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Intervertebral disc degeneration (IVDD), a leading cause of chronic low back
pain, imposes a significant global health burden due to its association with
aging, inflammation, and mechanical stress. Emerging evidence highlights
programmed cell death (PCD) as a pivotal driver of IVDD progression.
PANoptosis, a novel integrated cell death mechanism combining pyroptosis,
apoptosis, and necroptosis, has recently gained attention for its role in
amplifying inflammatory responses and accelerating disc degeneration. This
review synthesizes current knowledge on PANoptosis in nucleus pulposus
cells (NPCs), emphasizing its regulatory crosstalk via multiprotein complexes
and signaling pathways such as RIPK, caspase activation, and gasdermin-
mediated membrane permeabilization. Key triggers, including oxidative stress,
cytokine dysregulation, and mechanical compression, exacerbate PANoptosis,
leading to NPC loss and extracellular matrix degradation. While therapeutic
strategies targeting PANoptosis-related molecules show promise in preclinical
studies, clinical translation remains limited. Elucidating the interplay between
PANoptosis and other pathological pathways could unveil novel biomarkers
and therapeutic targets. This review underscores PANoptosis as a critical axis
in IVDD pathogenesis and advocates for multidisciplinary approaches to bridge
mechanistic insights into effective clinical interventions.

KEYWORDS

PANoptosis, programmed cell death, nucleus pulposus cell, intervertebral disc
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1 Introduction

Intervertebral disc degeneration (IVDD), recognized as the most prevalent chronic
orthopedic disorder and a primary contributor to chronic low back pain, imposes
substantial global disease burden (GBD 2021 Neck Pain Collaborators, 2024). This
condition profoundly diminishes individuals’ quality of life while generating significant
socioeconomic impacts (Maher et al., 2017; Hartvigsen et al., 2018). Age-related
degenerative changes in disc structure and function, leading to the death of intervertebral
disc cells, which is pivotal in the pathological process of IVDD (Wang et al., 2016).
Numerous genetic and environmental risk factors, such as smoking, aging, trauma, and
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occupational exposure, are recognized as contributors to IVDD
(Han, 2020; Feng et al., 2016; Lu et al., 2022). Since then, research has
revealed that the pathogenesis of IVDD includes nucleus pulposus
cells (NPCs) senescence and apoptosis, inflammatory stimulation,
extracellular matrix (ECM) degradation, oxidative stress, and
other contributing factors (Feng et al., 2016; Feng et al., 2017;
Liu et al., 2018). However, the pathogenesis of IVDD remains largely
unknown. Research indicates that the pattern of NPC injury in
IVDD closely resembles programmed cell death (PCD). Currently,
it has been established that the occurrence and progression of IVDD
are regulated by various modes of cell death (Liao et al., 2019;
Vergroesen et al., 2015; Chan et al., 2016). Therefore, clarifying the
mechanisms of different cytokines and cell death modes associated
with IVDD is crucial for understanding its pathogenesis.

PCD is a highly regulated biological process that is essential
for maintaining tissue homeostasis and eliminating damaged or
unnecessary cells (Yuan and Ofengeim, 2024; Tower, 2015). Over
the past few decades, various new forms of non-apoptotic PCD have
been discovered, including cuproptosis, autophagy-dependent cell
death, disulfidptosis, alkaliptosis, ferroptosis, lysosome-dependent
cell death, necroptosis, netotic cell death, oxeiptosis, parthanatos,
and pyroptosis (Chen et al., 2023; Zhao et al., 2022; Wu et al., 2024;
Andrabi et al., 2008; Fink and Cookson, 2005; Yang and Stockwell,
2016; Lin et al., 2025; Lu et al., 2025; Kulkarni and Hardwick, 2023).
Currently, the most common modes of cell death are apoptosis,
necroptosis, and autophagy (Yuan and Ofengeim, 2024; Quan et al.,
2020; Cazzanelli and Wuertz-Kozak, 2020). Abnormal PCD is
closely linked to the development of various diseases, including
cancer (Guo et al., 2024), autoimmune diseases (Liu et al., 2024),
and neurodegenerative disorders (Yu et al., 2017). Additionally, PCD
plays a significant role in the development of IVDD. Research on
the relationship between PCD and IVDD has primarily focused on
cell death within the intervertebral disc. particularly in the nucleus
pulposus, located at the center of the disc, which is a key feature
(Lu et al., 2025; Li et al., 2017; Cao X. et al., 2022). Although the
precise relationship between PCD and IVDD is still unclear, it can
be posited that PCD may contribute to the progression of IVDD by
affecting cell survival.

Although the relationship between PCD and the occurrence
of IVDD is intimate, the occurrence process cannot be perfectly
explained by a single theory. Our recent research indicates that
multiple key genes in various PCD pathways are involved in the
occurrence and development of IVDD (Zou et al., 2025). Hence,
the joint regulation of multiple PCD pathways might be a superior
strategy for the treatment of IVDD. For instance, the combined
regulation of apoptosis and necroptosis can significantly enhance
the survival of NPCs (Chen et al., 2017a; Chen et al., 2018).
Based on this, our focus has shifted to PANoptosis (P represents
pyroptosis, A represents apoptosis, and N represents necroptosis),
a novel form of cell death that was first proposed by Malireddi et al.
(2019); Samir et al. (2020). It is characterized by the concurrent
occurrence of necroptosis, apoptosis, and pyroptosis, but cannot be
fully explained by any one of these mechanisms alone (Samir et al.,
2020; Malireddi et al., 2019; Christgen et al., 2022). PANoptosis is
an evolving field of study. As research advances, it is expected to be
increasingly refined. Thus, we conducted this review to investigate
the role of PANoptosis in nucleus pulposus cell death during IVDD,
as shown in Figure 1.

2 Mechanisms and crosstalk events in
PANoptosis

2.1 Apoptosis

Apoptosis is a complex process of PCD that involves various
molecules and pathways, which can generally be categorized
into intrinsic and extrinsic pathways. They are also called the
mitochondrial pathway and the death receptor pathway, respectively
(Bovin and Bendtzen, 1999). However, these two apoptotic
pathways are interconnected via the mitochondria and converge
at a stage referred to as the apoptotic execution phase. Intrinsic
pathways are essential for cellular responses to various stimuli,
including growth factors, hypoxia, oxidative stress, and DNA
damage (Mirza-Aghazadeh-Attari et al., 2019). These pathways
activate downstream B cell lymphoma (BCL) family proteins,
encompassing both antiapoptotic members like Bcl-2, Bcl-XL,
Bcl-9, and MCL-1, and proapoptotic members such as Bax and
Bak. The culmination of these interactions promotes apoptosis
primarily by inhibiting antiapoptotic factors, thereby shifting the
balance toward cell death (Jeng et al., 2010; Kashyap et al., 2021;
Garner et al., 2016; Westphal et al., 2014).

Exogenous pathways involve the activation of death receptor
families, with the most classical being the tumor necrosis factor
(TNF) and tumor necrosis factor receptor (TNFR) signaling
pathways, as well as CD95 (also known as Fas or APO-1)
(Pistritto et al., 2016). The TNFR superfamily consists of two
primary receptors: TNFR-1 and TNFR-2. TNFR-1 features a death
domain characterized by a homologous amino acid sequence,
which is crucial for apoptotic signaling. Apoptosis is initiated
when the death domain of TNFR-1 interacts with the TNF
receptor associated death domain (TRADD) binding protein. This
interaction recruits the Fas associated death domain (FADD)
protein, facilitating the assembly and activation of procaspase-
8, which leads to the formation of the death inducing signaling
complex (DISC). FADD, in conjunction with procaspase-8, forms
the DISC, resulting in the catalytic activation of procaspase-8.
Activated caspase-8 then propagates the apoptotic signal by cleaving
and activating downstream effector caspases, such as caspase-3 and
caspase-7, ultimately orchestrating the apoptotic process (Green,
2022; Kurosaka et al., 2003; Lossi, 2022).

2.2 Pyroptosis

Unlike apoptosis and simple cell necrosis, cellular pyroptosis
is inherently pro-inflammatory. It is characterized by a robust
inflammatory response mediated by the activation of cytosolic
multiprotein complexes known as inflammasomes. Pyroptosis
represents a lytic and inflammatory form of PCD that is executed
by pore-forming proteins called gasdermins. The gasdermin family
includes GSDMA, GSDMB, GSDMC, GSDMD, GSDME, and
GSDMF (PJVK/DFNB59) (Broz et al., 2020).

When the inflammasome is activated, an enzyme known as
caspase-1 is recruited and subsequently activated. Once activated,
caspase-1 cleaves gasdermin D, a key protein involved in pyroptosis.
Additionally, active caspase-1 facilitates the recruitment of effector
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FIGURE 1
Summary of possible causes of IVDD. The potential possible causes to IVDD are presented as follows: excessive stress, oxidative damage, extracellular
matrix degeneration, and PANoptosis (with P signifying pyroptosis, A denoting apoptosis, and N representing necroptosis).

caspase-3, which cleaves gasdermin D/E (GSDMD/E) at its C-
terminal region (GSDMD/EC), thereby stimulating the release of
the N-terminal portion (GSDMD/E-N). The cleavage of gasdermin
D results in the formation of pores in the cell membrane, leading
to cell membrane rupture. Consequently, inflammatory factors,
including interleukins (IL)-1β and IL-18, are released from the cells
(Yu et al., 2021; Liston and Masters, 2017).

2.3 Necroptosis

Necroptosis is characterized by features of both necrosis and
apoptosis, as its definition suggests. It is triggered by death receptor
ligands, such as TNFR1, TNFR2, and ligands like TNF-α and Fas
ligand (FasL), which inhibit the apoptotic pathway (Linkermann and
Green, 2014; Martens et al., 2021). RIPK1 is an upstream regulator
and serves as a crucial signaling node in various signal transduction
pathways, actively regulating the balance between gene activation
and cell death, including apoptosis and necroptosis (Annibaldi and
Meier, 2018).

Downstream of the aforementioned receptors, active RIPK1
is recruited into an oligomeric complex that includes FADD,
caspase-8, and caspase-10 (Tenev et al., 2011; Feoktistova et al.,

2011). In the absence of caspase-8 activity, RIPK1 recruits
and phosphorylates RIPK3, resulting in the formation of
a complex known as the pro-necrotic RIP1-RIP3 complex
(Cho et al., 2009; Li et al., 2012). Subsequently, the RIPK1/RIPK3
complex recruits and phosphorylates MLKL (mixed lineage
kinase domain like protein), leading to the formation of the
necrosome and the execution of necroptosis (Zhao et al., 2012;
Murphy et al., 2013).

2.4 Crosstalk and regulation in PANoptosis

Studies have emphasized that pyroptosis, apoptosis, and
necroptosis are not distinct and independent pathways as previously
thought. For example, a series of studies have demonstrated
that functional alteration of receptor-interacting serine/threonine
protein kinases (RIPKs) can induce pyroptosis, apoptosis and
necroptosis simultaneously (Kesavardhana et al., 2020; Kaiser et al.,
2014; Newton et al., 2016). Subsequently, Malireddi et al.
demonstrated the existence of a single cell death-inducing
complex that controls all three pathways (Malireddi et al., 2019;
Malireddi et al., 2020). They can occur simultaneously within the
same cell and are mediated by multiprotein complexes known as the
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TABLE 1 The specific composition of four different PANoptosome complexes.

The type of PANoptosome complex Specific composition

ZBP1-PANoptosome ZBP1, RIPK3, NLRP3, RIPK1, ASC, Casp8, Casp6, Casp1

RIPK1-PANoptosome RIPK1, RIPK3, NLRP3, Casp8, ASC, Casp1

AIM2-PANoptosome AIM2, ZBP1, ASC, RIPK3, Casp1, RIPK1, FADD, Casp8

NLRP12-PANoptosome NLRP12, RIPK3, NLRP3, ASC, RIPK1, Casp8, Casp1

TABLE 2 The basic difference between apoptosis, pyroptosis, necroptosis, and PANoptosis.

Feature Apoptosis Pyroptosis Necroptosis PANoptosis

Core pathway Intrinsic/Extrinsic Inflammasome-GSDMD RIPK1/RIPK3/MLKL PANoptosome

Key molecules Caspases-3/8, BCL-2 Caspase-1, GSDMD/E RIPK1, MLKL RIPK1/3, Caspases-1/3/8

Membrane fate Blebbing (intact) Pore rupture (lytic) Rupture (necrotic) Combined lytic rupture

Inflammation Non-inflammatory Strongly inflammatory Delayed inflammatory Hyper-inflammatory

Trigger DNA damage, TNF/FasL Pathogens, DAMPs Apoptosis inhibition Infection, tissue damage

Complex DISC Inflammasome Necrosome PANoptosome

Intrinsic/Extrinsic, Mitochondrial/death receptor pathways; GSDMD/E, Gasdermin D/E (pore-forming proteins); RIPK1/RIPK3/MLKL, Receptor-interacting protein kinase 1/3, mixed lineage
kinase domain-like protein; BCL-2, B-cell lymphoma-2 family proteins; DISC, Death-inducing signaling complex; DAMPs, Damage-associated molecular patterns.

PANoptosome (Samir et al., 2020; Christgen et al., 2020). RIPK1,
apoptosis-associated speck-like protein, RIPK3, CASP6, Z-DNA-
binding protein 1 (ZBP1) and CASP1were identified as components
of PANoptosome (Malireddi et al., 2020; Christgen et al., 2020).This
complex encompasses key features of all three forms of PCD but
cannot be fully explained by any of them alone (Malireddi et al.,
2020; Gurung et al., 2016; Malireddi et al., 2018; Ma et al., 2025).
Specifically, there are currently four confirmed PANoptosome
structures, namely, ZBP1-PANoptosome, RIPK1-PANoptosome,
AIM2-PANoptosome, and NLRP12-PANoptosome. Their core
components are listed in Table 1.

Therefore, we can recognize that PANoptosis is a constantly
evolving and dynamic field, rather than a simple aggregation
of the three types of PCD (Table 2). Herein, we systematically
delineate the regulatory mechanisms and molecular interplay
between PANoptosis and the three PCD pathways.

The interplay between PANoptosis and apoptosis is particularly
noteworthy, as both processes share common signaling pathways,
including those involving caspases and receptor interacting protein
kinases (RIPKs) (Tsuchiya et al., 2019). Research indicates that
PANoptosis can be initiated through caspase activation, a hallmark
of apoptosis; however, it diverges by incorporating elements of
inflammatory cell death, thereby enhancing the immune response
to cellular stress or damage (Kesavardhana et al., 2020). For
instance, the activation of RIPK3 in PANoptosis can lead to the
formation of PANoptosomes, complexes that facilitate cell death
while simultaneously promoting inflammation through the release
of pro-inflammatory cytokines (Man and Kanneganti, 2016). This
cross regulation highlights a complex network in which apoptotic

signals can either promote or inhibit PANoptosis, depending on the
cellular context and the presence of specific stimuli.

The relationship between PANoptosis and pyroptosis is
characterized by a shared reliance on inflammatory pathways;
however, they exhibit distinct mechanisms and outcomes (Cai et al.,
2023). Pyroptosis is typically driven by the activation of caspase-
1, leading to the formation of gasdermin pores in the cell
membrane. This process results in cell lysis and the release of
pro-inflammatory cytokines such as IL-1β and IL-18 (He et al.,
2015). In contrast, PANoptosis encompasses a broader spectrum of
cell death modalities, including pyroptosis, while also integrating
aspects of apoptosis and necroptosis. The interplay between
these pathways is significant in the context of various diseases
(Liu et al., 2016; Shi et al., 2014).

PANoptosis is a rapid and efficient mode of cell death,
typically associated with a strong inflammatory response that
quickly eliminates damaged cells in the event of pathogen infection
or cellular injury. In contrast, necroptosis is a relatively slow
form of cell death, characterized by the rupture of the cell
membrane, which leads to the release of cellular contents and
subsequently triggers the inflammatory response in surrounding
tissues (Choi et al., 2023). The interaction between these two
forms of cell death is highly complex. Research indicates that
the formation of the necrosome may inhibit the occurrence
of PANoptosis, while conversely, the activation of PANoptosis
may also influence necrosome formation (Han et al., 2011).
Studies have shown that PANoptosis induces cell death through
the interaction of multiple signaling pathways. For instance,
intracellular inflammasomes can promote PANoptosis by activating
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FIGURE 2
Crosstalk events in the mechanism of PANoptosis. Within the context of PANoptosis, multiple regulatory mechanisms are primarily achieved through
the multiprotein complex PANoptosome. The Caspase family and the RIPK family play the most crucial roles. Under the guidance of the PANoptosome,
a large number of crosstalk events occur, and the core elements of these events comprise the essential proteins involved in apoptosis, pyroptosis, and
necroptosis.

caspase-8, while necrosomes facilitate cell death through a necrotic
process mediated by MLKL (Davies et al., 2018). In addition,
the NF-κB signaling pathway plays a crucial role in both cell
deathmechanisms by regulating the expression of pro-inflammatory
factors and promoting the occurrence of cell death (Rodriguez et al.,
2016). And NLRP12 was identified as a key node for the
regulation of PANoptosis and was highly correlated with the
regulation of inflammatosomes in IVDD (Navuluri et al., 2025).
Here we summarized the Crosstalk events in the mechanism of
PANoptosis (Figure 2).

3 Molecular mechanisms of
PANoptosis in the nucleus pulposus
cells

3.1 Apoptosis in NPCs

As classical apoptotic pathways, the death receptor,
mitochondrial, and endoplasmic reticulum stress (ERS) pathways
have been confirmed to be involved in the occurrence and

development of IVDD (Heyde et al., 2006). During IVDD, rupture
or inflammation of the annulus fibrosus induces nucleus pulposus
(NP) cell apoptosis by promoting the production of various
inflammatory mediators, including reactive oxygen species (ROS),
interleukins (IL), nitric oxide (NO), and matrix degrading enzymes
(Kang et al., 1995).

The Fas pathway may contribute to IVDD. Sun et al.
demonstrated that the expression level of Fas in degraded NPC
was significantly higher than in normal cells, suggesting its role
in promoting NPC apoptosis (Sun et al., 2013). Wang et al. found
that Fas receptor (FasR) expression and apoptosis in endplate cells
were significantly elevated in degenerated discs compared to non-
degenerated discs, indicating that Fasmediated apoptosismay occur
in endplate cells (Wang F. et al., 2011). Liu et al. confirmed that Fas
ligand (FasL) expression is reduced in degenerated discs, which
plays a crucial role in maintaining immune privilege (Liu et al.,
2013). The above studies suggest that Fas may have a dual role in
regulating NPC apoptosis, and the specific mechanisms require
further investigation.

Cytokines such as IL-1β and TNF-α exacerbate the
inflammatory process and are considered key mediators of IVDD.
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FIGURE 3
Mechanism of apoptosis in NPCs. The extrinsic pathway (namely, the death receptor pathway) and the intrinsic pathway (i.e., the mitochondrial
pathway) trigger apoptosis. They jointly generate the apoptotic protein complex CASP, which functions as the essential executor of apoptosis and
induces apoptosis.

Studies have shown that exposure of NPCs to elevated levels of IL-
1β significantly increases the production of IL-8 and IL-6, as well
as upregulating inflammatory mediators including prostaglandin
E2, cyclooxygenase-2, and TNF-α (Jimbo et al., 2005; Jia et al.,
2020; Wang et al., 2019; Jin et al., 2019; Fang and Jiang, 2016). As
a pleiotropic cytokine, the expression of TNF-α is upregulated in
response to mechanical loading (Wang et al., 2007). Moreover, it has
been confirmed that TNF-α induces the secretion of inflammatory
mediators such as IL-6, NO, and PGE2 in nucleus pulposus cells of
patients with IVDD (Gabr et al., 2011). It has also been confirmed
that the levels of CCL3, CCL20, CXCL2, andCXCL5 are significantly
elevated in intervertebral disc cells following TNF-α stimulation
(Liu et al., 2015). Additionally, oxidative damage (Han et al.,
2019) and matrix metalloproteinases (MMPs) (Hiyama et al.,
2010) have been shown to be associated with nucleus pulposus
cell apoptosis and IVDD.

In conclusion, various inflammatory mediators and
multiple signaling pathways—including the ERS response
pathway, the mitochondrial pathway, and the death receptor
pathway—are implicated in NPC apoptosis, which is associated
with IVDD (Figure 3). Currently, the molecular mechanisms
underlying these signaling pathways and their interactions remain

incompletely understood and warrant further investigation.
Therapeutics developed from this understanding may offer novel
approaches for the diagnosis and early treatment of IVDD.

3.2 Necroptosis in NPCs

Unlike apoptosis, necroptosis—a form of regulated cell death
characterized by necrosis—promotes inflammation. This process of
necroptosis in NPC occurs in the context of compression-induced
IVDD (Yurube et al., 2014). Research indicates that the expression
levels of RIPK1, RIPK3, and MLKL, which are crucial proteins in
necroptosis, are elevated under conditions of disc compression.This
upregulation mediates necroptosis in NPC (Chen et al., 2017a).
Myeloid differentiation primary response 88 (MyD88), a signaling
molecule involved in innate immunity, also contributes to the
necroptosis of NPC during IVDD (Bonnert et al., 1997). Fan et al.
(2022) demonstrated that the levels of RIP3 and MLKL are elevated
in NPC of degenerated discs compared to those in normal discs.
Their cell experiments confirmed that inhibiting MyD88 reduces
necrosis in compromised NPC (Fan et al., 2022) (Figure 4).
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FIGURE 4
Mechanism of necroptosis in NPCs. Necroptosis is initiated by death receptor ligands. Upon the activation of upstream RIPK1, the activated RIPK1 is
incorporated into the complex consisting of FADD, caspase-8, and caspase-10. In the circumstance of the absence of caspase-8 activity, RIPK1 enlists
and phosphorylates RIPK3 to establish the pro-necrotic RIP1-RIP3 complex. Subsequently, these complex recruits and phosphorylates MLKL, which is
conducive to the formation of a deleterious structure and programmed necrosis.

In addition, several factors associated with necroptosis
have been confirmed to play a role in the progression of
IVDD. Cao C. et al. (2022) demonstrated that pro-inflammatory
factors, such as TNF and IL-1β, increase the expression of
necroptosis related molecules, including RIPK1, RIPK3, and
MLKL, thereby promoting NP cell death. In the experiments
conducted by Hu et al. (2020); Lin et al. (2017), the
upregulation of molecules such as HSP90 and Drp1 during
compression promoted necroptosis of NPC. Furthermore, both
the HSP90 inhibitor BIIB021 and the Drp1 inhibitor Minv-
1 attenuated compression induced NPC death (Hu et al.,
2020; Lin et al., 2017). In addition, ERS related proteins
such as CHOP, GRP78, and PERK were found to be elevated
in NPC undergoing IVDD (Lin et al., 2021). Hydrogen
peroxide (H2O2) has been demonstrated to induce necroptosis
in rat NPC (Shi et al., 2022).

These findings suggest that necroptosis plays a crucial role in the
progression of IVDD.Despite the limited number of current studies,
the detailed processes involving multiple signaling pathways and
molecular mechanisms remain unclear. Further extensive research
is needed to explore the underlying mechanisms of necroptosis in

the context of IVD. Nonetheless, necroptosis represents a potential
target for IVDD treatment.

3.3 Pyroptosis in NPCs

Pyroptosis, a mode of cell death mediated by inflammasome
complexes, depends on the activation of caspase-1 and is
characterized by a robust inflammatory response (Shi et al., 2015).
Moreover, the cleavage of gasdermin D (GSDMD) results in the
release of the GSDMD-N fragment, which subsequently activates
caspase-1, leading to membrane pore formation and cell death
(Sborgi et al., 2016). Numerous studies have investigated the role of
pyroptosis in IVDD. Chen et al. found that the expression levels
of NLRP3, caspase-1, and IL-1β were significantly elevated in
the IVDD group compared to the normal group. The excessive
activation of NLRP3 inflammasomes resulted in the overproduction
of downstream IL-1β, which, as noted earlier, is implicated in
the pathogenesis of human IVDD (Chen et al., 2015). Zhang
et al. discovered that NLRP3 was activated during the pyroptosis
of NPC in an IVDD mouse model (Zhang et al., 2020). Fu
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FIGURE 5
Mechanism of pyroptosis in NPCs. Inflammatory factors IL1β and TNF-α activate the NF-κB signalling pathway, thus inducing an inflammatory
response. The mitochondrial autophagy pathway becomes activated. Moreover, ROS activation prompts the activation of NLRP3 inflammatory vesicles,
which launches the key executor protein for pyroptosis, GSDMD, and ultimately leads to pyroptosis.

et al. demonstrated through animal experiments that abnormal
mechanical loading of the spinal cord can induce pyroptosis and
promote IVDD (Fu et al., 2021). Additionally, two other studies
have shown that caspase-1 inhibitors can effectively delay the
progression of IVDD when used with NLRP3 inflammasome
inhibitors (Zhang et al., 2022; Xing et al., 2021) (Figure 5).

In conclusion, pyroptosis contributes to IVDD. Although
the complete molecular mechanisms remain unclear, targeting
pyroptosis represents a promising therapeutic direction for IVDD.

3.4 PANoptosis mechanisms in NPCs

PANoptosis is unique in that it is not merely a superposition
of pyroptosis, apoptosis, and necrosis, but rather a novel cell death
mechanism formed through their interaction and cross regulation.
This mechanism has significant effects on cell function and fate
(Cai et al., 2023). For example, Camilli et al. Demonstrates that
nuclear export inhibitors (Selinexor, Eltanexor) induce PANoptosis
in cancer models. These insights could parallel therapeutic
approaches for IVDD (Camilli et al., 2023).

Although the exact mechanism of PANoptosis in NPCs is
still in the early stage of investigation and little is reported

in the literature, PANoptosis in NPCs plays a crucial role in
regulating intervertebral disc function, particularly in the context
of IVDD. As shown in Figure 6, reveals its effect in the process
of PANoptosis in IVDD in main molecular mechanism of NPCs.
Specifically, Zhou et al. successfully identified seven hub PANoptosis
genes associated with vertebral IVDD using bioinformatics analysis
and experimental validation (Zhou et al., 2024). Stimuli such
as hydrogen peroxide (TBHP) can affect the expression of key
proteins related to PANoptosis in NPCs, ultimately resulting in cell
death and dysfunction (Chen et al., 2024). Kongensin A, a natural
product, has been shown to inhibit PANoptosis, potentially by
upregulating TAK1 expression. This mechanism may help maintain
mitochondrial REDOX balance and protect the function of NPC
(Chen et al., 2024). PANoptosis in NPC is influenced by various
factors, including circular RNA (circRNA), which plays a significant
role in regulating NPC function and PANoptosis. Specifically, circ_
0004354 has been shown to promote the inflammatory response
and apoptosis of NPCs by modulating the miR-345-3p-FAF1/TP73
axis, thereby accelerating the progression of IVDD (Li et al., 2022).
Besides, the latest research indicates that PANoptosis is amechanism
driver of chronic inflammation in allergic bronchopulmonary
aspergillosis. This is similar to the chronic inflammatory state
in IVDD (Smallwood et al., 2024). In addition, activation of
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FIGURE 6
Mechanism of PANoptosis in NPCs. Signaling pathways of ZBP1-PANoptosome, RIPK1-PANoptosome, AIM2-PANoptosome and
NLRP12-PANoptosome.

PANoptosis in a mouse model of cadmium exposure, which is
similar to mechanical/oxidative stress of intervertebral discs, is a
novel approach for IVDD studies (Camilli et al., 2024).

Therefore, the regulation of PANoptosis not only affects the
survival of NPC but may also influence the overall health of the
intervertebral disc. Further investigation into the mechanisms of
PANoptosis in IVDD will provide a theoretical foundation and new
insights for the treatment of IVDD.

4 Potential treatment strategies for
PANoptosis in IVDD

PANoptosis involvesmultiple stages and contributes to the death
of NPC.Therefore, inhibiting its progression in NPCs may present a
potential therapeutic strategy for IVDD. For instance, targeting key
molecules in the PANoptosis process, such as IL-2, Fas/FasL, and
caspases, offers a promising treatment approach for IVDD, which
will not be elaborated on here.

In addition to the previously mentioned molecules, many
others warrant further investigation. For example, He et al.

demonstrated that melatonin can attenuate oxidative stress induced
apoptosis in NPC, suggesting it could be a promising therapeutic
option for IVDD (He et al., 2018). Wang et al. demonstrated
that dysregulated miR-155 promotes Fas mediated apoptosis in
human NPC, suggesting a potential therapeutic role for miR-155
(Wang H. Q. et al., 2011). Cui et al. subsequently verified that
the non-coding RNA MAGI2-AS3 is involved in regulating FasL
expression in NPC (Cui et al., 2020). Additionally, it has been
confirmed that lysyl oxidase (LOX) exhibits an anti-apoptotic effect
in TNFα treated rat NP cells and may serve as a promising agent for
the treatment of IVDD (Zhao R. et al., 2020).

In addition, bone marrow derived MSCS (BMSC) (Chen et al.,
2017b),the mitochondria‐targeted anti‐oxidant MitoQ (Kang et al.,
2020),allicin (Xiang et al., 2020), Sirtuin 3 (Song et al., 2018),
cortistatin (Zhao Y. et al., 2020), Recombinant human SIRT1
(Miyazaki et al., 2015), Pyrroloquinoline quinone (Yang et al.,
2015), Pramlintide (Wu et al., 2018) have also been confirmed to
be involved in NPC death and are considered potential treatment
options for IVDD.

Based on the existing studies, we have compiled PANoptisis
modulators mentioned above, as shown in Table 3, which may
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TABLE 3 PANoptosis modulators in IVDD.

Therapeutic molecule Target Models PANoptosis
inducer/inhibitor

Ref

Kongensin A TAK1 kinase inhibition NP cells, rat Inhibitor Chen et al. (2024)

Circ_0004354 miR-345-3p-FAF1/TP73 axis NP cells, human Inducer Li et al. (2022)

Melatonin SIRT1/SIRT3 activation; ROS
suppression

NP cells, rat Inhibitor He et al. (2018)

miR-155 cGAS-STING pathway activation NP cells, human Inducer Wang H. Q. et al. (2011)

RNAMAGI2-AS3 FasL NP cells, human Inducer Cui et al. (2020)

Lysyl oxidase MLKL phosphorylation inhibition NP cells, rat Inhibitor Zhao R. et al. (2020)

Bone marrow derived MSCS IL-10 secretion; NLRP3/Caspase-1
suppression

NP cells, rat Inhibitor Chen et al. (2017b)

MitoQ Mitochondrial ROS NP cells, human Inducer Kang et al. (2020)

Allicin Gasdermin D pore formation NP cells, human Inducer Xiang et al. (2020)

Sirtuin 3 Mitochondrial antioxidant
enhancement

NP cells, human Inhibitor Song et al. (2018)

Cortistatin NF-κB/MAPK pathway inhibition NP cells, mice Inhibitor Zhao Y. et al. (2020)

Recombinant human SIRT1 NLRP3 deacetylation NP cells, human Inhibitor Miyazaki et al. (2015)

Pyrroloquinoline quinone Nrf2 pathway activation NP cells, rat Inhibitor Yang et al. (2015)

Pramlintide Amylin receptor signaling modulation NP cells, human Inhibitor Wu et al. (2018)

provide new ideas for the treatment of PANoptisis in IVDD. Most
of the research has been conducted using animal models, and there
is a lack of sufficient clinical evidence to prove the feasibility and
effectiveness of these treatments in clinical applications. However,
these studies can still provide valuable insights for treating IVDD
through PANoptosis.

5 Conclusions and perspectives

Recently, research of cell death has gradually expanded from
traditional apoptosis, pyroptosis, and necroptosis to more complex
mechanisms. PANoptosis, as a new mode of cell death, is
increasingly showing its important role in IVDD. By conducting an
in-depth analysis of the mechanism of PANoptosis, we can gain a
more comprehensive understanding of the cell death process and its
influencing factors in IVDD (Pandeya and Kanneganti, 2024).

Various research findings indicate that PANoptosis is involved
not only in PCD but also in inflammatory responses and alterations
in the cellularmicroenvironment. (Cai et al., 2023; Chen et al., 2024).
The complexity of this mechanism necessitates considering the
interplay of multiple factors when developing treatment strategies.
Consequently, a comprehensive study of apoptosis, pyroptosis,
and necroptosis will support the development of more effective
intervention strategies. Coordinated investigations of these cell
death pathways could aid in defining the multiple mechanisms of
disc degeneration, thereby enhancing therapeutic outcomes.

Exploring the interrelation between PANoptosis and other cell
death pathways in depth will be an important research direction
for future studies. This exploration could not only uncover new
biomarkers but also reveal novel therapeutic targets. Additionally,
from a clinical application perspective, it is essential to investigate
how to translate the research findings of this mechanism into
practical treatment options to more effectively address IDD
related diseases.

In summary, PANoptosis, as a key mechanism linking various
cell death pathways, offers a new direction for the research and
treatment of IVDD. Future studies should continue to advance
in this field to develop more effective treatment options for
patients with IVDD.
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