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Human embryonic stem cells (hESC)-derived retinal organoids are sophisticated
in vitro systems for dissecting the complex dynamics of human retinal
development. The formation of the human retina is a precisely organized
process that depends on the regulated differentiation of retinal progenitor cells;
however, many of the basic mechanisms remain to be explored. Here, using
hESC-derived retinal organoids, we elucidated the temporal contribution of
RAX2 to retinal development, with an emphasis on photoreceptor cells (PC)
formation. The results were corroborated using human fetal retinal tissue at
various gestational ages. Using CRISPR/Cas9-mediated gene knockout, we
delineated the essential role of RAX2 in modulating PC specifications. RAX2
deficiency significantly altered the expression of PAX6 and SOX2, two essential
regulators of retinogenesis. Our results suggested that RAX2 is significant in
retinal development, underpinning its potential as a therapeutic target in related
retinal disorders.

KEYWORDS

human embryonic stem cells (hESC), retinal organoid, retinal development,
photoreceptor cells, ScRNA-seq

1 Introduction

The human retina, acting as a processor for integrating visual signals, orchestrates
interactions among various retinal cell types in a delicate cellular structure. Retinogenesis
is the process by which multipotent retinal progenitor cells (RPC) differentiate into
specialized cells, including retinal ganglion cells (RGC), photoreceptor cells (PC,
including rods and cones), Müller cells (MC), amacrine cells and bipolar cells.
This process is meticulously orchestrated by a network of signaling pathways, as
delineated in previous studies (Bassett and Wallace, 2012). Recent studies using
bulk transcriptomic profiling, single-cell RNA sequencing (scRNA-seq), and single-cell
assay for transposase-accessible chromatin sequencing (scATAC-seq) have systematically
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examined the cellular composition and molecular expression
patterns of the human retina and retinal organoids (RO) derived
from human embryonic stem cells (hESC) (Voigt et al., 2021;
Li et al., 2023; Wahle et al., 2023; Zhang et al., 2024). These
investigations have provided critical insights into the spatiotemporal
dynamics of cellular diversification, thereby offering an integrative
framework for understanding the molecular mechanisms
underlying retinogenesis and retinal disease pathogenesis. In a
previous study, using scRNA-seq to analyze hESC derived RO at five
different time points (day36-day186, D36-D186), we identified 9 cell
populations, including RPC, RGC, PC, MCs, and retinal pigment
epithelial (RPE) cell populations, and described the emergence,
maturation, and regulation of RPC and PC populations in detail
(Wang et al., 2021).

The retinal and anterior neural fold homeobox (RAX) gene
family encodes homeodomain transcription factors, and is crucial
for vertebrate retinal development. Through evolutionary analysis,
jawed vertebrate RAX genes were classified into two distinct
subgroups: RAX1 (commonly referred to as RAX) and RAX2
(Kon and Furukawa, 2020). RAX is initially expressed in the
anterior neural fold and later in the embryonic diencephalon,
which gives rise to the retina and pineal gland (Mathers et al.,
1997). RAX is critical for retinal cell fate determination and
the maturation and survival of PC (Irie et al., 2015). RAX-
deficient mice exhibit severe forebrain malformations and lack
optic vesicles (Mathers et al., 1997). Mutations in human RAX
have been linked to congenital ocular disorders, including
anophthalmia and microphthalmia (Voronina et al., 2004). RAX2
(also known as QRX) is required for retinal neurogenesis in
Xenopus (Wu et al., 2009) and chicks (Sanchez-Arrones et al.,
2009). Studies have found that RAX2 orthologs are essential for
maintaining adult medaka fish retinal stem cells (Reinhardt et al.,
2015). RAX2 protein physically interacts with the CRX protein
synergistically to modulate the expression of PC-specific genes,
such as Rhodopsin. Emerging clinical evidence has linked
RAX2 mutations to various inherited retinal diseases (IRD).
Dominant mutations, such as c.260G>A (p.Arg87Gln), have
been associated with age-related macular degeneration (AMD),
while variants like c.409G>C (p.Gly137Arg) and c.417_422dup
(p.Pro140_Gly141dup) have been linked to cone-rod dystrophy
(CRD) (Wang et al., 2004). The heterozygous c.465_475del
(p.Ala156Argfs∗131) variant, identified in familial cases of cone
dystrophy or CRD, disrupts the N-terminal coding region of
RAX2, potentially impairing its function as a CRX cofactor
(Yang et al., 2015). Van de Sompele et al. demonstrated that biallelic
RAX2 mutations, including c.155C>G (p.Pro52Arg), c.335dup
(p.Ala113Glyfs∗178), c.145 T>C (p.Ser49Pro), and g.3771337_
3774298del, cause autosomal recessive retinitis pigmentosa (ARRP)
(Van de Sompele et al., 2019). These mutations may impair the
RAX2 protein folding, stability, and transactivation capability.
Notably, RAX2 mutations are not compensated by RAX activity
in human disease. Unlike humans, mice lack RAX2 orthologue,
complicating functional studies (Wang et al., 2004). ScRNA-
seq analysis of the human fetal neural retina revealed that
RAX2 was primarily expressed in PC (Hu et al., 2019), which
aroused our interest in exploring its potential role in human
retinogenesis.

2 Materials and methods

2.1 Patients and tissue samples

The five human retinal specimens used in this study were
obtained from voluntarily donated aborted fetuses, sourced from the
Senior Department of Ophthalmology at the Third Medical Center
of the Chinese PLA General Hospital. The Ethics Committee of
the Third Medical Center of the Chinese PLA General Hospital
approved this study (ID: KY 2021-021), and written informed
consent was obtained from all participants. The procedures in
this study adhered to the Helsinki Declaration of 1964 and its
amendments, ensuring ethical integrity (World Medical, 2013).

2.2 hESC culture and RO differentiation

The hESC line H9 were routinely cultured in Essential
8 medium (ThermoFisher, A1517001) on plates coated with
Vitronectin (Gibco, A14700). For passaging, cells were treated
with Accutase (Stemcell Tech, 07920). RO differentiation
followed established protocols with minor modifications
(Wang et al., 2021; Kuwahara et al., 2015). Aggregates were cultured
under 40% O2/5% CO2 conditions (30 aggregates per 10-cm dish)
from day 24 (D24), using anNR-differentiationmedium comprising
DMEM/F12 (Gibco, 10565018), KSR (Gibco, 10828028), N2
supplement (Gibco, A1370701), 0.1 mM taurine (Sigma, T0625),
and 0.5 μM retinoic acid (Sigma, R2625). Under these conditions,
RO continued to grow for several weeks.

2.3 Establishment of genetically
engineered hESC

Single guide RNAs (sgRNA) constructs targeting critical RAX2
were cloned into px459 plasmids (Addgene, 62988) for knockout
cell generation. HESC were transfected with these sgRNA plasmids
using the Lipofectamine Stem Transfection Reagent (Invitrogen,
STEM00001) and exposed to 0.5 μg/mL puromycin for 48 h
2,000–3,000 surviving cells were plated on a 6 cm dish, and 96 single
colonies were picked up to a 96-well plate. Genomic DNA was
extracted for PCR using specific primers:

Fw: CTTAGGGCGTGAGAAGGGAT;
Rv: CCCCACGCCCAATTAACAGA.
The PCR products were validated by TA cloning and Sanger

sequencing to confirm RAX2 gene deletions.

3 Results

3.1 Highly-expressed RAX2 in PC within RO
and human fetal retinal tissue

Our earlier investigation used an in vitro self-organization
model of human RO derived from hESC, which mimicked human
retinal development, to conduct an scRNA-seq analysis at five
different time points during RO differentiation (D36, D66, D96,
D126, and D186) (Wang et al., 2021). In this study, to delineate
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the role of the RAX2 in retinogenesis, we reanalyzed the scRNA-
seq data. Canonical markers were used to distinguish 6 cell
clusters: RPC, Proliferating-RPC, PC, RGC, MCs and RPE cells
(Supplementary Figures S1A, S1B). RAX2 was primarily detected
in the PC population (Figure 1A). A gradual increase in RAX2
expression correlating with PC emergence in RO was observed
(Figures 1B–D), consistent with the immunofluorescence (IF)
staining of human RO, which also revealed a progressive increase
in RAX2-positive cells (Figure 1E; Supplementary Figure S2A).
Moreover, RAX2 expression patterns aligned with canonical PC
markers, including CRX, NR2E3 and NRL (Figures 1A,B). CRX-
positive cells appeared at D36 in a human RO culture and gradually
increased over time.The expression ofNRL andNR2E3 significantly
increased during the maturation of PC (Wang et al., 2021), and
OTX2was found to be involved in embryonic PC fate determination
(Muranishi et al., 2011). To enhance our comprehension of RAX2
dynamics in retinal development, we obtained human retinal tissue
from voluntarily donated aborted fetuses aged 12–24 weeks of
gestation, and performed multi-immunofluorescence (multi-IF)
staining to precisely track the temporal expression patterns of
RAX2 (Figure 1F; Supplementary Figure S2B). A notable increase in
RAX2-positive cells was observed from 20 to 24 weeks, coinciding
with the reported initiation of PC development (Hu et al., 2019).
These findings indicated that RAX2 may regulate PC maturation
during retinal development.

3.2 Establishment of RAX2-knockout hESC
utilizing CRISPR/Cas9-mediated gene
editing

To explore the influence of RAX2 on human retinal
development, the CRISPR/Cas9 system was used to disrupt critical
exons of RAX2 in hESC (H9 cell line). Seven sgRNAs were created
to target different regions around the gene, and their effectiveness
was evaluated using a surveyor assay (Supplementary Figure S3).
Cas9/sgRNA-7 and Cas9/sgRNA-6, both of which exhibited
notable cleavage efficiencies, were selected for subsequent
gene editing (Figure 2A). Two homozygous mutants, RAX2−/−-
1 and RAX2−/−-2, were successfully generated and validated
through Sanger sequencing (Figure 2B). Evaluation of genomic
copy number variation (CNV) (Supplementary Figure S4), ESC
colony morphology (Figure 2C), pluripotency markers expression
(Figure 2D), and cell proliferation (Figure 2E) showed no significant
differences between RAX2−/− and wild type (WT) hESC. Embryoid
body (EB) formation assay (Figures 2F,G) revealed that RAX2
deficiency in hESC significantly reduced the expression of ectoderm
markers in the derived EBs, including MAP2, PAX6, RAX, and
SIX6 (Figure 2H). This finding underscored the essential function
of RAX2 in the ectoderm-related differentiation process.

3.3 RAX2 deficiency affects PC fate
determination during RO differentiation

Using a previously established BMP4-induced RO self-
organization protocol (Wang et al., 2021), WT and RAX2−/− hESC

were grown in a 3D culture for 66 days (Figure 3A), and twenty-
four RO were harvested for scRNA-seq analysis from each of WT
and RAX2−/− group. Following a rigorous quality control evaluation
and removal of doublets, a UMAP analysis revealed five primary
cell clusters, with the cell types identified through enriched gene
profiles and canonical markers (Figures 3B,C). A marked reduction
in RAX2 expression was detected in all the RAX2−/− hESC-derived
RO cell clusters identified (Figure 3D). A significant decrease in the
percentage of PC, RPC, and RPE cell populations was observed in
RO derived from RAX2−/− hESC compared to the those from WT
hESC (Figure 3E). Considering the process of retinal development,
we focused on RPC, RGC, and PC clusters (Figures 3F,G). A
developmental pseudotime trajectory analysis was conducted,
which helped reveal highly interconnected nodes potentially
indicating the differentiation status (Figures 3H,I). Depletion
of RAX2 significantly altered various cellular distributions.
Differentiation into PCwas notably affected by the absence ofRAX2,
leading to a bias towards RGC lineage commitment. Additionally,
the PC population analysis revealed a decrease in pathways
associated with PC differentiation (Figure 3J). RT-qPCR analysis
demonstrated decreased expression of PC-specific markers (CRX,
NRL, and NR2E3) in RO derived from RAX2−/− hESC, alongside
elevated levels of RGC markers (POU4F2 and THY1), consistent
with the observed lineage bias (Supplementary Figure S5). These
findings underscored the critical function of RAX2 in PC fate
determination.

3.4 RAX2 regulates the expression of PAX6
and SOX2 during RO differentiation

In our previous study, we observed that the proportion of each
cell type, including PC, in RAX2−/− hESC-derived RO differed
from that of the WT RO (Figure 3E), suggesting that RAX2
influenced the differentiation state of the entire organoid. To
elucidate the underlying mechanism, we analyzed differentially
expressed genes and noticed that the expression patterns of PAX6
(Oron-Karni et al., 2008) and SOX2 (Diacou et al., 2022), both vital
for eye development, were significantly altered by RAX2 deficiency
(Figure 4A). RT-qPCR and Western blot analyses confirmed the
reduced expression of PAX6 and SOX2 (Figures 4B,C). In addition,
IF staining analysis of human RO at D66 revealed amarked decrease
in the fluorescence intensity of PAX6 and SOX2 in RAX2−/− hESC-
derived RO (Figure 4D). Overall, our results suggested that RAX2
is critical for retinal development by modulating PAX6 and SOX2
expression.

4 Discussion

In this work, we systematically examined the expression patterns
of RAX2 in human fetal retinal tissue and hESC-derived RO
at different stages. By integrating bioinformatics analyses with
biochemical assays of RNA and protein levels in RAX2-deficient
hESC-derived RO, we delineated RAX2 as a pivotal determinant
of PC specification. Notably, the loss of RAX2 significantly altered
the proportions of various cell populations within the RO. The
scRNA-seq results, validated through RT-qPCR, Western blotting,
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FIGURE 1
Highly expressed RAX2 in PC during early stages of RO and tissue. (A) Multiple feature plots of RO display integrated expression profiles across five
timepoints (D036, D066, D096, D126, D186), highlighting the expression of RAX2 and the hallmark genes of the PC population, including CRX, NRL and
NR2E3, in hESC-derived RO. (B) Pseudotemporal trajectory map exhibiting the expression of RAX2 and marker genes of PC population, including CRX,
NRL, and NR2E3 in hESC-derived RO at different timepoints (D036, D066, D096, D126, D186). (C) Multiple feature plots exhibiting RAX2 expression in
hESC-derived RO at different timepoints (D036, D066, D096, D126, D186). (D) Violin plots exhibiting RAX2 gene expression in hESC-derived RO at
different timepoints (D036, D066, D096, D126, D186). (E) Representative IF-staining images of CRX and RAX2 in hESC-derived RO at different
timepoints (D036, D096, D126). Scale bars, 40 μm. (F) Representative IF-staining images of RAX2 and OTX2 in human retinal tissue from aborted
fetuses, spanning gestational ages of 12–24 weeks. Scale bars, 40 μm. W: weeks.
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FIGURE 2
Establishment of RAX2-knockout hESC. (A) Schematic illustration of knocking out RAX2 in hESC by CRISPR/Cas9 system. Scissors indicate the sgRNAs;
boxes represent the exons; triangular arrows represent primers. Fw: forward primer; Rv: reverse primer. (B) Sanger sequencing results for RAX2−/− and
WT hESC clones. Red words indicate the PAM sequence; ellipses in parentheses indicate sequences that are not listed; dashed line indicates deleted
bases. (C) Alkaline phosphatase staining of RAX2−/− and WT hESC clones. Scale bars, 100 μm. (D) Representative IF-staining images of pluripotency
markers in RAX2−/− and WT hESC clones. Scale bars, 100 μm. (E) Cell proliferation rate of RAX2−/− and WT hESC clones (n = 3 independent
experiments). ns, not significantly different. (F) Representative images of EB formation assay for RAX2−/− and WT hESC clones. Scale bar, 200 μm. (G)
RT-qPCR analysis for POU5F1 and NANOG expression in RAX2−/− and WT hESC -derived EBs at different timepoints (D0, D6, D12). (H) RT-qPCR analysis
for ectoderm, endoderm, and mesoderm markers expression in RAX2−/− and WT hESC -derived EBs at different timepoints (D0, D6, D12).
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FIGURE 3
The absence of RAX2 affects PC fate determination. (A) Representative images of RAX2−/− and WT hESC-derived human RO at D36 and D66. Scale bars,
100 μm. (B) UMAP plots of the RAX2−/− and WT hESC-derived RO in D66, labeled by cell types. (C) Dot plots for the marker genes expression by cell
types. The color represents the average expression level; the size of dot represents the percentage of cells within a cell type. (D) Violin plots for RAX2
expression in clusters from RAX2−/− and WT hESC-derived RO. (E) Proportion of each cell types from RAX2−/− and WT hESC-derived RO in D66. (F)
UMAP plot of the RPC, PC and RGC clusters from the RAX2−/− and WT hESC-derived RO in D66, labeled by cell types. (G) Percentages of the RPC, PC
and RGC clusters from the RAX2−/− and WT hESC-derived RO in D66. (H) The Monocle 2 trajectory plot showing the pseudotemporal ordering of
cluster RPC, RGC and PC from RAX2−/− and WT hESC-derived RO in D66. Numbers in black circles indicate the different cell status numbers. (I)
Pseudotemporal ordering trajectory map of RPC, RGC and PC clusters from RAX2−/− and WT hESC-derived RO in D66. The colors from dark to light
indicate the pseudotime order. (J) GO analysis of the top 10 downregulated biological processes in PC subset from the RAX2−/− and WT hESC-derived
RO at D66. Horizontal axis values the count of enriched genes per term.
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FIGURE 4
RAX2 regulates PAX6 and SOX2 expression. (A) Expression of SOX2 and PAX6 from RAX2−/− and WT hESC-derived RO over pseudotime. (B) RT-qPCR
analysis for the expression of RAX2, PAX6, and SOX2 in RO derived from RAX2−/− and WT hESC at D66. All experiments were repeated in three batches
of organoids. (C) Expression of PAX6, and SOX2 in RO derived from RAX2−/− and WT hESC at D66 was detected by Western blot. All experiments were
repeated in three batches of organoids. (D) Representative images of IF staining of RAX2, PAX6, and SOX2 in RO derived from RAX2−/− and WT hESC at
D66. Scale bars, 40 μm. All experiments were repeated in three batches of organoids.

and IF staining, demonstrated that these alterations correlated
with reduced expression of PAX6 and SOX2, which are key
regulators in retinal development. The precise modulation of
PAX6 and SOX2 expression within optic cup progenitors is
essential for retina development, with a release of neural potential
in the retina (Klimova and Kozmik, 2014; Oron-Karni et al.,
2008). The spatial and temporal regulation of PAX6 expression,
however, remains incompletely understood, suggesting that the
regulatory function of RAX2 may be more complex than previously
appreciated (Wang et al., 2004).

Our observations suggest that alterations in RAX2 expression
are vital for retinal development, particularly in PC. Previous
researches have shown the specific co-expression patterns of Rax2
and Vsx2 in defining retinal cell identity (Pandit et al., 2015), with
external signals like BMP activity influencing RAX2 expression in
chicks and zebrafish (Bielen andHouart, 2012). In the human retina,
RAX2 is present in the outer and inner nuclear layers and serves as
a PCE-1-binding protein, partnering with CRX and NRL to manage
the expression of photoreceptor genes (Wang et al., 2004). Given
the complex interplay among retinal cells andminor deviations may
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disrupt homeostasis, the deletion of RAX2 could create cascading
effects on retinal cell viability, thus affecting the progression of
retinal development.

Our findings have significant translational relevance due to
their potential for supporting retinal diseases treatments involving
photoreceptor loss, such as retinitis pigmentosa (Klymenko et al.,
2024) and AMD (Tan et al., 2023). RAX2 expression modulation
may provide dual effects of both preventing photoreceptor
degeneration and promoting their regeneration. Future studies
should investigate the role of RAX2 in ocular development, develop
therapies by expressing the human RAX2 gene in Rax-deficient
mice, and generate diseasemodels using RO.Understanding RAX2’s
interactions with key developmental genes like PAX6 and SOX2 is
crucial for advancing gene therapy approaches for retinal disorders.

Our study acknowledges limitations in fully delineating
the molecular interactions of RAX2. Future research using
advanced genetic techniques and precise temporal analysis will
be essential for elucidating the detailed mechanisms underlying
this genetic pathway in retinal development. This study highlights
the importance of further exploring the regulatory functions and
interactions of RAX2 to improve our comprehension of retinal
development and discover new therapeutic interventions for retinal
disorders linked to these cells.
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