tended to underestimate
the IRC area in post-therapeutic images. There were no significant
differences between the predicted values and the gold standard for
the IRC area in CRVO eyes, as depicted in Table 9. However, it failed
to predict the IRC area accurately in BRVO and RVO eyes. The
distribution of the IRC area is shown in Supplementary Figure S2.
Bland–Altman analysis demonstrated that 94.6% predicted values
were distributed within the 95% LoA.

4 Discussion

Considering the high cost of anti-VEGF medications and
the burden of frequent follow-ups, individualized prediction of
treatment efficacy is of great significance in clinical practice.
Predicting the efficacy of anti-VEGF treatment in RVO patients
facilitates the development of personalized treatment plans,
benefiting patients, society, and healthcare providers.

However, how to evaluate the accuracy of synthetic images
remains controversial. Previous research on the evaluation of AI-
generated images mostly involved qualitative assessments, and
retinal specialists were requested to distinguish between real and
synthetic images (Zheng et al., 2020). Xu et al. developed a GAN-
based prediction model to generate short-term post-therapeutic
OCT images of RVO patients. In addition to authenticity evaluation,
they conducted a structural evaluation experiment by measuring
the CRT of the synthetic images and real images. There was no
statistical difference in CMT between the synthetic and the real
images (Xu et al., 2022). We made exploratory attempts to make
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TABLE 9 Evaluation of the predictive performance on CRT, maximal retinal thickness, SRF area, and IRC area.

Diagnosis Average
(standard deviation)

P-value
(Shapiro test)

Significance test P-value
(significance)

CRT/μm

BRVO
Predicted values 75.48 (14.71)

0.0005 Wilcoxon 0.2028
Gold standard 76.78 (41.39)

CRVO
Predicted values 87.80 (26.43)

0.0774 Paired t-test 0.8540
Gold standard 91.50 (53.63)

RVO
Predicted values 78.81 (19.40)

0.0001 Wilcoxon 0.1697
Gold standard 80.76 (45.50)

Maximal retinal
thickness/μm

BRVO
Predicted values 138.9 (26.14)

0.0555 Paired t-test 0.7345
Gold standard 137.0 (33.81)

CRVO
Predicted values 156.9 (41.06)

0.0004 Wilcoxon 0.4922
Gold standard 160.5 (55.19)

RVO
Predicted values 143.7 (31.92)

0.0007 Wilcoxon 0.2806
Gold standard 143.4 (42.02)

SRF area

BRVO
Predicted values 20.85 (106.3)

8.21e−10 Wilcoxon 0.2850
Gold standard 100.5 (411.0)

CRVO
Predicted values 0 (0)

7.71e−6 Wilcoxon 0.1797
Gold standard 99.45 (199.8)

RVO
Predicted values 15.22 (91.30)

2.81e−11 Wilcoxon 0.2249
Gold standard 100.2 (366.2)

IRC area

BRVO
Predicted values 51.63 (182.8)

9.12e−7 Wilcoxon 0.0018
Gold standard 2780 (4,719)

CRVO
Predicted values 642.0 (1,590)

0.0001 Wilcoxon 0.3452
Gold standard 8,391 (16,426)

RVO
Predicted values 211.2 (881.2)

1.40e−9 Wilcoxon 0.0014
Gold standard 4,296 (9,767)

elaborate lesion labels and construct three deep learning models in
order to quantitatively assess the quality of the synthetic images on
a structural perspective. The macular detection model and retinal
stratification model showed remarkable achievements, while the
lesion detection model exhibited slightly lower recall and accuracy
on recognizing SRF and IRC.Nevertheless, ourmodel still surpassed
the performance of the previous research on quantifying the IRC
and SRF in RVO patients (Schlegl et al., 2018). Although these
supporting models showed promising results, the application of
more models inevitably introduced more errors into the structural
evaluation of theGANmodel. In the structural evaluation, regarding

the specific fluid area, there was no significant difference between
the predicted values and the gold standard. However, in terms of
the trend and the classification of fluid presence or absence, the
sensitivity and specificity of several indicators were slightly lower.
This might be related to the small size of the test set and the inherent
biases in the samples.

This study innovatively utilized the GAN algorithm to predict
the efficacy of anti-VEGF treatment in RVO patients. It was found
that 88% of the synthetic images were of sufficient quality for
further clinical interpretation. Retinal specialists reported difficulty
in distinguishing between real and synthetic images. As for CRVO
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patients, there were no significant differences between the predicted
values and the gold standard on CRT, retinal maximum thickness,
SRF area, and IRC area. Similarly, for BRVO patients, there were
no significant difference in the prediction of CRT, retinal maximum
thickness, and SRF area.The accuracy of predicting the trend inCRT,
retinal maximum thickness, SRF area, and IRC area after treatment
was 0.70, 0.70, 0.92, and 0.78, respectively. With more clinical data
and algorithm optimization, the GAN model holds the promise of
bringing new insights into the dilemma of treatment selection for
RVO patients.

This study has several limitations. First, the small sample
that only included Chinese patients and the lack of an external
validation dataset restrict the potential for generalization. Second,
the functional evaluation of the predictive performance is still
absent. Visual acuity is also what ophthalmologists and patients
are concerned about. Further research could be conducted to cover
more prognostic factors to make the model more applicable in
predicting the visual acuity. Third, the research only evaluated
short-term treatment outcomes after treatment with a single dose
of anti-VEGF drugs. Though researchers realized the long-term
prediction for patients with DME, it remains unclear whether long-
term efficacy predictions for patients with RVO can be made.
Previous studies have found that for CRVO patients, the optimal
treatment effect is achieved at 12 months after initiation, while
BRVO patients recover to optimal visual acuity after 24 months of
treatment. Visual acuity and central retinal thickness then remain
stable at the same level until the endof follow-up (Arrigo et al., 2021).
Therefore, predicting the optimal treatment effect for patients before
the initiation of anti-VEGF treatment would be more meaningful.
Additionally, it should be noted that our study did not investigate
several prognostic biomarkers associated with visual function, such
as disorganization of retinal inner layers (DRIL) (Horozoglu et al.,
2023). DRIL is correlated with areas of ischemic damage and loss
of flow in the superficial, middle, and deep capillary plexuses,
highlighting its potential as a biomarker for ischemic injury in RVO
(Zhu et al., 2021; Munk et al., 2024). Previous studies have found the
association of DRIL with poorer visual outcomes (Yang et al., 2024)
and recurrence (Costa et al., 2021) in RVO-associated ME. Further
annotations are required to involve those prognostic biomarkers,
constructing a more comprehensive deep learning model.

5 Conclusion

Herein, our results prove that the GAN is a reliable tool to
predict the therapeutic efficacy of anti-VEGF injections in RVO
patients. Innovative quantitative evaluations were conducted with
the assistance of supporting deep learning models, confirming
the generation of high-quality post-therapeutic OCT images.
Consequently, it has great potential in predicting treatment efficacy
and providing guidance to clinical decision-making.
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SUPPLEMENTARY FIGURE S1
Workflow diagram of the synthetic OCT generation and evaluation.

SUPPLEMENTARY FIGURE S2
Structural evaluations of synthetic images. A1–D1 show the scatterplots of CRT,
maximal retinal thickness, SRF area, and IRC area. A2–D2 show the Bland–Altman
analysis of CRT (mean and SD of difference were 1.95 and 47.59, respectively),
maximal retinal thickness (mean and SD of difference were −0.35 and 29.08,
respectively), SRF area (mean and SD of difference were 85.00 and 386.66,
respectively), and IRC area (mean and SD of difference were 4085.10 and
9909.70, respectively). The horizontal axis represents the average of the predicted
values and gold standard. The vertical axis represents the difference between
them. Notably, the predicted values and gold standard were not the absolute
value of the thickness and area but the output data of the deep learning model
without the unit.
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