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for cataract management:
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Deep learning (DL) technology has shown significant potential in the whole
process of cataract diagnosis and treatment through algorithms such as
convolutional neural network (CNN). In terms of diagnosis, DL models based
on fundus or slit-lamp images can automatically identify and grade cataract,
and their diagnostic accuracy is close to or beyond the level of human experts.
In the field of surgery, DL can analyze the operation video stage in real time,
accurately track the instruments and optimize the operation process, and reduce
the risk of intraoperative eye error through intelligent devices. DL could optimize
the intraocular lens (IOL) power calculation, predict the risk of complications
and long-term surgery requirements. However, insufficient data standardization,
the “black box” characteristics of the model, and privacy ethics issues are still
the bottlenecks in clinical application. In the future, it is necessary to improve
the generalization ability of model through multimodal data fusion, federated
learning and other technologies, and combine interpretable design (such as
Grad-CAM) to promote the evolution of DL to a transparent medical decision-
making tool, and finally realize the intelligence and universality of cataract
management.
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1 Introduction

With the swift advancement of artificial intelligence (AI) technology, Machine
Learning (ML), particularly the subfield of DL, has offered new development prospects
for ophthalmology. Its application scope has expanded from the initial diagnosis of
fundus diseases (Oganov et al., 2023; Zhang et al., 2023a; Xu et al., 2024) (such
as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity)
to the detection of anterior segment diseases (Ting et al., 2021; Wu et al., 2022)
(including glaucoma, cataract, iris and corneal diseases), and then to the management
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of ophthalmic surgeries and the evaluation of postoperative
prognosis (Wang et al., 2022a). Cataract is the primary cause of
blindness worldwide (Zhang et al., 2025). It is of great significance
to incorporate DL into the entire treatment process of cataract.

DL has demonstrated a wide application prospect in cataract
management. On the one hand, it is capable of reducing the
global clinical burden and enhancing the efficiency and accuracy
of clinical diagnosis and treatment by elevating the level of
automation. On the other hand, it can transcend geographical
limitations and align with the objective of the World Health
Organization, thereby providing a broader, universal and precise
medical service for the world, especially for low-income individuals
in developing countries and remote areas, and reducing the rate
of blindness caused by cataract. Currently, the application of DL
in the domain of cataract mainly centers on recognition and
prediction.

2 Identification

Image recognition algorithms based on DL typically use the
CNN as the fundamental architecture. Due to its outstanding
performance in image and video recognition, classification, and
segmentation tasks, CNN has emerged as the most dominant DL
algorithm framework in the domain of intelligent diagnosis of
cataracts (Chen et al., 2022; Xie et al., 2023).

The core architecture of CNN consists of several key
components (Lee et al., 2017):

(1) The Convolutional Layer, being the core component of the
network, conducts sliding window operation on the input
data via learnable filters (also referred to as convolutional
kernels) to calculate the dot product between local regions
and filters for achieving feature extraction. Each convolutional
layer encompasses multiple independent filters, which are
capable of detecting specific feature patterns in the input
data, ranging from basic edge and corner features to complex
texture patterns.

(2) The Activation Function typically follows the convolutional
layer, and nonlinear activation functions such as Rectified
Linear Unit are prevalently employed.These functions can not
only enhance the expressive capacity of the network, enabling
it to learn complex feature representations, but also endow the
network with the ability to simulate more complex functional
mappings by introducing nonlinear factors.

(3) The primary function of the Pooling Layer is to decrease the
spatial dimension of the feature map, enhance the robustness
of feature detection, and simultaneously reduce the number
of parameters and computational complexity. Among them,
max pooling is the most frequently utilized operation, which
achieves the reduction of feature dimension by dividing the
non-overlapping rectangular regions of the feature map and
extracting the maximum value of each region.

(4) The Fully Connected Layer, typically located after multiple
convolution and pooling layers, is characterized by the fact that
each neuron establishes connections with all activation values
of the previous layer and is capable of learning higher-level
abstract feature representations.

(5) As an optimization component, the Normalization Layer has
been widely employed in advanced network architectures such
as Inception, which can effectively accelerate the training
process and enhance the generalization ability of the model.

The outstanding performance of CNN in image processing
tasks results from its distinctive mechanism. Firstly, the network is
capable of automatically learning the spatial hierarchy of the image,
gradually extracting from simple edge features to complex shape and
object features. Secondly, due to the parameter sharing mechanism,
the convolution kernel parameters are shared throughout the entire
input data range. This not only significantly reduces the number
of model parameters, effectively alleviates the overfitting problem,
but also greatly enhances the computational efficiency. These
characteristics make CNN the most representative DL architecture
in computer vision.

2.1 Application progress of deep learning in
the diagnosis of age-related cataract

Age-related cataract is one of the leading causes of
visual impairment worldwide. According to the World Health
Organization, although cataracts can be effectively treated
through surgery, a considerable number of patients in low- and
middle-income countries and rural areas fail to receive timely
diagnosis and treatment due to the shortage of medical resources,
inadequate screening equipment, and the scarcity of specialized
ophthalmologists. Traditional cataract diagnosis mainly depends on
professional ophthalmologists to assess the degree of lens opacity by
using a slit lamp microscope. Although this approach is accurate,
it demands high professional proficiency from doctors and is
challenging to be popularized in areas with scarce resources. AI and
DL algorithms offer new solutions for cataract diagnosis because of
their efficient, economical, and scalable features (Zhao et al., 2024).

2.1.1 Development of early DL diagnostic systems
Early studies mainly used traditional ML combined with DL to

develop cataract diagnosis systems. In 2019, Hongyan Zhang et al.
proposed a six-level cataract grading method, which categorized
cataract into six grades: non-cataract, mild cataract, mild-to-
moderate cataract, moderate cataract, relatively severe cataract,
and severe cataract based on the degree of fundus image blurring
caused by lens opacity (Zhang et al., 2019). A total of 1,352
fundus images taken by Topcon professional fundus camera were
labeled by two ophthalmologists and verified by three experienced
ophthalmologists. Based on this hierarchical approach, the research
team developed a DL diagnostic system based on stacked multi-
feature fusion. The ResNet18 network was utilized to extract high-
level features, the gray level co-occurrence matrix was used to
extract texture features, and two support vector machine (SVM)
classifiers were employed as the basic learners, combined with
the fully connected neural network for the final classification.
The experimental results indicated that the average classification
accuracy of the system reached 92.66%, and the highest was 93.33%,
demonstrating the potential of DL technology in cataract diagnosis.

However, this classification method differs significantly from
the Lens Opacities Classification System III (LOCS III) standard,

Frontiers in Cell and Developmental Biology 02 frontiersin.org

https://doi.org/10.3389/fcell.2025.1611216
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Lu et al. 10.3389/fcell.2025.1611216

which restricts its direct application in clinical practice. To solve
this problem, Qiang Lu et al. developed an AI-assisted automatic
cataract grading program based on the LOCS III standard and
established a remote diagnosis platform (Lu et al., 2022). Utilizing
advancedDL algorithms such as Faster Region-based Convolutional
Neural Network (R-CNN) and ResNet, the program can precisely
locate and analyze the region of interest (ROI) of the lens and
performs well in nuclear and cortical cataract grading. In this
study, 1,328 slit-lamp photographs from Eye & ENT Hospital of
Fudan University from 2018 to 2020 and 355 slit-lamp photographs
from Pujiang Eye Study from 2018 to 2019 were used as training,
validation and test datasets. All images were labeled and verified
by experienced ophthalmologists based on LOCSIII system. The
results indicated that the absolute prediction error of the automatic
nuclear cataract classification was 1.0 or less in 99.4% and 100% of
the internal and external datasets, respectively, and the area under
the curve (AUC) of referral ability was 0.983 and 0.977, respectively.
Additionally, the AI program demonstrated good agreement with
manual classification in nuclear and cortical cataract assessment, but
there are still limitations in the classification of posterior subcapsular
cataract (PSC).

2.1.2 Data-driven optimization of DL algorithm
In order to improve the generalization ability and diagnostic

accuracy of DL algorithm, researchers began to use larger data sets
for model training. In 2022, Yih-Chung Tham et al. utilized over
25,000 fundus images from a population-based study to design
and test a novel deep-learning algorithm for identifying visually
significant cataracts (Tham et al., 2022). The AUC of the algorithm
reached 96.6% in the internal test set and ranged from 91.6% to
96.5% in three external studies. Compared with ophthalmologists,
the algorithm had a sensitivity of 93.3% and a specificity of 99.0%,
which were superior to the performance of most ophthalmologists
(sensitivity ranging from 51.7% to 96.6% and specificity ranging
from 90.7% to 97.9%). This study indicates that DL algorithms,
supported by large-scale datasets, are capable of attaining or even
surpassing the diagnostic level of human experts.

Meanwhile, Tiarnan D.L. Keenan et al. developed a DL model,
DeepLensNet, which was trained on the Age-Related Eye Disease
Study dataset consisting of 18,999 slit-lamp photographs from 1,137
eyes of 576 patients (Keenan et al., 2022).DeepLensNetwas designed
to detect and quantify nuclear cataracts (NS), cortical cataracts
(CLO), and PSC. The mean squared error (MSE) of DeepLensNet
in the diagnosis of NS was 0.23, which was significantly better than
that of ophthalmologists (MSE = 0.98) andmedical students (MSE =
1.24). For CLO, DeepLensNet also outperformed human evaluators,
but its accuracy was comparable to that of ophthalmologists in
the diagnosis of PSC. This study indicates that the DL algorithm
has significant advantages in the diagnosis of common cataract
types, but further optimization is still necessary for the diagnosis of
rare types.

2.1.3 Challenges in the diagnosis of PSC
Although theDL algorithmdemonstrates excellent performance

in the diagnosis of NS and CLO, it still confronts a significant
challenge in the diagnosis of PSC. In 2021, Elsa L.C. Mai et al.
put forward a cataract shadow projection theory and attempted
to utilize ultra-wide field photography and the DL algorithm to

screen high-risk PSC (Mai et al., 2024).The research teamdeveloped
a DL model based on ultra-wide field photography images to
diagnose PSC by analyzing the shadow distribution of the lens. The
study utilized 546 retrospective ultra-wide-field fundus images from
Far Eastern Memorial Hospital (2018–2021), categorized into no
shadow, blurry/cartwheel-like shadow, and central blotch shadow
groups, and validated on a clinical dataset of 103 images. However,
the experimental results indicated that the overall accuracy of
the model was merely 80%, the sensitivity was 88.2%, and the
specificity was 93.4%. This outcome suggests that the diagnosis of
PSC remains a complex and challenging issue that might need to
be addressed by combining multimodal imaging data with more
advanced algorithms.

2.1.4 Standardized image and model
interpretability

In practical clinical applications, the generalization of the
DL algorithm is restricted by insufficient standardized images
and the “black box” problem of the model. In 2023, Eisuke
Shimizu et al. put forward an innovative solution to increase
the quantity of standardized optical images by using a video-
recording slit-lamp device (Shimizu et al., 2023). The research
team collected 206,574 video images from 1812 cataract eyes
and employed the improved EfficientNet v2 model for training
and testing. To enhance the interpretability of the model, Grad-
CAM (gradient-weighted class activation mapping) was utilized to
visualize the decision-making process of the model. Grad-CAM is
a visualization technique designed to enhance the interpretability of
deep learning models by highlighting the spatial regions of an input
image that most significantly influence the model’s predictions.
It achieves this by leveraging gradients of the target class score
with respect to the feature maps from the final convolutional layer.
Specifically, Grad-CAM computes gradient-based weights for each
feature map channel, reflecting their importance to the model’s
decision. These weights are then combined with the corresponding
feature maps through a weighted summation, producing a coarse
localization heatmap. The heatmap is subsequently upsampled to
match the input image resolution and overlaid on the original
image, offering an intuitive visualization of the regions the model
prioritizes (Zhang and Ogasawara, 2023). Grad-CAM improves the
model’s acceptability by highlighting the key regions in network
predictions and assisting clinicians in understanding the diagnostic
reasoning of AI. The experimental results indicate that the accuracy
of the model in cataract diagnosis is significantly enhanced, and the
application of Grad-CAM technology provides significant support
for the promotion of AI in the medical field.

2.1.5 Exploration of unsupervised learning
Traditional DL models typically depend on supervised or

semi-supervised learning and demand a considerable amount
of labeled data, which is costly in practical applications. In
2021, Yong Han et al. put forward an unsupervised anomaly
detection model based on generative adversarial networks for the
screening of eye diseases. The model was trained with 90,499
fundus images from various national and ethnic backgrounds
and was capable of detecting multiple eye conditions, including
cataracts (Han et al., 2021). The experimental results indicated that
theAUCof themodel in detecting cataract was 0.912, demonstrating
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the potential of unsupervised learning in the diagnosis of eye
diseases. This approach not only lowers the cost of data labeling
but also creates more possibilities for disease screening in
low-resource settings.

2.1.6 Innovation of anti-interference models
Image quality is a crucial factor influencing the performance

of DL algorithms. In 2023, Xing Wu et al. developed an anti-
interference AI model based on fundus images for the rapid
and efficient diagnosis of cataracts (Wu et al., 2022). The model
comprises two submodules: one for image quality recognition
and the other for cataract classification. The quality recognition
module can distinguish between normal and low-quality images
and generate quality-related pseudo-labels for non-cataract images.
The classification module classifies cataracts from superior-quality
images based on CNN. The dataset which included 14,820
participants and 16,200 fundus images of cataract and noncataract
was retrospectively derived from the Chinese PLA general hospital
fromSeptember 2018 toMay 2021.The experimental results indicate
that the diagnostic accuracy of the model is significantly enhanced
under low-quality images, providing a novel idea for addressing the
issue of image quality.

Significant progress has been achieved in the application of
AI and DL techniques to the diagnosis of age-related cataract.
From early grading systems to optimization models based on large-
scale datasets, and to innovations in unsupervised learning and
anti-interference models, DL algorithms have gradually tackled the
problems of data standardization, model interpretation, and image
quality. In the future, with the further advancement of technologies
such as multimodal data fusion, transfer learning, and federated
learning, AI is anticipated to become an important tool for cataract
diagnosis, especially in areas with scarce resources, andmake greater
contributions to global eye health.

2.2 Application of deep learning in the
diagnosis of pediatric cataract

Pediatric cataract is one of the main causes of
blindness among infants and young children globally
(Solebo et al., 2018; Rodriguez et al., 2023). Its early diagnosis and
effective treatment are crucial for preventing vision impairment.
In recent years, DL has demonstrated significant potential in the
diagnosis andmanagement of pediatric cataract, offering innovative
solutions to this field.

2.2.1 A DL diagnostic system for pediatric
cataract based on slit-lamp images

Xiyang Liu et al. initiated a computer vision framework based
on slit lamp images and CNN for the (Liu et al., 2017) automatic
localization and diagnosis of pediatric cataract. This framework
enables the automatic analysis of slit lamp images by identifying the
ROI of the lens and integrating the CNN algorithm. Specifically,
the lens’ ROI was automatically located through Canny edge
detection and Hough transform techniques, and then trimmed and
adjusted to a fixed-size image for the establishment of a pediatric
cataract dataset. The experimental results indicated that the average
accuracy, sensitivity, and specificity of the proposed method in the

classification task reached 97.07%, 97.28%, and 96.83% respectively.
The proposed method also performed well in the three-degree
classification task (including area, density, and location), with the
average accuracy being 89.02%, 86.63%, and 90.75% respectively.
This study provides an essential technical foundation for the
automated diagnosis of pediatric cataract.

2.2.2 Improvement of generalization ability of
multi-center data

Despite the remarkable results of single-center studies, the
versatility of DL diagnostic systems is limited due to the complex
noise and heterogeneity of slit lamp images from multi-centers.
To address this issue, Jiewei Jiang et al. developed two lens
segmentation strategies based on DL Faster R-CNN and Hough
transform to improve the generalization ability of infant cataract
detection (Jiang et al., 2021). The data of this study were obtained
from the Zhongshan Ophthalmic Center of Sun Yat-sen University.
A total of 886 slit-lamp images were collected, of which 476 were
normal images and 410 were images of children with different
degrees of cataract. The experimental outcomes reveal that the
average intersection ratio of Faster R-CNN in normal and abnormal
lens segmentation tasks is 0.9419 and 0.9107 respectively, with
an average accuracy of 95%. Compared with Hough transform,
the accuracy, specificity and sensitivity of Faster R-CNN in the
classification of opaque regions were increased by 5.31%, 8.09%
and 3.29% respectively. Additionally, the processing time of a single
image by Faster R-CNN is merely 0.25 s, which is significantly
superior to that of Hough transform (34.46 s). Through Grad-CAM
and t-Distributed Stochastic Neighbor Embedding techniques, the
research team also accomplished the visualization of the lesion area
and discrimination of high-level features, further strengthening the
interpretability of the model.

DL technology has shown a broad application prospect in the
diagnosis andmanagement of pediatric cataract. From the automatic
diagnosis system based on slit lamp images to the generalization
ability improvement of multi-center data, DL algorithm has
gradually solved the key problems in the diagnosis and treatment
of pediatric cataract. In the future, with the further advancement
of technology and multidisciplinary collaboration, AI is anticipated
to play a more significant role in the early diagnosis, precise
treatment and long-term management of pediatric cataract, and
make a crucial contribution to the cause of global children’s
eye health.

2.3 Integrated application of cataract
diagnosis system with portable devices,
telemedicine and personalized
management subsequent to cataract
surgery

With the rapid development of DL technology, its application in
the field of ophthalmology has expanded from traditional diagnosis
to surgical assistance and telemedicine. Especially in the diagnosis,
management, and identification of the surgical stage of cataract,
the combination of DL technology with portable devices and
telemedicine platforms has brought revolutionary alterations to
ophthalmic medicine.
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2.3.1 Portable devices facilitate the development
of telemedicine in remote areas

Traditional fundus photographs and slit-lamp examinations rely
on specialized equipment and ophthalmic technicians, limiting
their uptake in low-resource Settings. However, technological
advancements in smartphone cameras present novel prospects for
eye examinations. Shenming Hu et al. developed a smartphone-
based portable slit lamp intended to offer an early cataract screening
tool in remote and deprived areas (Hu et al., 2020). The device
simplifies the band design of the traditional slit lamp by integrating
aminiature lens with amobile phone camera to fulfill the portability
requirements. This cost-effective and user-friendly device provides
significant support to primary care.

2.3.2 Personalized management and
complication prediction combined with
telemedicine platform

Erping Long et al. developed an AI agent named CC-Guardian
for personalized management and complication prediction in
patients with congenital cataract (Long et al., 2020). CC-Guardian
encompasses three functional modules: a prediction module, a
scheduling module, and a telemedicine module. The prediction
module analyzed the baseline information (such as gender, age
at surgery, and eye), lesion (such as area, density, and location),
comorbidities (such as strabismus, microphthalmia), and surgical
procedures (such as lens extraction and posterior continuous
circular capsulotomy) via the Bayesian algorithm to identify
high-risk patients who might have complications. The scheduling
module formulates personalized follow-up plans based on the
predicted outcomes, for instance, adding additional follow-up time
points for high-risk patients. The telemedicine module utilized the
deep residual network (ResNet-101) to analyze the postoperative
images and offer intervention decision support. Clinical records
of 594 patients with congenital cataract were included. A total
of 4,881 postoperative follow-up images were collected. The
performance of the model was further evaluated by internal
validation (142 patients) andmulti-resource validation (79 patients).
The developed telemedicine platform enables real-time interaction
between patients and specializedmedical centers through cloud and
smartphone applications, which can help doctors dynamically adjust
follow-up plans and provide intervention decisions.

The research team explored neural networks and random forest
algorithms within the prediction module; however, ultimately, it
was discovered that the naive Bayes algorithm boasted lower
computational complexity while maintaining a high level of
accuracy, and was capable of achieving swifter decisions and greater
stability. The application of CC-Guardian significantly enhances
the quality of follow-up management for patients with congenital
cataract, mitigates the social and economic burden of patients
and their families, and offers a novel strategy for chronic disease
management.

2.4 Application of deep learning for
cataract surgery recognition

DL models can precisely identify different stages of cataract
surgery by learning from cataract surgery videos, providing an

essential tool for surgical training and process optimization.
Groundbreaking research in this field includes.

2.4.1 Real-time surgical stage segmentation and
classification

Gwenole Quellec et al. developed a real-time system based on
video content retrieval, which is capable of segmenting cataract
surgery videos into idle phases and action phases (Quellec et al.,
2014).The system employs conditional random fields for classifying
action phases and predicting the next action phase. The study used
data from 23 retinal surgeries (69 videos), 100 cataract surgeries
(900 videos) and 1707 Hollywood film clips annotated with 12
human movements from the University Hospital of Brest, France,
to identify eye surgery tasks and general behaviors through real-
time video analysis. In the “Injection” and “Coat” recognition tasks
in retinal surgery, the AUC of the proposed method reached 0.923
and 0.995, respectively, whichwas significantly better than that of the
benchmark method. It performed well in the Phacoemulsification
and Epinucleus removal tasks of cataract surgery (AUC = 0.923 and
0.969, respectively). The proposed method achieved 26.0 FPS, 24.3
FPS and 28.9 FPS in the three datasets, respectively, which was close
to real-time (25 FPS). However, it has the drawback of insufficient
recognition of complex tasks, such as “viscoelastic agent injection,”
which involves subtle fluid movement, and the AUC is only 0.561.
Moreover, the training is time-consuming, taking an average of
16 h for each task (based on a 12-core processor), which limits
the practical application. Overall, the proposed system performed
well in real-time segmentation and classification tasks, providing an
efficient tool for automated analysis of surgical procedures.

2.4.2 Performance comparison of multiple
algorithms

Felix Yu et al. conducted a comparison of the performance of
5 ML algorithms in the classification of cataract surgery video stages,
encompassing SVM, recurrent neural network (RNN), CNN, and the
CNN-RNN combination model (Yu et al., 2019). The study used 100
videos of cataract surgeries (29 performed by senior surgeons and 71
by trained surgeons) from the Johns Hopkins Wilmore Eye Institute
between July 2011 and December 2017, with 10 surgical stages and
14 device usage manually annotated as benchmark data.The findings
indicated that the weight-free accuracy of these algorithms ranged
from0.915 to 0.959, and the area under theAUC ranged from0.712 to
0.773.Among them, theAUCvalueof theCNN-RNNmodelon image
data (0.752) was significantly higher than that of using CNN alone
(0.712). Despite the high specificity among all algorithms (ranging
from 0.877 to 0.999), the sensitivity range was broad (varying from
0.005 to 0.974), suggesting that DL techniques possess significant
advantages in the recognition of cataract surgery stages.

2.4.3 Automatic annotation system for surgical
tools

Hassan Al Hajj et al. devised a DL-based automatic
annotation system for cataract surgical tools in a
competitive format (Al Hajj et al., 2019). The study employed
50 cataract phacoemulsification surgery video datasets, and a
total of 14 teams submitted 27 protocols. Ultimately, the average
recognition AUC value of the best-performing algorithm reached
0.9971, demonstrating the high efficacy of the DL algorithm in
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surgical tool recognition. This technique not only facilitates the
postoperative self-evaluation of the surgeon but also optimizes
the surgical workflow and offers the possibility of real-time
intraoperative feedback.

DL models are capable of identifying various stages of cataract
surgery through the learning of cataract surgery videos, thereby
offering a crucial tool for surgical training and process optimization.

2.5 A breakthrough in the clinical
application of cataract surgery recognition

The application of DL technology in cataract surgery has moved
from theoretical research to clinical practice, including surgical skills
assessment, surgical safety improvement and intelligent operating
room management.

2.5.1 Objective evaluation of capsulorhexis
technique

The DL model developed by Tae Soo Kim et al. allows for
an objective assessment of capsulorrphy techniques through the
analysis of tool tip position, tool tip velocity, and optical flow field in
surgical videos (Kim et al., 2019).The video recordings of 99 cataract
surgery procedures were used as the data source. The technical
skills in the videos were labeled by an expert surgeon according to
the International Council of Ophthalmology Surgical Competence
Evaluation criteria (ICO-OSCAR:phaco), and the instrument tip
trajectorywasmarked by a crowdsourcing tool.The study found that
the deep learning model using tool tip velocity (TV) had the best
performance in the evaluation of cataract surgery capsulorruption
technology, with an accuracy of 84.8% (AUC 86.3%), while the
model based on optical flow field (FF) only had an accuracy of
63.4% (AUC 80.3%). However, combining multiple data features,
such as FF + TV, did not significantly improve the performance.
The model is capable of scoring and predicting the surgeon’s
capsulorhexis technique, thereby providing a quantitative index for
surgical skills training.

2.5.2 Smart speakers reduce the risk of eye error
Tae Keun Yoo et al. have designed a DL-based smart speaker

for confirming surgical sites during surgical intermission (Yoo et al.,
2020). In this study, the CNN model was combined with the public
Speech Commands dataset (containing more than 65,000 short
audio messages) and 16 self-recorded target words (such as “left”,
“right”, and “cataract”).Themodel was trained by data augmentation
(including sound amplitude adjustment, time translation, andmixed
operating room noise). The Adam optimizer (initial learning rate
0.0002, decay every 20 epochs) and dropout technique (probability
0.2) were used to prevent overfitting. Finally, the model was
deployed on the LattePanda development board with commercial
speakers, and passed 200 speech pauses during simulated surgery.
The identification accuracy (93.5%) and the identification ability
of key surgical information (100%) were verified. Through voice-
controlled interaction, this device avoids the risk of infection caused
by operators touching non-sterile areas and significantly reduces
the possibility of eye error. The experimental data indicate that the
accuracy of the device is nearly 100%, providing a guarantee for the
safety of surgery.

2.5.3 Preoperative safety management system
The preoperative safety management system for cataract

surgery developed by Gaku Kiuchi et al. integrates facial
recognition, surgical side confirmation, and verification of IOL
parameters (Kiuchi et al., 2022). In a clinical trial involving 171
patients, the certification rate of facial recognition was 92.0%
on the first attempt and rose to 96.3% after four attempts. The
certification rate of the first attempt for the surgical side was 82.5%,
and climbed to 98.2% after seven attempts. For the verification
of IOL parameters, the initial and final certification rates were
67.4% and 88.9% respectively. Although the certification rate of
IOL parameter validation did not reach 100%, the system was still
regarded as a potent safety guarantee tool.

2.5.4 Real-time surgical guidance and intelligent
operating room management

Rogerio Garcia Nespolo et al. successfully integrated a surgical
microscope with an AI platform via deep neural networks, being
capable of real-time pupil tracking, identifying the surgical stage,
and activating surgical guidance tools (Garcia et al., 2022). In
this study, regional convolutional neural network (Faster R-CNN)
combined with ResNet-50 architecture was used to process surgical
video frames in real time.Through pupil tracking and surgical stage
identification, computer vision tools (such as optical flow tracking,
k-means clustering segmentation, and contrast enhancement) were
linked to provide real-time visual feedback and warning for
surgeons. The developed artificial intelligence platform based on
the regional convolutional neural network (Faster R-CNN) attained
a high level of accuracy in pupil tracking (with a Dice score of
90.23%) and surgical stage identification (with amaximumAUROC
of 0.997) during cataract surgery, featuring a processing speed of 97
frames per second. 72% of the participating surgeons concurred on
its usefulness in complex surgery, and all the participants affirmed
that real-time feedback contributed to enhancing surgical safety.
The immediacy of this method offers a new potential for the
management of future intelligent operating rooms and can provide
significant support for the surgical training of junior doctors.

The combination of DL technology with portable devices
and telemedicine platforms provides a new solution for cataract
management. From portable slit-lamp to surgical stage recognition,
to intraoperative real-time feedback and training support, DL
technology is gradually changing the practice patterns of eye
care. In the future, with the further maturity of technology and
the deepening of multidisciplinary collaboration, DL is expected
to promote the popularization and precision development of
ophthalmic medicine on a global scale.

3 Prediction

3.1 Optimization of predicted IOL power
calculation

The accuracy of IOL power calculation directly influences the
refractive effect after cataract surgery (Wang and Koch, 2021). The
development of the IOL formula has undergone a transformation
from theoretical optical models to those based on data and
algorithms. The introduction of AI technology has promoted the
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calculation accuracy. Wiktor Stopyra et al., in their 2024 review,
evaluated multiple AI-based formulas for IOL power calculation,
including FullMonte, Ladas Super formula AI, PEARL-DGS, Kane,
Karmona, Hoffer QST, and Nallasamy formula, etc (Stopyra et al.,
2024).This study analyzed 25 peer-reviewed articles using the mean
absolute error (MAE) and the percentage of patients within ±0.5 D
as evaluation indicators and found that Kane’s formula performed
best in terms of accuracy and became the most reliable AI-based
formula for IOL power calculation. This progress has provided
patients with additional accurate predictions of postoperative
refractive outcomes and significantly improved surgical satisfaction.

3.2 Prediction of axial IOL position after
cataract surgery

The accurate prediction of the axial position of IOL is the key to
determine the refractive effect (Kane and Chang, 2021; Keshav and
Henderson, 2021; Schallhorn et al., 2021). Achim Langenbucher et al.
used DL algorithms and multiple linear regression models to predict
ALPbasedonpreoperativebiometricdata (Langenbucher et al., 2022).
Thestudyutilized theSVMandGaussianprocess regressionalgorithm
to measure 1,345 biometric data measured by IOLMaster 700. The
results indicated that the root mean square prediction error (RMSE)
of the Gaussian process regression algorithmwas 0.2731 mm, and the
MAE was 0.1948 mm. It outperformed the traditional multiple linear
regression model (RMSE = 0.3379 mm, MAE = 0.2415 mm). This
study demonstrates that DL algorithms possess significant advantages
in handling nonlinear relationships and offer a novel approach for the
accurate prediction of the postoperative refractive effect.

3.3 Prediction of the likelihood of requiring
cataract surgery in the future

Wei Wang et al. gathered multidimensional demographic,
socioeconomic, medical history, and lifestyle data through a
questionnaire administered to 207,573 participants aged 45 or above
withnohistoryofcataract surgery (Wangetal., 2022b).Randomforest,
gradient-boosted ML, DL (multilayer feedforward neural network),
and traditional logistic regressionmodelswereemployed topredict the
10-yearriskofcataract surgery.Thefindings indicatedthat thegradient
boosting algorithm and random forest model demonstrated the best
prediction performance (AUC≈0.78–0.79), which was significantly
superior to the traditional logistic regression model. Age, subjective
vision, and health insurance were core predictors. This study reveals
that AI algorithms can be utilized in public health resource allocation
planning and high-risk population screening, providing a novel
strategy for the prevention and control of cataract.

3.4 Visual acuity prediction after cataract
surgery in patients with high myopia

Patients with high myopia are often accompanied by complex
fundus lesions, thereby making the prediction of postoperative
vision more challenging (Wei et al., 2021). Ling Wei et al.
developed a prediction system based on a DL model to predict

the postoperative best corrected visual acuity by using preoperative
macular optical coherence tomography (OCT) images (Wei et al.,
2021). The study was based on preoperative OCT image data of
1,415 cataract patients with high myopia from Eye & ENT Hospital
of Fudan University and 161 cataract patients with high myopia
from Shanghai Peace Eye Hospital. Five pre-trained CNN models,
namely, ResNet-18/34/50/101 and Inception-v3, were employed in
this study, in combination with ensemble learning methods. The
results indicated that the MAE and RMSE of the ensemble learning
model in the validation set were 0.1566 logMARand 0.2433 logMAR
respectively. The advantage of this model lies in the fact that it
only requires a single-mode OCT input and has strong clinical
applicability. The prediction sensitivity for the good visual acuity
group is over 80%, and it can provide decision support for more
than 60% of patients. This technique offers an important reference
for preoperative communication and surgical planning in patients
with high myopia.

3.5 Risk prediction of posterior capsule
opacification after phacoemulsification

Posterior capsular opacity is the most common complication
after cataract surgery, and over 20% of patients need Yttrium
Aluminum Garnet laser capsulotomy. Seyed-Farzad Mohammadi
et al. gathered 10 influencing factors (such as age, gender, diabetes,
type of IOL, etc.) of 352 eyes after cataract surgery and constructed
a decision tree, back propagation artificial neural network, and
logistic regression model (Mohammadi et al., 2012). The results
indicated that the back propagation artificial neural network model
had the highest prediction accuracy (87%), and the area under
the ROC curve was 0.71, which was significantly superior to the
decision tree model (accuracy 50%) and the logistic regression
model (accuracy 88%). Studies have demonstrated that DL models
have significant advantages in handling complex interactions and
multi-factor predictions, providing an efficient tool for Posterior
capsular opacity risk prediction.

The application of DL in cataract surgery, ranging from
the optimization of IOL power calculation to the prediction of
postoperative complication risks, has demonstrated its significant
potential in enhancing surgical accuracy and patient satisfaction.
With the further maturation of technology and the deepening of
multidisciplinary collaboration, it is anticipated that AIwill promote
the development of personalization, precision, and intelligence of
cataract surgery on a global scale, bringing more benefits to both
patients and doctors.

4 Challenges and discussion of DL in
cataract management

The research on the combination of AI and cataract diagnosis
has been going on for more than 10 years. Rapid and accurate
diagnosis is no longer a problem (Chen et al., 2025), and the
prediction of postoperative effects and complications has become a
new research hotspot. Internet Plus Healthcare has emerged, while
there are a number of issues that can be discussed that hinder the
application to the Clinical practice.
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4.1 Data security and privacy protection

As a discipline deeply associated with imaging, the medical data
of cataract patients encompass a considerable amount of highly
sensitive content, such as patient identity information, biological
characteristics, and disease history. The training of DL models
depends on a large quantity of such data (Abràmoff et al., 2022).
The “productization” of trained AI models in the clinical setting
is extremely intricate, and data might need to be shared among
multiple institutions, perhaps even across countries, during the
process of facilitating telemedicine and smart health (Chaet et al.,
2017). With the expansion of the transmission scale, the risk of
patient privacy leakage is directly magnified. If the patient’s medical
data is not fully desensitized (for instance, not concealing the
name or examination number), the attacker can restore specific
individual information from the training set through model reverse
engineering or adversarial sample attack, or even combine it
with external databases (such as medical insurance records) to
achieve secondary identification. Cybersecurity measures will
become increasingly crucial to address the risks of improper
utilization of data sets, inaccurate or inappropriate disclosure,
and limitations of de-identification techniques. The current
healthcare environment lacks the impetus for data sharing,
and the ownership and usage rights of patients’ desensitized
medical data require further legal and ethical deliberations
(Yu et al., 2018).

It has been suggested to establish anonymous “benchmark
datasets” with known diagnoses, which are regularly updated and
“calibrated” using local data from the implementing facility, similar
to the way clinical laboratories maintain local reference standards
for blood-based biomarkers. Clearly, these maintenance measures
entail extensive data sharing and considerable manpower. Local
calibration is of significance because some algorithms might have
local or culture-specific parameters that may not be applicable to
different populations. Future research should prioritize transparent
reporting of demographic metadata and imaging protocols to
facilitate robust meta-analyses.

Vulnerabilities in data storage and transmission are equally
fatal. When hospitals collaborate with third-party technology
companies, if the original data stored centrally does not employ
homonymous encryption or secure multi-party computing, once
the cloud server is invaded, patient privacy might be exposed on
a large scale. If real-time data transmission in remote diagnosis
and treatment lacks quantum encryption or blockchain traceability
technology, man-in-the-middle attacks can intercept unencrypted
pathology reports or real-time monitoring data. Additionally,
although distributed technologies such as federated learning can
achieve “data non-discharge,” malicious nodes may still restore
the patient’s original data from the shared gradient updates
through gradient inversion (Teo et al., 2025). A more insidious
risk lies in the security threat after the model is deployed. If
an attacker implants a backdoor trigger (such as a specific pixel
combination) during the training stage, the AI diagnostic system
can misjudge the nature of the disease when faced with imaging
pictures containing the trigger, directly endangering the patient’s life
(Nazir and Kaleem, 2023).

4.2 Interpretability of the model

The application of the DL model in cataract diagnosis and
treatment encounters significant interpretability challenges. The
DL model has black-box characteristics because of its complex
interactive multi-level nonlinear structure and autonomous
feature learning mechanism (Oganov et al., 2023). In the
medical context of cataract, models extract features through
tens to hundreds of layers of neural networks. For instance,
hidden features such as tissue texture and lesion contour are
gradually abstracted from the pixel-level data of eye OCT images
(Kashani et al., 2023).

Taking the opacity of the eye lens as a typical case, the
model might generate prediction results based on the nonlinear
combination of millions of parameters, but it fails to clearly
explain why an abnormal increase in density is regarded as
a cataract. This ambiguity of the decision path directly gives
rise to a crisis of confidence in clinical practice. It is also
impossible to rule out the possibility that the model is misled by
irrelevant noise (Kihara et al., 2022).

In order to address this dilemma, researchers are exploring
two approaches, namely, “post hoc interpretation” and “self-
interpretation model”. The former employs Grad-CAM and other
technologies to visualize the model’s focus areas in imaging images,
enabling clinicians to compare whether the model’s recognition
focus aligns with the basis of clinical diagnosis (Zhang and
Ogasawara, 2023). In the task of lesion classification, the model not
only outputs the diagnostic results but also presents the similarity
comparison with the lesion features of typical cases. Nevertheless,
the above two methods still have their own limitations, and the
accuracy and stability require improvement.

Therefore, the development of AI medicine is moving towards
a new paradigm of “interpretable embedding,” which demands the
introduction of medical prior knowledge constraints from the early
stage ofmodel design.This includes the construction of interpretable
modules in the prediction model or the cross-modal alignment of
pathology report text and image features. In the future, AI medical
systems are required to possess both diagnostic capabilities and
teaching abilities.They should not only assist in decision-making but
also clarify their reasoning logic to doctors by visualizing decision
trees and feature contribution heat maps, ultimately achieving the
paradigm shift from “black box” to “transparent diagnosis and
treatment partners” (He et al., 2019).

4.3 Ethical and moral issues

The rapid advancement of AI has enhanced the efficiency of
cataract screening; however, it has also sparked multi-dimensional
ethical disputes in clinical practice. The crux of these disputes
lies in the clash between technology application and medical
humanistic value. When algorithmic decision-making is involved
in the diagnosis and treatment of human’s most sensitive sensory
function, the underlying reconfiguration of power and transfer
of medical responsibility are challenging the traditional ethical
framework (He et al., 2019).
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A more insidious risk lies in the implicit transfer of clinical
decision-making power.The accuracy of current cataract diagnostic
models is higher than that of junior residents and junior doctors.
When it is put into practical application, doctors may blindly adopt
algorithm suggestions and give wrong diagnosis (Kermany et al.,
2018). However, the ambiguity regarding responsibility for medical
accidents has not been clearly defined in the current legal system,
and how hospitals, algorithm developers, and cloud server providers
should divide their rights and responsibilities has been exposed,
highlighting the lag of legal norms (Oganov et al., 2023).

The ethical dilemma brought about by the application of the DL
model is essentially the profound impact of technical rationality on
humanisticmedical care.Cataractpatients frequentlyexhibit cognitive
anxiety regarding body datalization during the selection and planning
of IOL before surgery, which reflects the fundamental contradiction
between the requirements of individualized diagnosis and treatment
andthesimplificationofalgorithmic thinking intheprocessofmodern
medical technology. This contradiction is not only manifested at the
level of technical cognition but also has a profound influence on the
trust foundation of the doctor-patient relationship.

The “third path” for the construction of AI ethics in cataract
requires the establishment of a multi-dimensional framework.
Regarding technical interpretability, a traceability model with
anatomical relevance should be developed. Concerning clinical
application standards, it is essential to establish a quality control
system including uncertainty assessment. In the reconstruction of
the doctor-patient relationship, an innovative model combining
algorithm transparency and patient empowerment should be
explored. Although these practical explorations did not completely
solve the ethical dilemma, they provided an important practical path
for the ethical development of cataract AI models.

4.4 Future research directions

Future technological optimization will focus on enhancing the
personalized prediction capabilities and generalization performance
of models, which can be achieved by expanding the database
through collecting population information from multiple regions
and ethnic groups and fusing multimodal data (Oke, 2022). The
construction of cross-regional multi-center benchmark datasets
should follow strict standardized protocols. Regulations similar
to the “Cataract Image Acquisition Specifications” should be
formulated, and equipment parameters (such as slit lamp light
source intensity and shooting angle), data formats (DICOM
standard), and annotation criteria (LOCS III classification) should
be unified. The dataset should cover diverse races, ages, and
disease stages, and emerging subtypes (such as diabetic cataract)
should be regularly included. To protect patient privacy, a dynamic
calibration mechanism can be implemented through a federated
learning framework, where each institution regularly uploads
local data statistical features (such as the mean distribution of
lesions), and the central model adjusts the weights accordingly
to avoid performance degradation due to population differences
(Moshawrab et al., 2023). Multimodal data fusion can be achieved
by integrating ophthalmic images, genomic data, environmental
factors, and patient electronic health records to construct a multi-
dimensional feature space. However, this method needs to address

the issue of data heterogeneity, such as developing cross-modal
alignment algorithms to unify the representation forms of different
data sources (Zhang et al., 2023b).

Clinical translation can focus on intelligent surgical robots
and real-time decision support systems. Intelligent surgical robots
are the key direction for the next technological breakthrough.
Current surgical robot systems are mostly auxiliary operation
systems that rely on pre-set programs and lack real-time decision-
making capabilities during surgery (Moglia et al., 2021). In the
future, by embedding reinforcement learning algorithms, robots can
autonomously handle unexpected situations during surgery (such
as posterior capsule rupture). Real-time decision support systems
during surgery should deeply integrate image stream analysis and
physiological signal monitoring. For example, based on real-time
surgical video streams under the microscope, the system can
identify the hardness of the lens nucleus and recommend the best
phacoemulsification mode; or through continuous monitoring of
intraocular pressure sensors, the system can warn of the risk of
suprachoroidal hemorrhage. The application of this system also
needs to be combined with edge computing, moving data processing
from the cloud to local devices (such as microscopes embedded
with GPUs) to reduce the impact of network latency on real-time
performance.

5 Conclusion

The extensive application of DL technology in the diagnosis
and treatment of cataract is propelling ophthalmic medicine into
the era of precision and intelligence. Through algorithms such as
the CNN, DL not only enables the automatic classification and
diagnosis of cataract, significantly enhancing the efficiency and
accuracy of screening, but also demonstrates excellent potential
in surgical stage identification, tool tracking, and postoperative
complication prediction. Particularly in low-resource areas, the
intelligent platform combining portable devices and telemedicine
offers a universal solution for the prevention and treatment of
cataract worldwide. Nevertheless, the technology still confronts
challenges like data standardization, model interpretability, privacy
security, and ethical controversy.

Future research should focus on technological optimizations
such as multimodal data fusion, federated learning, and transfer
learning to enhance the generalization ability and clinical
adaptability of the model. Meanwhile, an interdisciplinary
collaboration mechanism should be established, the data privacy
protection framework should be improved, and doctor-patient
trust should be enhanced through the design of “interpretable
embedding”. Only by striking a balance between technological
innovation and ethical governance can DL be truly integrated into
clinical practice, providing more efficient, safe, and humanized
diagnosis and treatment services for cataract patients and
contributing to the long-term development of global eye health.
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