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Purpose: To conduct a systematic comparative analysis of macular retinal
thickness, retinal nerve fiber layer (RNFL) thickness, and ganglion cell-inner
plexiform layer (GCIPL) thickness measurements between spectral-domain
optical coherence tomography (SD-OCT) and swept-source OCT (SS-OCT) in
healthy individuals, while establishing standardized cross-platform conversion
algorithms through machine learning methodologies.

Methods: In this cross-sectional investigation, 48 healthy adults (96 eyes)
underwent macular retinal thickness assessment (ETDRS grid sectors), RNFL
analysis (quadrant sectors), and GCIPL evaluation (six-sector annular divisions)
using both SD-OCT (Cirrus HD-OCT 5000) and SS-OCT (Triton DRI-OCT).
Inter-device measurement differences were evaluated through paired t-tests.
Agreement metrics were quantified via intraclass correlation coefficients (ICCs)
and Bland-Altman analysis. Four predictive models—linear regression (LR),
LASSO regression, random forest regression (RF), and support vector regression
(SVR)—were developed to estimate Triton DRI-OCT measurements from Cirrus
HD-OCT 5000 outputs. Model efficacy was assessed using coefficient of
determination (R2) and root mean square error (RMSE).

Results: Statistically significant inter-device discrepancies (P < 0.001)
were identified in 9 macular sectors, all GCIPL parameters (average and
six-sector measurements), and RNFL measurements (average thickness
and three quadrants, excluding nasal sector). ICC values demonstrated
moderate-to-strong agreement: macular thickness (0.771–0.906), GCIPL
(0.554–0.710), and RNFL (0.451–0.852). Machine learning models exhibited
superior performance in central subfield thickness (CST) prediction,
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achieving test set R2 values of 0.930 (LR), 0.926 (LASSO), 0.936 (SVR), and
0.892 (RF). Linear regression maintained consistent predictive accuracy across
parameters: CST (R2 = 0.930), RNFL (R2 = 0.845), and GCIPL (R2 = 0.760).

Conclusion: Substantial measurement discrepancies preclude direct
interchangeability of SD-OCT and SS-OCT datasets. Machine learning-derived
conversion algorithms significantly improve cross-device comparability, offering
a robust standardization framework for multicenter research and longitudinal
data integration. This methodological advancement enables harmonized
analysis of OCT metrics across heterogeneous imaging platforms.

KEYWORDS

optical coherence tomography, machine learning, retinal thickness, standardized
conversion, spectral-domain, swept-source

1 Introduction

Optical coherence tomography (OCT) is a non-invasive imaging
technology widely used in ophthalmic diagnostics, particularly
for retinal and optic nerve evaluation (Huang et al., 1991).
Compared to traditional imaging, OCT offers superior resolution
and speed, enabling real-time visualization of microstructural
changes for early disease detection (Costa et al., 2006). Beyond
ophthalmology, OCT has shown potential in systemic diseases such
as Alzheimer’s and Parkinson’s (Gaire et al., 2024; Ge et al., 2021;
Wagner et al., 2023).

Advancements in OCT technology have led to spectral-
domain OCT (SD-OCT) and swept-source OCT (SS-OCT), which
differ in scanning speed, penetration depth, and segmentation
algorithms (Laíns et al., 2021). These differences result in
significant inter-device variations in keymetrics like central subfield
thickness (CST) (Nam et al., 2024; Matlach et al., 2014), retinal
nerve fiber layer (RNFL) (Matlach et al., 2014; Pierro et al.,
2012; Seibold et al., 2010), ganglion cell inner plexiform layer
(GCIPL) (Mahmoudinezhad et al., 2021), limiting cross-study
data integration (Tan et al., 2016). Standardized conversion
equations are thus critical for harmonizing multi-device datasets
(Bressler et al., 2014; Lee et al., 2021; Schrems et al., 2015;
Shepherd et al., 2012).

Artificial intelligence (AI) has emerged as a powerful tool in
ophthalmology (Foo et al., 2021; Wang et al., 2023; Shahriari et al.,
2023; Feng et al., 2023; Li et al., 2024; Xu et al., 2022; Xu et al.,
2020). Methods based on machine learning or deep learning
can learn patterns or regularities from data through algorithms,
achieving robust predictive or decision-making performance.
At present, Cirrus HD-OCT 5000 and Triton DRI-OCT are
the SD-OCT and SS-OCT, respectively, commonly used in
clinical practice, and the studies on the measurement differences
between the two machines are mostly limited to a certain
amount of measurement indexes and do not give a clear method
of data standardization (Nam et al., 2024; Lee et al., 2017).
Therefore, this study is the first to jointly evaluate the differences
between SD-OCT and SS-OCT for whole-zone measurements of
macular retinal thickness, RNFL, and GCIPL, and to construct
machine learning-based standardized equations to address
data compatibility issues in clinical studies and multicenter
collaborations.

2 Materials and methods

2.1 Study population

Healthy adults (n = 48, 96 eyes) were recruited from
Tongji Hospital, Shanghai, between October and November
2024. All participants underwent at least one Cirrus HD-OCT
5000 and Triton DRI-OCT examination at the Department of
Ophthalmology. Exclusion criteria included ocular pathology
(except refractive errors: myopia <−6D, hyperopia <+3D),
congenital anomalies, prior ocular surgery, or poor scan quality
(Cirrus signal strength <5/10; Triton <45/100).

2.2 Ocular examinations

The Cirrus HD-OCT 5000 (Carl Zeiss MediaTek, Dublin, CA)
was used to obtain a volumetric scan of the macula containing
a 6 mm × 6 mm area of the macular center pits by means of a
Macular Cube 512 × 128 (6 mm × 6 mm) scan, and the retinal
thickness of the macula was defined as the vertical distance from
the inner limiting membrane (ILM) to the retinal The vertical
distance from the ILM to the middle layer of the retinal pigment
epithelium (RPE), CST was expressed as the average thickness of
the retina with a central diameter of 1 mm in the macula, macular
GCIPL thickness was measured as the sum of the thicknesses of
the ganglion cell layer and the inner tufted layer in a 4 mm ×
5 mm ring surrounding the macular central concavity, and the
Optic Disc Cube 200 × 200 scan was used to measure RNFL
thicknesses in the circular region centered on the optic disc with a
diameter of 3.46 mm.

Triton DRI-OCT (Topcon, Inc, Tokyo, Japan) was used to
obtain a macular volumetric scan containing an area >6 mm around
the macular central concavity by means of a Macular Cube 512
× 128 (6 mm × 6 mm) scan, with the retinal thickness of the
macula defined as the perpendicular distance from the ILM to the
boundary of the outer photoreceptor segment (OS) and the RPE
(7), macular GCIPL thickness was measured as the sum of the
thickness of the ganglion cell layer and the inner plexiform layer
in a 6 mm × 6 mm cylindrical region containing the 6 mm × 6 mm
area surrounding the macular central concavity, and an Optic Disc
Cube 200 × 200 scan was used to measure the thickness of the
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RNFL in a circular region of 3.4 mm in diameter centered on the
optic disk (Lee et al., 2017).

For macular retinal thickness, the area was divided using the
Early TreatmentDiabetic Retinopathy Study (ETDRS) grid (Jin et al.,
2016) and the average regional thickness was calculated for each
sector in the ETDRS grid. For macular GCIPL thickness, the
measurement area was averaged into six sectors, with the Cirrus
automatically measuring the average, minimum, and six sector
GCIPL thicknesses and the Triton automatically measuring the
average and six sector GCIPL thicknesses. For RNFL thickness,
the measurement area was averaged into four quadrants, superior,
inferior, temporal and nasal, with both devices automatically
measuring the total area and the average RNFL thickness in
each quadrant.

2.3 Quality control

All participants had two OCT scans completed at the same
location on the same day. Patients with signal intensity Cirrus HD-
OCT 5000 < 5/10, Triton DRI-OCT <45/100 or poor image quality
were retaken. All OCT scans followed the OSCAR-IB standard for
scan quality control (Aytulun et al., 2021; Cruz-Herranz et al., 2016).
Segmentation of retinal layers was performed using inbuilt software,
and OCT image segmentation levels were manually reviewed and
modified by trained technicians and clinicians to ensure compliance
with quality control standards.

2.4 Statistical analysis

Data were analyzed using SPSS (SPSS, Inc., Chicago, IL, version
20.0). Measurements were described as mean ± standard deviation
or median and interquartile spacing, and comparisons between
different machines were performed using paired-samples t-tests.
Bland-Altman plots and intraclass correlation coefficients (ICC)
were used to assess the consistency of measurements between
machines. R statistical software (version 4.3.1; R Core Team, 2023)
was used to construct the machine learning models. P < 0.05 was
considered statistically significant.

Participants were divided into a training set and a testing
set according to a ratio of 8:2. The training set data were
used to construct the model and the testing set data were used
to validate the reliability of the model. Outliers were excluded
from the derivation of the conversion equations, which were
defined as the difference in CST, RNFL, or GCIPL measurements
between two devices that differed from the average difference
by > 2 SD. Four machine learning methods, namely, linear
regression (LR), LASSO regression, Random Forest regression
(RF), and Support Vector Machine regression (SVR) were utilized
to develop conversion equations for CST, RNFL, and GCIPL
thicknesses, respectively, to convert the measured values of
Cirrus HD-OCT 5000 were converted to predicted values of
Triton DRI-OCT. The reliability of the model was evaluated by
calculating the coefficient of determination (R2), root mean square
error (RMSE).

3 Results

A total of 96 eyes of 48 healthy adults (including 13 males and
35 females) with a mean age of 32.9 ± 13.95 years were included in
this study.

3.1 Inter-device differences

Among the quantitative fundus indices measured with both
the Cirrus HD-OCT 5000 and Triton DRI-OCT machines, except
for the nasal sector of the RNFL thickness, the measurements of
each division of the macular retina, the GCIPL, and the remaining
divisions of the RNFL were significantly different between the two
groups (P < 0.001, Table 1). The CST (245.4 ± 19.79 μm vs. 231.2
± 16.52 μm) and GCIPL (82.9 ± 6.58 μm vs. 64.1 ± 4.20 μm) of
Cirrus HD-OCT 5000 were significantly higher than Triton DRI-
OCT, whereas the mean RNFL thickness (97.8 ± 10.01 μm vs. 106.4
± 10.51 μm) was significantly lower.

3.2 Inter-device agreement analysis

The ICC distribution of macular retinal thickness between the
two groups of Cirrus HD-OCT 5000 and Triton DRI-OCT ranged
from 0.771 to 0.906 (P < 0.001), as shown in Table 2.The lowest ICC
was found in the upper outer ring of the macular retinal thickness
(0.771, P < 0.001), and the highest ICC was found in the lower outer
ring and the nasal region (0.906, P < 0.001). The ICC indices of
GCIPL thickness were distributed between the two groups between
0.554 and 0.710 (P < 0.001), with the ICC of the average GCIPL
thickness being the highest.The ICC indices of RNFL thickness were
distributed between the two groups between 0.451 and 0.852 (P <
0.001), with the thickness of the RNFL nasal sector having the ICC
was the lowest (0.451, P < 0.001), as shown in Table 2. Bland-Altman
analysis showed that the mean deviations between groups were 14.9
± 12.5 μm, 18.7 ± 5.5 μm, and −9.3 ± 10.8 μm for the CST, GCIPL,
and RNFL, respectively (Figure 1).

3.3 Model performance

Four machine learning methods were used to construct
prediction models about the thickness of CST, RNFL, and GCIPL,
respectively, and the results showed that the performance of the four
models was similar between training set and testing set, and the
nonlinear model was not significantly better than the linear model,
see Table 3. For CST, RF was the best in the training set (RMSE =
3.935, R2 = 0.944), and SVR was the best in the testing set (RMSE
= 4.693, R2 = 0.936), see Figure 2, and for GCIPL, RF was the best
in predicting GCIPL, with an RMSE of 1.685 in the training set, an
R2 of 0.823, and in the testing set an RMSE of 1.944 and R2 of 0.855,
see Figure 3; whereas the four models generally have low prediction
performance on RNFL (R2 = 0.516–0.760), with RF performing the
best in the training set (RMSE = 4.973, R2 = 0.781), and LR in the
testing set (RMSE = 4.829, R2 = 0.760), the see Figure 4.
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TABLE 1 Comparison of retinal thickness measurements between SD-OCT and SS-OCT.

Retinal measurements (μm) HD-OCT 5000 DRI-OCT P

Macular retinal thickness

CST 245.4 ± 19.79 231.2 ± 16.52 <0.001
∗∗∗

Inner

Superior 321.5 ± 16.97 307.9 ± 13.85 <0.001
∗∗∗

Temporal 306.1 ± 14.35 294.3 ± 13.21 <0.001
∗∗∗

Inferior 312.6 ± 15.18 303.1 ± 13.70 <0.001
∗∗∗

Nasal 320.2 ± 15.80 306.3 ± 14.25 <0.001
∗∗∗

Outer

Superior 285.9 ± 13.89 272.0 ± 12.71 <0.001
∗∗∗

Temporal 263.6 ± 11.72 252.1 ± 11.95 <0.001
∗∗∗

Inferior 264.8 ± 13.73 254.9 ± 12.72 <0.001
∗∗∗

Nasal 300.9 ± 15.65 286.4 ± 14.53 <0.001
∗∗∗

GCIPL

Mean thickness 82.9 ± 6.58 64.1 ± 4.20 <0.001
∗∗∗

Superior 83.8 ± 8.47 70.34 ± 4.95 <0.001
∗∗∗

Supertemporal 82.2 ± 7.05 70.5 ± 4.91 <0.001
∗∗∗

Inferotemporal 82.3 ± 7.39 71.0 ± 4.76 <0.001
∗∗∗

Inferior 78.7 ± 9.74 65.3 ± 4.78 <0.001
∗∗∗

Inferonasal 82.7 ± 8.22 71.8 ± 5.23 <0.001
∗∗∗

Super nasal 85.6 ± 8.14 74.4 ± 5.61 <0.001
∗∗∗

RNFL

Mean thickness 97.8 ± 10.01 106.4 ± 10.51 <0.001
∗∗∗

Superior 114.0 ± 18.52 125.7 ± 18.93 <0.001
∗∗∗

Temporal 88.5 ± 18.44 101.4 ± 22.48 <0.001
∗∗∗

Inferior 125.4 ± 19.35 137.7 ± 22.70 <0.001
∗∗∗

Nasal 63.3 ± 13.91 61.0 ± 19.82 0.198

Note: CST, central subfield thickness; GCIPL, ganglion cell inner plexiform layer; RNFL, retinal nerve fiber layer; Data are presented as mean ± SD.
∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001.

4 Discussion

In this study, we found that there were large differences in
the measurements between Triton DRI-OCT and Cirrus HD-
OCT 5000 between macular retinal thickness in the macula,
macular GC-IPL thickness, and RNFL thickness, which is
consistent with previous studies (Nam et al., 2024; Lee et al.,

2017). There are multiple reasons for such measurement
differences, including differences in SS-OCT and SD-OCT scanning
parameters, image segmentation algorithms, and measurement
areas (Laíns et al., 2021; Pierro et al., 2012; Heussen et al.,
2012), such as in the measurement of the CST, the Cirrus
HD-OCT 5000 when measuring the distance from the ILM to
the intermediate layer of the RPE, and the Triton DRI-OCT
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TABLE 2 The ICC of retinal thickness measurements between SD-OCT and SS-OCT.

Retinal measurements (μm) HD-OCT 5000 DRI-OCT ICC (95%CI) P

Macular retinal thickness

CST 245.4 ± 19.79 231.3 ± 16.52 0.890 (0.839–0.926) <0.001
∗∗∗

Inner

Superior 321.5 ± 16.97 307.9 ± 13.85 0.838 (0.765–0.889) <0.001
∗∗∗

Temporal 306.1 ± 14.35 294.3 ± 13.21 0.878 (0.822–0.917) <0.001
∗∗∗

Inferior 312.6 ± 15.18 303.1 ± 13.70 0.887 (0.835–0.924) <0.001
∗∗∗

Nasal 320.2 ± 15.80 306.3 ± 14.25 0.853 (0.787–0.900) <0.001
∗∗∗

Outer

Superior 285.9 ± 13.89 272.0 ± 12.71 0.771 (0.674–0.842) <0.001
∗∗∗

Temporal 263.6 ± 11.72 252.1 ± 11.95 0.865 (0.803–0.909) <0.001
∗∗∗

Inferior 264.8 ± 13.73 254.9 ± 12.72 0.906 (0.861–0.936) <0.001
∗∗∗

Nasal 300.9 ± 15.65 286.4 ± 14.53 0.906 (0.861–0.936) <0.001
∗∗∗

GCIPL

Mean thickness 82.9 ± 6.58 64.1 ± 4.20 0.710 (0.592–0.798) <0.001
∗∗∗

Superior 83.8 ± 8.47 70.34 ± 4.95 0.604 (0.459–0.718) <0.001
∗∗∗

Supertemporal 82.2 ± 7.05 70.5 ± 4.91 0.603 (0.458–0.717) <0.001
∗∗∗

Inferotemporal 82.3 ± 7.39 71.0 ± 4.76 0.609 (0.465–0.721) <0.001
∗∗∗

Inferior 78.7 ± 9.74 65.3 ± 4.78 0.554 (0.397–0.679) <0.001
∗∗∗

Inferonasal 82.7 ± 8.22 71.8 ± 5.23 0.695 (0.574–0.786) <0.001
∗∗∗

Super nasal 85.6 ± 8.14 74.4 ± 5.61 0.681 (0.557–0.776) <0.001
∗∗∗

RNFL

Mean thickness 97.8 ± 10.01 106.4 ± 10.51 0.743 (0.639–0.821) <0.001
∗∗∗

Superior 114.0 ± 18.52 125.7 ± 18.93 0.757 (0.657–0.831) <0.001
∗∗∗

Temporal 88.5 ± 18.44 101.4 ± 22.48 0.700 (0.582–0.790) <0.001
∗∗∗

Inferior 125.4 ± 19.35 137.7 ± 22.70 0.852 (0.786–0.898) <0.001
∗∗∗

Nasal 63.3 ± 13.91 61.0 ± 19.82 0.451 (0.277–0.597) <0.001
∗∗∗

Notes: CST, central subfield thickness; RNFL, retinal nerve fiber layer; GCIPL, ganglion cell-inner plexiform layer; CI, confidence interval; SD-OCT, spectral-domain optical coherence
tomography; SS-OCT, swept-source optical coherence tomography. Values are presented as mean ± standard deviation. ICC, interpretation; ICC, values were calculated using a two-way
mixed-effects model for absolute agreement. P values indicate significance levels for ICC, comparisons between devices.
∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001.

when measuring the distance from the ILM to the OS and
the RPE boundaries, and when measuring RNFL thickness, the
Cirrus HD-OCT 5000 measured the average RNFL thickness
in a 3.46 mm diameter circular area centered on the optic
disk, while the Triton DRI-OCT measured a 3.4 mm diameter
circular area (Lee et al., 2017).

We also compared the consistency of themeasurements between
the two devices, which did not have consistent ICC indices between
each measurement, with the lowest ICC index located in the
thickness of the nasal sector of the RNFL (0.451, P < 0.001) and the
highest ICC index in the thickness of the outer subcircular region
of the macular retina and the nasal region (0.906, P < 0.001). In
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FIGURE 1
The Bland-Altman Plots Comparing Retinal Thickness Measurements between SD-OCT and SS-OCT. Notes: Solid line means the mean difference
between Cirrus HD-OCT 5000 (SD-OCT) and Triton DRI-OCT (SS-OCT) measurements; Dashed lines means 95% limits of agreement (mean difference
±1.96 × standard deviation). Data points represent paired measurements from 96 eyes. CST (A) Mean difference = 14.9 ± 12.5 μm. A systematic bias is
evident, with SD-OCT consistently measuring higher CST values than SS-OCT; GCIPL (B) Mean difference = 18.7 ± 5.5 μm. Narrower limits of
agreement suggest better reproducibility for GCIPL compared to RNFL; RNFL (C) Mean difference = −9.3 ± 10.8 μm. Wider dispersion of points
indicates poorer agreement, particularly in the nasal quadrant (ICC = 0.451).

TABLE 3 Model performance on Various clinical Indicators.

Metrics Model Training set Testing set

RMSE R2 RMSE R2

CST

LR 5.362 0.895 4.403 0.930

LASSO 5.120 0.904 4.428 0.926

SVR 5.592 0.889 4.693 0.936

RF 3.935 0.944 5.318 0.892

GCIPL

LR 1.936 0.765 1.981 0.845

LASSO 1.733 0.812 2.317 0.786

SVR 2.177 0.710 3.193 0.591

RF 1.685 0.823 1.944 0.855

RNFL

LR 5.644 0.717 4.829 0.760

LASSO 5.271 0.753 5.616 0.690

SVR 5.642 0.717 5.145 0.726

RF 4.973 0.781 6.791 0.516

Notes: CST, central subfield thickness; GCIPL, Ganglion Cell-Inner Plexiform Layer; RNFL,
Retinal Nerve Fiber Layer. LR, linear regression; LASSO, least absolute shrinkage and
selection operator; SVR, support vector regression; RF, Random Forest. RMSE, root mean
square error; R2, Coefficient of Determination. RMSE, Lower values indicate better
predictive accuracy. R2, Higher values (closer to 1) indicate better model fit. Models were
evaluated using an 80:20 split for training and test sets. Hyperparameters were optimized
via cross-validation on the training set.

contrast, Nam et al. (2024) found that the Triton OCT-1 and Cirrus
HD-OCT 5000 had a higher ICC index in the temporal region of
the outer retinal ring in the macula (0.930, 95% CI 0.828–0.972),
whichmaybe related to the population differences and segmentation
algorithms between the machines. Overall, both devices showed
high agreement in measured retinal thickness, RNFL thickness, and
GCIPL thickness in the macular region.

Nonetheless, the significant differences between the two devices
on the same measurements resulted in their measurements not
being directly merged for use. Therefore, standardized conversion
of data in clinical studies involving multiple OCT devices is
mandatory (Shepherd et al., 2012; Kenney et al., 2022). Based on four
machine learningmethods, we constructed amodel for standardized
conversion of OCT measurement data, in which the model showed
the best predictive performance for CST, with R2 ranging from 0.892
to 0.930 in the testing set, and the worst predictive performance for
RNFL, with R2 ranging from 0.516 to 0.760 in the testing set, which
may bemainly due to the difference between the twomachines in the
RNFL and theGCIPLwith different segmentation criteria (Lee et al.,
2017), which resulted in the measures showing large differences.
Moreover, it is noteworthy that the study cohort exclusively
comprised healthy adults, whose clear and regular retinal images
do not currently challenge OCT segmentation algorithms. However,
in patients with ocular pathologies such as diabetic macular edema
(DME) or wet age-related macular degeneration (wAMD), irregular
retinal structures frequently induce OCT segmentation errors. This
may lead to significant discrepancies in measurements between
different devices. Consequently, researchers have initiated efforts
to incorporate diseased populations—specifically establishing data
conversion equations for CST in DME patients (Bressler et al.,
2014; Bressler et al., 2015; Ibrahim et al., 2012), and developing
conversion equations for macular retinal thickness in AMD patients
(Krebs et al., 2011). Therefore, some researchers have pinned their
hopes on reducing the measurement differences of multiple OCT
devices by constructing a standardized automatic segmentation
model based on Cycle GAN for image segmentation and layering
of multiple OCT devices (Chen et al., 2023), but this research is still
affected by the inconsistent image resolution and scanning artifacts
of different OCT devices. Building upon the above discussion,
while the data conversion equations derived from healthy retinae in
this study require further validation for extension to patients with
fundus diseases, this conversion model holds substantial potential
for research on retinal alterations associated with extraocular
pathologies such as Alzheimer’s disease (AD), mild cognitive
impairment (MCI), multiple sclerosis (MS), and cerebrovascular
disorders.
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FIGURE 2
Scatter Plots of Observed vs. Predicted CST Values by Machine Learning Models. Notes: LR, Linear Regression; LASSO, Least Absolute Shrinkage and
Selection Operator; SVR, Support Vector Regression; RF, Random Forest. X-axis, Predicted CST values (μm) from Triton DRI-OCT (SS-OCT); Y-axis:
Observed CST values (μm) from Cirrus HD-OCT 5000 (SD-OCT). Diagonal line: Ideal agreement line (y = x), where predicted values perfectly match
observed values. Data points: Each point represents an individual eye measurement (n = 96). (A) LR: Clustered tightly around the diagonal line,
indicating high predictive accuracy (test R2 = 0.930). (B) SVR: Slightly wider dispersion in the test set (RMSE = 4.693) but retains strong correlation (R2 =
0.936). (C) LASSO: also indicating high predictive accuracy (test R2 = 0.930) (D) RF: Training set points (blue) align closely with the line (R2 = 0.944),
while test set (yellow) shows moderate deviation (R2 = 0.892), suggesting mild overfitting.

Among these four machine learningmodels, this study observes
that LR is more stable in its performance on CST, RNFL, and
GCIPL in both training and testing sets, and the R2 in the
testing set is 0.930, 0.845, and 0.760. This finding aligns with
previous research outcomes. Schrems et al. (2015), established
conversion equations for RNFL thickness between SD-OCT and
TD-OCT using multiple methodologies, including non-conversion,
mean difference, mean ratio, and linear regression approaches.
Among these, linear regression demonstrated optimal predictive
performance. Although numerous prior studies have endeavored
to develop OCT data conversion equations(9, 29), few have
employed machine learning paradigms such as nonlinear modeling.
Our results similarly indicate that nonlinear models confer no

significant advantage in constructing data conversion equations.
Therefore, constructing the data conversion equation between two
OCT machines using a linear model is a simple and effective
standardization method. On the other hand, previous studies on
OCT data conversion have been largely confined to comparisons
between SD-OCT and TD-OCT. Kenney et al. (2022), through a
generalized linear estimation model proposed data transformation
equations for Cirrus and Spectralis SD-OCT on pRNFL and GCIPL,
i.e., Cirrus = −5.0 + 1.0 × Spectralis pRNFL andCirrus = −4.5 + 0.9 ×
Spectralis GCIPL; Bressler et al. (2014) constructed data conversion
equations for the CST of patients with diabetic macular edema
measured usingTD-OCTand SD-OCT,whichwere found to further
reduce measurement error. Sun et al. (2021), on the other hand,
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FIGURE 3
Scatter Plots of Observed vs. Predicted GCIPL Average Thickness by Machine Learning Models. Notes: X-axis, Predicted GCIPL thickness (μm) from
Triton DRI-OCT (SS-OCT). Y-axis, Observed GCIPL thickness (μm) from Cirrus HD-OCT 5000 (SD-OCT). Diagonal line: Ideal agreement line (y = x),
representing perfect prediction accuracy. Data points: Each point corresponds to an individual eye measurement (n = 96). (A) LR: LR shows moderate
generalizability (test R2 = 0.845). (B) SVR: Exhibits the poorest performance (test R2 = 0.591, RMSE = 3.193 μm), with significant dispersion in both
training and test sets. (C) LASSO: LASSO’s regularization slightly reduces overfitting compared to SVR (D) Random Forest (RF): Demonstrates the best
overall performance with the highest test set R2 (0.855) and lowest test RMSE (1.944 μm), closely aligning with the diagonal line.

used a linear mixed model to construct the CST of patients with
diabetic macular edema between the Cirrus and Spectralis SD-OCT
transformation equation, i.e., Spectralis = 40.78 + 0.95 × Cirrus,
and good predictive performance was also observed. This study
concentrates on measurement discrepancies between SS-OCT and
SD-OCT. Following the development of data conversion equations,
empirical validation demonstrates their capacity to substantially
mitigate these inter-device variations.

This study posits that data conversion equations can address
two critical issues in clinical research. Firstly, the integration
of OCT data in multicenter studies: Data conversion equations
enable standardized transformation of raw measurements from
different OCT devices, allowing merged analysis or comparison

of standardized multicenter data to minimize measurement
discrepancies. Secondly, OCT data standardization in longitudinal
follow-up studies: Equipment replacement during extended follow-
up introduces significant measurement errors that compromise
data integrity; applying these conversion equations permits
standardization of historical data in select studies, therebymitigating
inter-device variability. While maintaining consistent measurement
protocols remains the gold standard for robust clinical research,
these conversion equations must be judiciously applied when
unavoidable technical transitions occur.

Nonetheless, the limitations of this study are as follows: only
healthy adults were included in this study, and differences between
race, age (Tham et al., 2020) and disease (Bressler et al., 2014)
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FIGURE 4
Scatter Plots of Observed vs. Predicted RNFL Average Thickness by Machine Learning Models. Notes: Axes: X-axis, Predicted RNFL thickness (μm) from
Triton DRI-OCT (SS-OCT). Y-axis, Observed RNFL thickness (μm) from Cirrus HD-OCT 5000 (SD-OCT). Diagonal line: Ideal agreement line (y = x),
indicating perfect prediction accuracy. Data points: Each point represents an individual eye measurement (n = 96). (A) Linear Regression (LR): Achieves
the highest test set R2 (0.760) and lowest test RMSE (4.829 μm), with data points clustered near the diagonal line, demonstrating robust generalizability.
(B,C) LASSO and SVR: Intermediate performance (test R2 = 0.690–0.726), with SVR slightly outperforming LASSO in test RMSE (5.145 μm vs. 5.616 μm).
(D) Random Forest (RF): Shows the lowest test performance (R2 = 0.516, RMSE = 6.791 μm), with significant deviation in the test set (yellow), indicating
pronounced overfitting despite high training accuracy (R2 = 0.781).

were not considered, and the applicability of the constructed data
conversion model to patients with macular or optic nerve disease
still requires further investigation; in addition, the conversion
equations for data measured by different machines are different
(Bressler et al., 2014; Lee et al., 2021; Schrems et al., 2015), and
the data conversion model constructed in this study is limited
to the Triton DRI-OCT and Cirrus HD-OCT 5000 machines;
furthermore, the data conversion model constructed to combine
the measurement data from different OCT devices still has
overfitting or underfitting, which requires caution in actual clinical
research, but there are certain differences in scanning parameters,
image segmentation algorithms, and measurement areas between
the devices. However, there are some differences in scanning

parameters, image segmentation algorithms and measurement
areas between devices, and it is still helpful to construct a
data conversion model to minimize the measurement error in
clinical research.

5 Conclusion

Our study found that there are significant differences inmacular
retinal thickness, GCIPL, and RNFL thickness between the Triton
DRI-OCT and the Cirrus HD-OCT 5000, and the construction of
a machine learning model can effectively reduce this measurement
error, which provides a reliable data standardization method
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for cross-sectional studies or long-term follow-up studies using
different OCT devices.
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