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Background: The tumor nests in solid tumors, including hepatocellular
carcinoma (HCC), possess tumor-initiating potential, with the capacity to
metastasize and form new metastatic lesions. However, the biological
characteristics and heterogeneity of tumor cells at the central and marginal
regions of these tumor nests remain poorly understood.

Method: Based on pathological tissue sections, data integration and
dimensionality reduction, we defined the boundaries and centers of tumor nests
and fibrous nodules within 19 spatial transcriptomics (ST) samples from 8 HCC
patients. Differential gene expression was analyzed at the single-unit, sample,
patient, and pseudobulk levels, followed by Gene Ontology (GO) enrichment
analysis. Additionally, spatial copy number variation (CNV) was inferred using
inferCNV, and comparisons were made at the single-unit, sample, patient, and
pseudobulk levels.

Results: Ultimately, 24 tumor nests and 15 liver fibrosis nodules were
analyzed. The spatial gene expression patterns of the tumor nests exhibited
significant heterogeneity, with gene enrichment analysis revealing upregulation
of immune-related pathways (e.g., humoral immune response mediated by
circulating immunoglobulin; B cell receptor signaling pathway, etc.) at the tumor
nest margins and growth/metabolism-related pathways (e.g., sulfur amino acid
metabolic process; proteinogenic amino acidmetabolic process, etc.) within the
tumor nest center. Similar expression patterns were also observed in liver fibrous
nodule samples. CNV and clustering analyses demonstrated transcriptional
differences between tumor nests within individual patients, suggesting the
evolutionary diversity, or heterogeneity, of tumor nests within the same tumor.

Conclusion: Tumor nests exhibit significant transcriptional differentiation along
spatial axes: the central regions show high expression of metabolism-
related genes, while the marginal regions are enriched in immune-regulatory
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genes. This pattern is also observed in liver fibrotic nodules. This center-
margin functional division may inform rational design of therapeutics that
simultaneously modulate metabolism and immune responses.

KEYWORDS

hepatocellular carcinoma, tumor nest, spatial transcriptomic, fibrotic nodules,
heterogeneity

Introduction

HCC is amajor global health concern, ranking sixth in incidence
and third in cancer-related mortality worldwide. It is projected that
between 2020 and 2040, the annual number of new liver cancer
cases will increase by 55%, reaching 1.4 million diagnoses by 2040.
Similarly, liver cancer-related deaths are expected to rise by 56%,
with an estimated 1.3 million deaths in 2040 (Abboud et al., 2024;
Rumgay et al., 2022). Over 90% of HCC cases are caused by chronic
inflammatory liver diseases, with cirrhosis being the major risk
factor. Among individuals with cirrhosis, the annual incidence of
HCC ranges from 1% to 6%, making it the leading cause of death
in this population (Marrero et al., 2018). HCC treatment options
are diverse, including surgical resection, liver transplantation,
percutaneous ablation, radiotherapy, and both locoregional and
systemic therapies. Furthermore, the establishment of ICIs-based
standard treatments has significantly expanded therapeutic options
for advanced HCC, leading to overall improvements in patient
prognosis (Nevola et al., 2023; Qin et al., 2023). However, due to the
unique characteristics of HCC, the lack of well-defined biomarkers
continues to hinder the implementation of precise therapeutic
strategies, including targeted therapy and immunotherapy. Progress
in HCC treatment still faces substantial challenges posed by the
complexity of the tumor microenvironment and mechanisms of
therapeutic resistance (Doroshow et al., 2021; Zhou C. et al., 2023).

The development and progression of solid tumors is a complex
process, heavily influenced by the biological characteristics of
tumor cells and tissues, as well as their interactions with the
tumor microenvironment (TME) (de Visser and Joyce, 2023;
Elhanani et al., 2023; Hinshaw and Shevde, 2019). In many
solid tumors, tumor cells often aggregate into structures known
as tumor nests (Boxberg et al., 2019; Jesinghaus et al., 2019;
Nakanishi et al., 2001). For example, in hepatocellular carcinoma
(HCC), histologically, tumor cells often exhibit trabecular or
nest-like growth patterns, where clusters of tumor cells are
enveloped by a desmoplastic stroma. The formation of these
tumor nests is a key pathological feature associated with the
invasive growth and metastatic spread of malignant tumors.
Endothelial cells at the margin of tumor nests facilitate tumor
cell entry into the bloodstream through fusion with microvessels
(Ch’ng et al., 2013). Within the tumor nest, tumor cells can
effectively evade attacks from the immune system and mechanical
damage caused by blood flow shear stress, due to the protective
role of endothelial cells. This protective mechanism helps
maintain the stability of the microenvironment within the nest
(Ding et al., 2011; Fang et al., 2015). As tumor cells reach distal target
organs via the bloodstream, they are able to colonize, proliferate, and
establish new metastatic lesions.

In certain malignant tumors, a distinct histological feature is
observed in the form of small tumor cell nests, each of which
is encapsulated by a layer of peripheral endothelial cells. These
configurations give rise to multiple, discrete, and spheroid-like
microunits dispersed throughout the tumor tissue (Horn et al.,
2006; Jesinghaus et al., 2019; Nakanishi et al., 2001; Zare et al.,
2020). HCC, the predominant type of primary liver cancer (PLC),
has the ability to metastasize to the portal vein, bile ducts,
and liver parenchyma in the form of tumor nests. Notably,
during metastasis, tumor nests maintain their structural integrity,
with marginal tumor cells exhibiting stem cell-like characteristics
(Dong et al., 2021; Reis-Filho et al., 2003). These cells possess
tumor-initiating potential, while the central region of the tumor
nest displays significant phenotypic heterogeneity among HCC
cells. Our previous studies have revealed that a specific F5 cancer-
associated fibroblast (F5 CAF) subpopulation, characterized by the
expression of COL1A2, COL4A1, COL4A2, CTGF, and FSTL1,
which are located at both the center and margin of tumor nests.
These F5-CAFs interact with hepatocellular carcinoma (HCC)
cells to promote their proliferation and sustain their stemness.
(Jing et al., 2024). The spatial heterogeneity of tumor tissues
reflects location-specific differences in gene expression, epigenetic
regulation, metabolic function, and regenerative capacity. It can
reveal both distinct and conserved features of tumor cores and
margins, thereby enabling predictions of patient survival and
responses to targeted therapies. Furthermore, defining cellular
identities and their potential molecular communication networks
is critical for advancing our molecular understanding of the tumor
ecosystem and for the development of effective therapeutic strategies
against solid tumors. (R. Arora et al., 2023; Ben-Moshe and Itzkovitz,
2019;Ma et al., 2022; Shi et al., 2017). However, studies on the spatial
association anddifferences between the central andmarginal regions
of tumor nests remain limited, and the heterogeneity of these regions
has yet to be systematically elucidated. Tumor heterogeneity serves
as an important biomarker for assessing the clinical prognosis of
cancer patients (Jesinghaus et al., 2017; Kadota et al., 2014; Ma et al.,
2019). A deeper understanding of the characteristics of the center-
margin ecosystem within tumor nests will provide further insights
into the biological features of solid tumors and may offer a crucial
theoretical basis for elucidating tumor nest metastasis mechanisms
and developing novel therapeutic strategies.

The development of spatial transcriptomics (ST) technology
has provided a revolutionary tool for deciphering the spatial
heterogeneity of complex tissues (Cheng et al., 2025; Saviano et al.,
2020; Ye et al., 2024). ST enables genome-wide RNA quantification
within intact tissue sections while preserving precise spatial location
information of cells (Fujiwara et al., 2024; Lin et al., 2024;
Wang et al., 2022; Zhang et al., 2023), offering a new perspective and
technological approach for comprehensively analyzing tumor spatial
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FIGURE 1
Dimensionality reduction clustering and sampling schematic of ST data. (A) Clustering results of ST data. A total of 19 samples (right-top) obtained from
8 HCC patients were included. Hepatocyte_BEC: Hepatocyte-Biliary Epithelial Cells; (B) Schematic representation of ST data sampling. f-c, Fibrotic
nodule-center; f-m, Fibrotic nodule-margin; t-c, Tumor nest-center; t-m, Tumor nest-margin.

transcriptomic heterogeneity (Jain andEadon, 2024; Zhou P. Y. et al.,
2023). In this study, we applied ST to systematically identify
characteristic gene expression patterns in the marginal and central
regions of HCC tumor nests using different methods. The analysis
revealed significant differential gene expression among patient
samples, while also highlighting conserved gene expression features
across different tumor nests. Specifically, metabolic genes were
upregulated in the tumor nest center, while immune-related genes
were upregulated at the margins. Notably, this characteristic
expression patternmay have been established during the early stages
of liver fibrous nodule formation. This differential gene expression
pattern between the marginal and central regions of the tumor nest
reveals spatial heterogeneity in gene expressionwithin tumor tissues,
highlighting a previously underappreciatedmode of gene regulation
within a novel type of tissue unit.

Materials and methods

Patients and collection of clinical
specimens

The samples used in this study were obtained from patients with
PLC who underwent surgical resection at the Eastern Hepatobiliary
Surgery Hospital (EHBH). A total of 25 fresh tissue samples from 11
patients were included for ST analysis. With the joint assistance of at
least three pathology experts, we screened samples for the presence
of distinct tumor nests based on their characteristic morphological
features. As some samples did not exhibit clearly identifiable tumor
nests, ultimately, 19 ST samples from 8 HCC patients (Figure 1A)
were selected for subsequent research. All patients were randomly
selected and provided informed consent. The study protocol was

reviewed and approved by the Ethics Committee of the Eastern
Hepatobiliary Surgery Hospital.

Spatial transcriptomics experiments

Tissue sample processing
All fresh tissue samples were embedded using optimal cutting

temperature (OCT) compound, followed by rapid freezing in pre-
cooled isopentane suspended in liquid nitrogen. The samples were
subsequently stored at −80°C for future use. Embedding was
completed within 30 min of surgical resection for each sample to
ensure optimal preservation for cryosectioning.

ST experimental workflow
The ST experiment was conducted according to the

manufacturer’s guidelines for the Visium Spatial Gene Expression
Kit (10x Genomics). Frozen tissue sections (10 μm thick) were
mounted onto the 10x Genomics Visium spatial barcode array.
During the process, tissues were first fixed in pre-chilled methanol
at −20°C for 30 min, followed by H&E staining. Images were then
captured using a Leica SCN400 F whole-slide scanner at ×40
magnification. After confirming that the tissue morphology was
suitable and RNA integrity was intact (RNA Integrity Number,
RIN ≥7), tissue permeabilization and reverse transcription were
performed using the Visium Spatial Tissue Optimization Kit (10x
Genomics). Following second-strand synthesis and denaturation,
the library was constructed and sequencing was carried out using
the NovaSeq 6000 sequencing platform (Illumina). Each spot on the
array had a diameter of 55 microns, with a center-to-center spacing
of 100 microns, covering an area of 6.5 × 6.5 mm2. All ST data are
archived in the Genomic Sequence Archive (GSA) under the dataset

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1611951
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Li et al. 10.3389/fcell.2025.1611951

HRA000437, with partial analyses of the TME previously published
(Jing et al., 2024; Wu R. et al., 2021).

Dimensionality reduction and clustering of
ST data

All HCC samples in the dataset, consisting of eight patients
and 19 samples, were selected for analysis. Preliminary analysis was
performed using the Seurat (v5.1.0) (Navarro et al., 2017) package in
R (v4.4.0). Gene expression was normalized using the SCTransform
function. Multi-sample integration was conducted using the
IntegrateData function. For clustering, single-cell data from the
Gene Expression Omnibus (GEO) dataset GSE202642 (Zhu et al.,
2023) were utilized, following the methods outlined in the
original publication. The FindTransferAnchors and TransferData
functions were used to integrate single-cell data with the ST data.
Dimensionality reduction, clustering, and annotation of major cell
types at each spatial location were performed with reference to the
literature sources of the ST data.

ST sampling and analysis

Spatial location clustering was performed using Loupe Browser
8.1.2. The integrity of tumor nests and liver fibrosis nodules was
assessed based on hematoxylin and eosin (H&E) staining. Tumor
nests or fibrosis nodules with distinct stromal boundaries were
considered intact and included in the analysis. Tumor samples
lacking well-defined tumor nests were excluded. Based on the
analysis, spatial locations corresponding to the margin and center
of both tumor nests and fibrosis nodules were selected within Loupe
Browser. These selected spatial regions were then imported into R
for further analysis. Subsequently, cells within the defined regions
were filtered based on the annotations from previous steps.

Differential gene expression analysis

Differential gene expression analysis was performed at both
pseudobulk and spatial location levels in tumor nests and liver
fibrosis nodules. At the pseudobulk level, margin and center
regions of the same tumor nest or fibrosis nodule were treated
as individual units. The AggregateExpression function was used
to obtain the pseudobulk expression matrix, allowing for the
comparison of expression differences between themargin and center
regions across all patient samples. Differential expression at the
pseudobulk level was assessed using the DESeq2 method in the
FindMarkers function. At the spatial location level, DESeq2 (version
1.44.0) (Love et al., 2014) was applied to identify upregulated
and downregulated genes, with genes selected for further analysis
if they met the criteria of p < 0.05 and |Log2FC| > 0.4. GO
analysis was performed using the clusterProfiler package (version
4.12.6) (Wu T. et al., 2021), with pathways displaying a p-value
<0.05.Gene intersection visualizationswere generated usingUpSetR
(version 1.4.0) (Conway et al., 2017; Lex and Gehlenborg, 2014) and
VennDiagram (version 1.7.3) (Chen and Boutros, 2011).

Transcriptional factors (TF) analysis

We conducted transcription factor enrichment analysis on the
identified key genes using the R package RcisTarget (v1.24.0).
To ensure robustness, transcription factors with fewer than eight
enriched target genes were filtered out prior to downstream
interpretation.

Copy number variation (CNV) analysis

CNV analysis can provide insights into the genomic biological
characteristics of tumor cells. To further explore the biological
characteristics of tumor cells in different spatial regions within
tumor nests, we performed CNV analysis based on ST data
in addition to transcriptomic analysis. CNV analysis was
performed using the R package inferCNV (version 1.20.0)
(Patel et al., 2014; Zhu et al., 2023) to infer copy number variations
at the spatial location level. A cutoff value of 0.1 was set for the
CNV analysis. CNV scores were calculated by normalizing the
corresponding CNV matrix values to a range between −1 and
1, followed by squaring the normalized values. Differences in
CNV levels between various sample units were assessed using the
Wilcoxon rank-sum test. To compare CNV levels, two-tailed t-tests
or Wilcoxon tests were applied, with a significance threshold of
p < 0.05.

Clustering analysis

Clustering analysis was performed using the R package SNFtool
(version 2.3.1) (Wang et al., 2014) to analyze pseudobulk-level
transcriptomic and CNV matrices. A value of K = 20 was
selected for SNF function. The resulting clusters were visualized
using the R package ggplot2 (version 3.5.1) (Wickham and
Wickham, 2016), allowing for a clear graphical representation of the
clustering outcomes.

Results

Cellular and sample clustering in ST data

The present investigation is centered on HCC, a predominant
subtype of PLC, incorporating ST data from 19 samples obtained
from 8 HCC patients. Data integration and dimensionality
reduction were performed based on universal cell type markers,
single-cell datasets, published ST data, and histopathological
tissue morphology (details in Methods). This approach enabled
the identification of the major cell types at spatial locations,
including Hepatocyte_BEC, Tumor, Fibroblast, Immune Cell,
and Unknown categories (Figure 1A). Subsequent analyses
were restricted to spatial spots from tumor regions for
tumor nest analysis, while spatial spots from hepatocytes or
cholangiocytes were used for the analysis of liver fibrosis
nodules. Using standardized tumor nest morphology definitions,
histological regions of the liver cancer ST samples were
selected for analysis using the Loupe Browser visualization
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software (Figure 1B). According to the inclusion criteria, tissue
samples lacking clear tumor nest structures were excluded.
Ultimately, 24 tumor nest regions meeting the criteria were
identified from seven tumor ST samples from 3 HCC
patients (Supplementary Tables 1, 3). Additionally, 4 ST samples
were included, from which 15 liver fibrosis nodule regions
were analyzed (Supplementary Tables 2, 3).

The spatial gene expression patterns of
HCC tumor nests exhibit marked
heterogeneity

To systematically characterize the shared transcriptional
features between the central and marginal regions of tumor
nests, we performed genome-wide differential expression
analysis using the DESeq2 package on tumor nest samples
from each individual HCC patient. Genes with an adjusted
p-value <0.05 and |Log2FC|>0.4 were considered significant.
This analysis identified 2,226 significantly upregulated and
1,625 significantly downregulated genes (Supplementary Table 1),
highlighting pronounced transcriptional differences between
central andmarginal tumor cells and underscoring the intratumoral
heterogeneity within tumor nests. Patient-level comparisons
revealed minimal overlap in differentially expressed genes
(DEGs) among multiple tumor nests from the same individual
(Figures 2A,B). For instance, in the HCC-BT sample, only
2% (14 genes) of upregulated DEGs in the marginal regions
were shared among three distinct tumor nests, with nearly
no overlap observed in the central regions (Figures 2A,B).
Similar results were obtained from another HCC smaple
(Supplementary Figures 1A–D), indicating that even within a single
patient, different tumornests exhibit distinct transcriptional profiles.
Furthermore, cross-patient comparisons of DEGs revealed only few
commonly upregulated genes in the marginal or central regions
of tumor nests (Figures 2C,D), suggesting substantial inter-patient
heterogeneity in HCC.

To systematically analyze the spatial heterogeneity within
tumor nests, we integrated all tumor nest samples and performed
a comprehensive comparison of the gene expression profiles
between the central and marginal regions. Using R software,
we constructed upset plots to illustrate the overlap and unique
sets of DEGs across these tumor nest regions. Notably, among
the upregulated genes in the tumor nest margin, samples HCC-
BT_c1, HCC-BT_c2, HCC-2T-c1, HCC-5C_c3, and HCC-2L_
c2 exhibited several DEGs. Similarly, among the downregulated
genes in the tumor nest center, samples HCC-5B_c1, HCC-
2L_c2, HCC-BT_c2, HCC-BT_c3, HCC-BT_c1, and HCC-5C_
c3 demonstrated considerable differential expression. Notably,
the tumor nest samples from HCC-BT, HCC-5C, and HCC-
2L exhibited both significantly upregulated and downregulated
genes, which may reflect the larger number of analyzed samples.
However, few commonly upregulated or downregulated genes
were shared across all samples (Supplementary Figures 2A,B).
This finding was further corroborated by the DEG
upset plot analysis grouped by patient (Figures 2C,D),
indicating significant transcriptomic heterogeneity among the
tumor nests.

The spatial gene expression patterns of
HCC tumor nests exhibit certain shared
characteristics

Despite the substantial heterogeneity observed both
among patients and among tumor nests within individual
samples, a subset of overlapping genes was still identified
(Supplementary Figures 2A,B). Functional enrichment analysis of
the upregulated and downregulated genes in each patient sample
revealed intriguing spatial trends. Specifically, genes upregulated
in the marginal regions of tumor nests were predominantly
enriched in immune-related pathways, including B cell receptor
signaling pathway and antigen binding (Figure 2E). In contrast,
genes upregulated in the central regions were mainly associated
with metabolic processes (Figure 2F). These spatially distinct
enrichment patterns were consistently observed across multiple
patient samples (Supplementary Figure 3). Together, these findings
suggest that, despite the high degree of heterogeneity, there are
conserved spatial transcriptional features across tumor nests.
Namely, marginal tumor nest cells tend to upregulate genes
involved in immune regulation, whereas central tumor nest cells
preferentially express genes related to proliferation andmetabolism.

Spatial gene expression heterogeneity
between fibrotic nodules and patient
samples

Dysplastic nodules (DNs), as critical precancerous lesions, exhibit
a high incidence in patients with liver fibrosis. Epidemiological
data indicate that approximately 90% of HCC cases arise on a
background of liver fibrosis (Gazelakis et al., 2021). Both low-
grade and high-grade DNs represent key precancerous stages during
the progression of liver fibrosis and harbor a potential risk for
transformation into HCC (Di Tommaso et al., 2013). Based on these
observations, we sought to investigate whether the gene expression
characteristics in the marginal and central regions of fibrotic nodules
are potentially associated with those found in HCC tumor nests.

Analysis ultimately resulted in the identification of 2,231
significantly upregulated genes and 675 significantly downregulated
genes (Supplementary Table 2). At the patient level, differential
expression analysis was performed to compare the gene expression
profiles at the margin and center of individual fibrotic nodules.
The results showed that, within each patient, the overlap of
DEGs between distinct fibrotic nodules was minimal (Figures 3A,B;
Supplementary Figures 4A–F). Subsequently, the DEGs from fibrotic
nodules of all patients were integrated and subjected to gene
interaction network analysis. Although a set of six central interacting
genes, commonly upregulated in the marginal regions of fibrotic
nodules, was identified in a subset of patients (e.g., HCC_BT),
overall the fibrotic nodules exhibited significant heterogeneity
(Supplementary Figures 5A,B).Thisobservationwas furthervalidated
when the differential expression analysis was stratified by patient
(Figures 3C,D). Moreover, integrated interaction network analysis
of the upregulated and downregulated genes in fibrotic nodules
yielded results similar to those observed in tumor nests: the nodule
margin predominantly enriched for immune regulatory pathways,
whereas the center was mainly associated with metabolic pathways
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FIGURE 2
Analysis of differentially expressed genes (DEGs) across tumor nests in HCC patient samples. (A,B) Venn diagram showing upregulated DEGs in the
marginal (A) or central (B) regions of three tumor nests from patient HCC-BT; (C,D) Upset plot displaying upregulated DEGs in the marginal (C) or
central (D) regions of tumor nests, analyzed at the individual patient level. (E) Functional enrichment of genes upregulated in the marginal regions of
the tumor nest; (F) Functional enrichment of genes upregulated in the central regions of the tumor nest. Enrichment categories include Biological
Process (BP), Molecular Function (MF), and Cellular Component (CC).
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(Figures 3E,F). This conclusion was consistently confirmed across
multiple patient samples (Supplementary Figure 6).

Functional analysis of DEGs between the
center and margin of tumor nests

Due to the substantial heterogeneity observed both among tumor
nests and among patients, coupled with the large number of samples
analyzed, it was challenging to identify a sufficient number of
commonly upregulated or downregulatedDEGs across distinct tumor
nests. To address this, we established a selection criterion whereby a
genewas deemed a characteristic tumor nest-specific differential gene
if it was consistently expressed in at least two independent tumor nest
samples.Using this criterion,we ultimately identified 354 significantly
upregulated interaction genes and 202 significantly downregulated
interactiongenes in the tumornest center.KEGGpathwayenrichment
analysis of these characteristic interaction genes revealed that genes
(MFGE8, SNX20, FBXO38, EMP3, etc.) highly expressed in the
tumor nest margin were significantly enriched in immune regulatory
pathways, cytokine—including cytokine receptor interactions, and
antigen presentation—whereas genes (SLC35G2, TOP1MT, GGT7,
MAIP1, etc.) highly expressed in the tumor nest center were mainly
associatedwithmetabolic pathways—glycolysis, the tricarboxylic acid
cycle, and oxidative phosphorylation (Figures 4A,B). These findings
are consistent with the overall analysis presented earlier (Figure 2),
confirming that the tumor nest margin is predominantly enriched in
immune regulatory pathways, while the tumor nest center is primarily
enriched in metabolic pathways.

We performed transcription factor (TF) enrichment analysis
on the identified key genes and found that TFs such as HAND1,
RELA, and CLOCKwere upregulated in the tumor margin, whereas
members of the zinc finger family were predominantly upregulated
in the tumor center (Supplementary Figure 7). Consistent with our
findings, RELA is a key component of the NF-κB signaling pathway,
which plays a critical role in regulating immune responses. In
contrast, zinc finger transcription factors are known to be involved
in the regulation of gene transcription and may be associated with
enhanced protein synthesis required for cellular proliferation and
metabolic activity.

Taken together, these results indicate that, despite the pronounced
transcriptomic heterogeneity both among tumor nests within
individual patients and among patients, distinct gene expression
differences persist between the tumor nest center and margin.
Specifically, cells in themarginexhibit significantlyelevatedexpression
ofgenesassociatedwith immuneregulation,whereas cells in thecenter
primarily express genes related to metabolic processes.

Differences in CNV levels between tumor
nests and fibrotic nodules

To investigate the biological characteristics associated
with genetic alterations in tumor nests, CNV analysis was
performed using the inferCNV package, with tumor nests as
the units of analysis. The results indicated that the CNV levels
between the central and marginal regions of most tumor nests
did not exhibit statistically significant differences (Figure 5A;

Supplementary Figure 8A), suggesting that clonal evolution
within a single tumor nest is not pronounced. Further analysis,
integrating CNV characteristics across all tumor nests within
individual patients, revealed significant CNV differences among
different tumor nests within the same patient in samples such
as HCC-2L, HCC-2T, HCC-5C, and HCC-5D (Figure 5B;
Supplementary Figure 8B). This finding highlights the intratumoral
heterogeneity and evolutionary diversity of tumor nests. Similar
patterns were observed in fibrotic nodules, where the CNV levels
between the central and marginal regions of the nodules did
not show statistically significant differences. However, substantial
variations were present among different fibrotic nodules within
the same patient (Figures 5C,D; Supplementary Figure 9). These
observations further underscore the complexity and heterogeneity
present in both tumor nests and fibrotic nodules.

Comparison of tumor nests and fibrotic
nodules at the pseudobulk level

To further explore the overall patterns of differential gene
expression between tumor nests and fibrotic nodules, and their
respective central and marginal regions, and to account for the
sparsity of the raw single-cell data, we performed pseudobulk
analysis for each tumor nest and fibrotic nodule. DEGs between
the central and marginal regions were identified, revealing distinct
sets of DEGs unique to each region (Supplementary Figure 10A).
Functional enrichment analysis of the DEGs within tumor nests
yielded results similar to previous findings: marginal cells exhibited
significantly higher expression of genes associated with immune
regulation, while central cells were enriched in genes related to
metabolic processes (Supplementary Figures 10B,C).

At the pseudobulk level, comparison of CNV revealed that
tumor nest marginal regions had higher CNV levels, while
the central regions exhibited lower CNV levels (Figure 6A). In
contrast, fibrotic nodules showed higher CNV levels in the
central regions and lower CNV levels in the marginal regions
(Supplementary Figure 11A). To investigate the similarities in
transcriptional and CNV profiles between tumor nests and fibrotic
nodules at the central and marginal regions, we employed a
similarity network fusion (SNF) model that incorporated both
CNV score matrices and pseudobulk-level transcriptomic data.
Regardless of the tissue type, all analysis units clustered by patient,
with no significant differences observed between regions within
the same patient. Central and marginal samples did not separate
into distinct clusters (Figure 6B; Supplementary Figures 11B,C),
suggesting that patient-specific heterogeneity predominates over
regional heterogeneity within tumor nests. This finding also helps
explain the limited overlap of DEGs both within tumor nests and
across patients (Figures 2, 3; Supplementary Figures 1, 4).

Discussion

Studies on the division of labor among cancer cells within tumor
remain largely unreported in current literature (Lim et al., 2017;
Tammela et al., 2017; S. Zhang et al., 2023). ST has demonstrated
remarkable potential in advancing our understanding of HCC and
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FIGURE 3
Differential gene expression analysis of fibrotic nodules in individual patients. Shown are the results of the representative sample
HCC-1N. See also Supplementary Figure 4. (A,B) Venn diagram showing upregulated DEGs in the marginal (A) or central (B) regions of three fibrotic
nodules from patient HCC_1N; (C,D) Upset plot displaying upregulated DEGs in the marginal (C)or central (D) regions of fibrotic nodules, analyzed at
the individual patient level. (E) Functional enrichment of upregulated genes in the marginal regions of fibrotic nodules; (F) Functional enrichment of
upregulated genes in the central regions of fibrotic nodules. Enrichment analyses were categorized into Biological Process (BP), Molecular Function
(MF), and Cellular Component (CC).
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FIGURE 4
Functional enrichment analysis of differential genes in tumor nests. (A) Functional enrichment analysis of upregulated genes in the marginal region of
tumor nests; (B) Functional enrichment analysis of upregulated genes in the central region of tumor nests. Enrichment analyses are categorized into
Biological Process (BP), Molecular Function (MF), and Cellular Component (CC).

accelerating drug discovery (Ståhl et al., 2016). By enabling the
visualization of gene expression across spatial dimensions within
tissues or organs, ST reveals the intricate architecture of the tumor
microenvironment (Chung et al., 2022; Liu et al., 2023). This spatial
resolution allows for more precise identification of potential drug
targets and resistance mechanisms, as well as the elucidation of
immunotherapeutic targets. Collectively, these capabilities position
ST as a powerful tool for driving the development of personalized
medicine in HCC (Requena et al., 2024; Zhang et al., 2023).
Our study, based on ST technology, compares the differences

in transcriptomic profiles and CNV between the central and
marginal regions of HCC tumor nests and fibrotic nodules leads
to several key conclusions: marginal tumor nest cells are primarily
involved in immune regulation, whereas central cells are more
closely associated with growth and metabolism. This spatial gene
expression architecture may be established as early as the fibrotic
nodule stage. The observed spatial expression patterns suggest that
marginal tumor nest cells might engage in immune escape by
activating immune regulatory pathways through close interactions
with immune cells and the TME (Such as the gene MFGE8,

Frontiers in Cell and Developmental Biology 09 frontiersin.org

https://doi.org/10.3389/fcell.2025.1611951
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Li et al. 10.3389/fcell.2025.1611951

FIGURE 5
Comparison of CNV levels in tumor nests and fibrotic nodules. (A) Comparison of CNV levels between the central and marginal regions of tumor nests.
c, center; m, margin; (B) Overall CNV levels across different tumor nests within the same sample. (C) Comparison of CNV levels between the central
and marginal regions of fibrotic nodules. c, center; m, margin; (D) Overall CNV levels across different fibrotic nodules within the same
sample.∗,∗∗,∗∗∗,∗∗∗∗indicate, p < 0.05, p < 0.01, p < 0.001, p < 0.0001, respectively.

which is a potent pro-angiogenic factor. It can promote the
secretion of VEGF and endothelin-1 (ET-1) by mesenchymal stem
cells, enhance M2 polarization of tumor-associated macrophages,

and thereby facilitate tumor angiogenesis and tumor growth
(Pei et al., 2025; Raymond et al., 2009). Conversely, central tumor
nest cells likely redirect metabolic processes to support rapid
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FIGURE 6
Comparison of transcriptomic and CNV profiles at the pseudobulk level. (A) Comparison of CNV at the pseudobulk level in tumor nests. c, center; m,
margin; (B) Clustering of transcriptomic similarity at the pseudobulk level across tumor nests and analysis units. c, center; m, margin.

cell proliferation (Such as the gene TOP1MT, which encodes
the human mitochondrial DNA topoisomerase I. It promotes
tumor cell growth and proliferation by regulating mitochondrial
gene translation and energy metabolism.) (Pommier et al., 2022;
Rossi et al., 2022; Sivanand et al., 2024). Additionally, it is important
to note that these functional characteristics of marginal tumor nest
and fibrotic nodule cells may be linked to their direct interactions
with a greater number of immune cells.

Our comparative analysis revealed distinct clonal evolutionary
differences between the central and marginal regions of tumor
nests and fibrotic nodules (Figure 5; Supplementary Figures 8, 9).
Previous studies have demonstrated a significantly higher burden
of somatic mutations in fibrotic nodules compared to normal
liver tissue (Brunner et al., 2019), suggesting that tumor-associated
mutational patterns may already emerge during the fibrotic stage.
However, our findings reveal that the CNV landscape within fibrotic
nodules is distinct from that observed in tumor nests. While such
differences were minimal and variable at the individual tumor
nest or fibrotic nodule level in sparse data, CNV changes at the
multi-sample and multi-patient levels were generally lower in the
central regions of tumor nests compared to the marginal regions
(Figure 6A). In contrast, fibrotic nodules exhibited higher overall
CNV changes in their central regions relative to the margin. This
divergencemay be attributed to the differential microenvironmental
pressures faced by these regions: tumor nests are subjected to
immune-mediated selection, whereas fibrotic nodules are primarily
involved in tissue repair and regeneration (Ally et al., 2017). These
contrasting functional roles likely contribute to the emergence of
distinct mutational patterns. Notably, tumor nests exhibit a unique
spatial distribution of evolutionary clones, accompanied by more
intense mutational dynamics, which may underlie the differences in
CNV expression profiles between tumor nests and fibrotic nodules.

Due to technical limitations, it has traditionally been challenging
to conduct a systematic comparison of the transcriptomic and
genomic features between themarginal and central regions of tumor
nests. ST technology offers an excellent platform for this type of
analysis. Unfortunately, due to the spatial resolution limitations
of the ST technology used in this study, such as relatively large
capture spots that preclude single-cell resolution, inability to resolve
subcellular structures, limited spatial precision, and challenges
in distinguishing gene expression differences between adjacent
cells—certain aspects of spatial heterogeneity remain difficult to

characterize (Bonev et al., 2024; Jin et al., 2024). Consequently, our
sample cohort did not adequately capture the interactions within the
tumor nest (data not shown). However, with the advancement of
higher-resolution ST, this issue will be addressed in future studies.

In conclusion, this study provides a comprehensive analysis
of the gene expression profiles and CNV characteristics in the
central and marginal regions of HCC tumor nests. The findings
offer molecular-level evidence for the spatial heterogeneity of liver
cancer and reveal the biological logic underlying the functional
organization of tumor nests. The center-margin division within
tumor nests may present a novel strategy for targeted metabolic
and immune combination therapies. Understanding the spatial
heterogeneity of disease onset and progression is one of the key
steps in optimizing the presentation of disease-specific molecular
interaction maps (Zhang et al., 2022). This knowledge refines the
spatial characteristics of tumor architecture, not only revealing the
gene expression features of tumor nest units, but also indicating
a potential association with fibrotic nodules. These findings may
provide novel molecular evidence and guidance for the early
identification and intervention of the progression from liver
cirrhosis to hepatocellular carcinoma (Arora et al., 2023).
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