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Neuronal guidance behaviours:
the primary cilium perspective

Melody Atkins*, Coralie Fassier† and Xavier Nicol†

Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre
National de la Recherche Scientifique (CNRS), Institut de la Vision, Paris, France

The establishment of functional neuronal circuits critically relies on the ability
of developing neurons to accurately sense and integrate a variety of guidance
signals from their surrounding environment. Such signals are indeed crucial
during key steps of neuronal circuit wiring, including neuronal migration and
axon guidance, to guide developing neurons or extending axons towards their
target destination in the developing brain. The growth cone, located at the
tip of developing neurons, is a key subcellular structure in this process, that
concentrates many different guidance receptors and signalling molecules and
specialises in the probing and integration of extracellular signals into various
guidance behaviours. Interestingly, the small primary cilium, long considered as
a vestigial organelle, has progressively emerged as a cellular antenna specialised
in cell signalling, and has been reported, just like the growth cone, to harbour
a variety of guidance receptors. How primary cilium-elicited signals are then
transduced into specific cellular processes to guide developing neurons and
axons remains however obscure. In this review, we will summarise our emerging
understanding of the role of primary cilium-elicited signalling pathways on
neuronal guidance processes, by focusing on neuronal migration and axon
guidance. We will highlight the primary cilium molecular diversity, and how it
shapes the primary cilium functional versatility, allowing the ciliary compartment
to instruct various guidance behaviours through the regulation of different
cellular processes. We will moreover discuss current and future avenues of
research, to unravel the different molecular effectors activated downstream of
specific ciliary signals, and clues to be gained from studies performed in non-
neuronal cells. Rising challenges of the field will also be addressed, such as
the technical challenge induced by the dual subcellular localisation (i.e., ciliary
and extra-ciliary) of many ciliary guidance receptors, and the importance of
the development of new genetic/chemo-genetic/optogenetic tools. Finally, we
will highlight the insight such studies will bring for our understanding of the
aetiology of different disorders, including ciliopathies, neurodevelopmental and
neurodegenerative disorders, but also cancer cell migration/invasion, which are
associated with defective primary cilium formation and function.
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1 Introduction

Neuronal guidance signalling encompasses all the
signalling processes that ensure precise neuronal positioning
and wiring (Yuasa-Kawada et al., 2022). Neuronal migration and
axonpathfinding are twomajor steps of this guidance process.Newly
generated neurons indeed migrate from their birthplace to their
final destination in the developing brain and extend their growing
axons towards the right synaptic targets. The neuron’s environment
is a key ally in this developmental journey, as it provides different
spatiotemporally-controlled guidance signals that enable developing
neurons to ultimately integrate functional neuronal circuits.
Depending on the neuronal subtype and/or the developmental
stage, migration and axon navigation can occur either sequentially
or concomitantly. Adding to this complexity, a same guidance signal
can steer different populations of neurons and/or elicit different
types of guidance behaviours (e.g., neuronal migration or axon
guidance), highlighting the importance for developing neurons to
accurately sense and integrate multiple extracellular signals in order
for accurate neural circuit wiring to occur.

Extracellular guidance cues are sensed by receptors/channels
expressed at the surface of developing neurons and come in
many different flavours. They can be chemical, including diffusible
extracellular or cell-bound ligands (proteins, lipids, small molecules
…), but also mechanical, or even electrical (Gangatharan et al.,
2018; Medvedeva and Pierani, 2020; Dorskind and Kolodkin, 2021).
The growth cone, that is formed at the tip of extending axons
and migrating neurons alike, is known to express many guidance
receptors and is extensively studied as a key structure specialised
in the probing and integration of the extracellular environment
(Lowery and Van Vactor, 2009; Stoeckli, 2018; Nakajima et al.,
2024). Interestingly, developing neurons–as almost all vertebrate
cells–possess another key subcellular compartment, the primary
cilium (PC), that has progressively emerged as a cell antenna
specialised in collecting signals from the environment. Indeed,
mutations affecting the PC structure and/or function have been
found to induce a group of developmental disorders termed
ciliopathies. While the clinical manifestations of ciliopathies
are multisystemic, and include retinopathy, obesity, diabetes,
skeletal malformations, and hepatic disease, ciliopathies are also
characterised by a wide range of neurodevelopmental defects,
such as in the Joubert (JBTS), Meckel-Grüber (also called Meckel
syndrome, MKS) or Bardet–Biedl syndromes (Reiter and Leroux,
2017; Andreu-Cervera et al., 2021; Karalis et al., 2022).These defects
include brain malformations, ataxia, epilepsy, mental disability
and highlight the importance of primary cilia in neuronal circuit
wiring and function. Accordingly, recent studies have located several
receptors/effectors of major guidance signalling pathways to the
ciliary compartment (Higginbotham et al., 2012; Loukil et al.,
2023). However, the precise signalling events elicited in response
to guidance signals within the PC and transduced to downstream
intracellular effectors in order to regulate neuronal guidance
behaviours remain poorly understood.

In this review, we will summarise our current understanding of
the role of PC-elicited signalling pathways on neuronal guidance
processes, focusing on neuronal migration and axon guidance.
We will highlight the importance of the molecular diversity of
the ciliary compartment, and how it determines the functional

versatility of PC signalling during neuronal guidance, regulating:
(i) different guidance processes (i.e., neuronal migration and
axon navigation) sequentially or concomitantly, and (ii) different
molecularmechanisms converging on a same guidance process (e.g.,
neuronal migration). It is indeed important to bear in mind that the
generic PC does not exist, and that ciliary composition is highly
versatile, at different levels. First, (i) the PC protein composition
varies throughout the lifespan of the cell: for example, the expression
of the ciliary marker, adenylate cyclase 3 (AC3; i.e., enzyme
responsible for the cAMP cyclic nucleotide synthesis) is low in the
embryonic brain, but increases during the first postnatal weeks,
before decreasing again at later stages (Arellano et al., 2012). Ciliary
protein composition is moreover (ii) highly dependent on the cell
type, and depending on the cell type, (iii) a same ciliary protein
can show different sub-ciliary localisation patterns (Hansen et al.,
2022).Wewillmoreover discuss current and future research avenues
to unravel the many ramifications of molecular effectors activated
downstream of specific PC-elicited guidance signals, and clues to be
gained from studies performed in non-neuronal cells. Finally, wewill
highlight the insight such studies will bring for our understanding
of ciliopathies, but also neurodevelopmental and neurodegenerative
disorders or cancer cell migration, associated with defective PC
formation and function.

2 The neuronal primary cilium: a
signalling hub sensing environmental
guidance cues

2.1 The primary cilium subcellular
compartment

Primary cilia are small, microtubule-based structures that
are contiguous with the plasma membrane and bud from the
surface of almost all vertebrate cells. Observed as early as 1898
(Zimmermann, 1898), technical limitations have long relegated the
PC to a vestigial organelle, until the development of transmission
electron microscopy and the association made between primary
cilia and ciliopathies gradually boosted our interest for this tiny
organelle. Since then, ciliopathies have been reported one after
the other, with the discovery of more and more ciliopathy-
associated genes (Reiter and Leroux, 2017), the study of which
has contributed to considerably increase our knowledge of the PC
structure and function.

2.1.1 The primary cilium structure and
composition

The architecture of the PC has been extensively studied. The
PC is organised by a modified mother centriole, called the basal
body, from which the ciliary microtubule core, called the axoneme
(comprising nine microtubule doublets), extends, surrounded by
the ciliary membrane (Figure 1). In mammalian neurons, the PC
extends 2 to 12 μm from the cell surface, with a diameter ∼
200–500 nm (DeMars et al., 2023; Macarelli et al., 2023). Two
main ciliogenesis pathways have been described: the extracellular
pathway, and the intracellular one, that is the most studied (Wang
and Dynlacht, 2018; Hoffman and Prekeris, 2022; Zhao et al.,
2023). While extracellular ciliogenesis occurs in most polarised
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epithelial cells, the intracellular pathway appears to be favoured by
most other cell types (Sorokin, 1962; 1968; Molla-Herman et al.,
2010; Labat-de-Hoz et al., 2021). In the intracellular pathway,
ciliogenesis starts in the cytoplasm with the docking of the basal
body to a large ciliary vesicle. The axoneme assembles from the
basal body beneath this vesicle. As the axoneme extends, the
ciliary vesicle expands to encapsulate the axoneme in a double
membrane layer, with the ciliary membrane facing the axoneme
and the ciliary sheat facing the cytoplasm. PC budding at the cell
surface is then enabled by fusion of the ciliary sheat with the
plasma membrane. Conversely, extracellular ciliogenesis is initiated
by the docking of the basal body to the plasma membrane. As
the axoneme extends from the basal body, the ciliary membrane
is gradually formed from the plasma membrane. Whether in the
extracellular or intracellular pathway, extension of the PC, in which
translation does not occur, relies on a ciliary transport system,
the intraflagellar transport (IFT), that uses the axoneme scaffold
to provide all the building material required for membrane and
axoneme extension, as well as for protein delivery and exit to and
from the PC. IFT (Taschner and Lorentzen, 2016) is powered by
the kinesin-II and dynein microtubule-based molecular motors
for anterograde and retrograde transport along the axoneme,
respectively. Trains of IFT particles, each composed of IFTA and
IFTB subcomplexes, are assembled at the ciliary base and couple the
molecular motors to the cargoes for ciliary trafficking to and from
the PC tip.

2.1.2 The primary cilium: a signalling hub
This IFT system is important not only for ciliogenesis, but

also for PC function. Indeed, the wide range of ciliopathy-
associated phenotypes and target organs–ranging from skeletal,
heart, kidney, renal or retinal malfunction to brain malformations
and cognitive defects–highlights the crucial involvement of the
highly conserved PC in the regulation of cell signalling and function.
The PC is indeed now well established as a signalling hub at the
crossroads between various signalling pathways (Christensen et al.,
2012; Hilgendorf et al., 2016; Pala et al., 2017; Wheway et al.,
2018; Anvarian et al., 2019; Nishimura et al., 2019; Mill et al.,
2023). The IFT transport machinery plays an important part
in the concentration and trafficking into and out of the tiny
ciliary volume of many membrane receptors (e.g., G-protein
coupled receptors, ion channels, extracellular matrix receptors,
purinergic receptors …) and signalling molecules (e.g., second
messengers, soluble proteins …). Of note, the precise molecular
mechanisms involved in these various trafficking events remain to
be clarified, and an IFT-independent lateral diffusion of certain
ciliary membrane receptors along the axoneme has also been
proposed (Milenkovic et al., 2009; Ye et al., 2013). Proteomic studies
performed in non-neuronal systems have nevertheless contributed
to confirm the diversity of proteins concentrated within the ciliary
volume and hint at the wide variety of processes in which the PC
signalling hub is involved (Ishikawa et al., 2012; Mick et al., 2015;
Hansen et al., 2024; Liu et al., 2024).

This dense and diverse protein composition is a key feature of
the PC compartment, along with its lipidic composition, that is
distinct from that of the plasma membrane (Nakatsu, 2015; Conduit
and Vanhaesebroeck, 2020). Different gating mechanisms, based on
evolutionarily-conserved domains located at the base of the PC, act

in concert with the IFT to strictly restrict the exchanges between the
cytoplasm and the cilioplasm (Jensen and Leroux, 2017; Park and
Leroux, 2022; Moran et al., 2024).

At the very base of the PC, the distal appendages (or transition
fibres, see Figure 1) of the cell body connect the basal body to the
ciliary membrane. IFT particles dock onto transition fibres before
cargo trafficking to the ciliary compartment (Deane et al., 2001;
Wei et al., 2013). Distal to the transition fibres, the transition zone
is composed of Y-links that connect the axoneme to the ciliary
membrane, and the ciliary necklace, comprising rows of membrane
particles that encircle the base of the ciliary shaft. The transition
zone appears to apply different gating mechanisms to safeguard
the functional specificity of the ciliary compartment. Consistently,
many ciliopathy-associated gene mutations affect transition zone
proteins (Gonçalves and Pelletier, 2017). First, the transition zone
appears to constitute a membrane diffusion barrier, with a ciliary
zone of exclusion that prevents non-ciliarymembrane proteins from
entering the PC, but also maintains ciliary membrane proteins
within the PC compartment (Williams et al., 2011; Cevik et al.,
2013; Jensen and Leroux, 2017). Additionally, the transition fibres
and transition zone appear to establish a soluble diffusion gate, in
the way of a molecular sieve. Indeed, studies using a permeabilised
system for ciliary trafficking in mammalian cells have reported
that proteins of increasing size fused to GFP do not enter the PC
with the same dynamics: while proteins below 4.8 nm enter the
PC, entry is decreased for proteins between 4.8 and 8.6 nm, and
is no longer detectable for larger proteins (Breslow et al., 2013).
Similarly, diffusion of fluorescent proteins established a ciliary sieve-
like barrier allowing the entry of soluble proteins with a Stokes
radius as large as 7.9 nm (Lin et al., 2013). The precise molecular
mechanisms involved in this sieve remain however elusive. A
similarity with the nuclear pore complex (NPC) has been proposed,
with studies revealing the implication of the nuclear transport
machinery in ciliary trafficking (Dishinger et al., 2010; Fan et al.,
2011; Kee et al., 2012), although some diffusion events may occur
independently (Breslow et al., 2013).

This membrane and soluble diffusion barrier at the base of the
PC allows the separation between the cytoplasm and the cilioplasm,
and is essential for the functional specialisation of the ciliary
antenna as an extracellular signal sensor. Consistently, studies have
challenged the view that small secondmessenger signals (e.g., cAMP
and cGMP cyclic nucleotides, calcium), locally produced within the
PC compartment in response to the activation of ciliary membrane
receptors, can freely diffuse between the cytoplasm and cilioplasm
(Delling et al., 2016; Jiang et al., 2019), and argue in favour of a ciliary
compartmentalisation of second messenger signals, that signal and
function independently from the cytoplasmic pool. Indeed, in FRET
experiments,Moore and colleagues reported that in innermedullary
collecting duct cells (IMCD3), primary cilia have a high basal cAMP
concentration with regards to the cytoplasm (∼5 times higher;
Moore et al., 2016). In another study, pharmacological inhibition of
the ciliary-localised vasopressin receptor type-2 in kidney epithelial
cells induced increased cilioplasmic, but not cytoplasmic, cAMP
levels. Conversely, fluid-shear stress decreased cilioplasmic cAMP
levels, without affecting the cytoplasmic pool (Sherpa et al., 2019).
In the case of cGMP, studies in Caenorhabditis elegans olfactory
sensory neurons expressing a genetically encoded cGMP indicator
show that, following odour exposure, ciliary cGMP levels transiently
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FIGURE 1
The primary cilium forms a distinct subcellular compartment that functions as a signalling hub. The structural organisation of the PC (left-hand boxed
region) comprises different gating mechanisms that ensure a distinct protein composition of the ciliary compartment, in addition to its distinct lipidic
composition. As a consequence, many membrane receptors have been reported at the surface of the PC. The right-hand boxed region depicts
neuronal guidance-related membrane receptors reported at the surface of neuronal primary cilia during development (Rodriguez Gil and Greer, 2008;
Williams et al., 2010; Petralia et al., 2011; Higginbotham et al., 2012; Toro-Tapia and Das, 2020). Receptors marked with an (∗) were found in neuronal
cilia postnatally (Loukil et al., 2023). Left- and right-hand boxed regions correspond to a higher magnification of the PC of the developing neuron
depicted above.

decreased, while cGMP levels in dendrites and soma gradually
increased (Shidara et al., 2017). Similar observations have also been
reported for calcium (Nauli et al., 2008; Delling et al., 2013; Jin et al.,
2014; Sanchez et al., 2023; Shim et al., 2023). At the functional
level, ciliary versus extra-ciliary second messenger signals have been
reported to regulate different signalling pathways and mechanisms.
For example, optogenetic increase of ciliary cAMP levels in zebrafish
developing somites was shown to inhibit Hedgehog signalling,
while cytoplasmic cAMP levels did not (Truong et al., 2021).
Similarly, in developing zebrafish embryos, ciliary PKA, by contrast
to cytosolic PKA, was found to specifically regulate the Hedgehog
pathway (Zhang et al., 2024). In line with these observations,
Hansen and colleagues unravelled a ciliary cAMP signalosome
that is functionally distinct from the cytoplasm and drives kidney
cyst formation (Hansen et al., 2022). Moreover, during cortical
interneuron migration, ciliary cAMP and cGMP signals were found
to antagonise each other to regulate cell polarity, while centrosome-
located cAMP and cGMP acted in synergy to control another aspect
of migration, which is nucleokinesis (Atkins et al., 2023b). Similar

reports have been made concerning calcium, unravelling the PC as
a calcium-mediatedmechanosensory compartment that is necessary
and sufficient to instruct left-right asymmetry during zebrafish
development (Djenoune et al., 2023).

2.2 The primary cilium: a key signalling
platform for neuronal guidance signalling
pathways

Among the variety of signalling pathways and cell functions
regulated by the PC signalling hub, receptors for some of the major
signalling pathways that are involved in neuronal guidance processes
have been found.

The first major evidence establishing the PC as a key signalling
compartment in neuronal development arose in 2003 from a
forward genetic screen conducted by Huangfu and colleagues in
mouse embryos. They discovered that genes encoding intraflagellar
transport machinery proteins are essential for embryonic ventral
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patterning through the signalling of Sonic hedgehog (Shh;
Huangfu et al., 2003), one of the most important morphogens
involved in neuronal development (Douceau et al., 2023). Since this
pioneer study, the ciliary transduction of the Shh pathway–most
commonly referred to as the canonical pathway (Teperino et al.,
2014) – has been described (Rohatgi et al., 2007), and its
role in neuronal development extensively reviewed (Bangs and
Anderson, 2017). Since then, several components of the Shh
transduction machinery have been localised to neuronal primary
cilia (Figure 1, right-hand), such as the Patched receptor for Shh
and the Smoothened (Smo) GPCR (a key signal transducer of
the Shh pathway) in the PC of rat hippocampal neurons, or
GPR161, which is a negative regulator of Shh canonical signalling
(Mukhopadhyay et al., 2013), in the PC of dI1 commissural neurons
(Petralia et al., 2011; Toro-Tapia and Das, 2020). Notably, Shh
signalling at the PC has been involved in several neuronal guidance
processes, including neuronal migration (Baudoin et al., 2012;
Pedraza et al., 2024) and axon pathfinding (Dumoulin et al., 2024).

But the role of the PC in neuronal guidance processes is not
limited to the transduction of the Shh signalling pathway. Another
major guidance molecule, Wnt, primarily identified as a guidance
molecule for navigating commissural axons in the mammalian
spinal cord (Lyuksyutova et al., 2003) and subsequently involved
in neuronal migration (Boitard et al., 2015; Bocchi et al., 2017),
has been linked to the PC. The Wnt signalling pathway comprises
a network of various signalling molecules, with Wnt ligands often
activating frizzled receptors together with an array of different
co-receptors. Two main branches of the pathway are classically
distinguished: the canonical Wnt/β-catenin pathway and the non-
canonical Wnt/PCP pathway. Signalling molecules of the Wnt
transduction machinery have been found to localise to the PC of
non-neuronal cells (e.g., Dishevelled, β-catenin, LRP5/6). Among
these, some have been reported in the primary cilia of neurons.
Such is the case, for example, of Frizzled-1, expressed in the PC
of developing olfactory sensory neurons (Rodriguez Gil and Greer,
2008). The transmembrane Frizzled-like receptor Tmem67/MKS-
3, a transition zone protein that functionally binds Wnt5a
(Abdelhamed et al., 2015) and whose mutations are responsible for
the MKS and JBTS ciliopathies, has moreover been located to the
PC base of the C. elegans ciliated sensory neurons (Williams et al.,
2010). It has further been shown to regulate canonical Wnt/β-
catenin signalling in the developing cerebellum (Abdelhamed et al.,
2019). However, the relationship between PC and Wnt signalling
is complex. While Wnt signalling can regulate ciliogenesis, the PC
can regulate Wnt signalling. Moreover, the question of whether the
PC structure is required for the activation and transduction of the
Wnt/β-catenin signalling pathways is controversial (Anvarian et al.,
2019; Vuong and Mlodzik, 2023; Niehrs et al., 2025). Of note,
several ciliary signalling components of the Wnt pathway are not
exclusively localised to the PC. Such is the case of Frizzled-1, which
has also been found in dendrites and axons of developing olfactory
sensory neurons (Rodriguez Gil and Greer, 2008), highlighting the
need for further studies to distinguish ciliary from extra ciliary
regulations of Wnt-associated processes.

In addition to the Shh and Wnt pathways, extensively
studied for their ciliary transduction, key molecular players in
neuronal guidance pathways classically studied for their role in
growth cones, have also been linked to the PC compartment.

Immunohistochemistry experiments performed in migrating
cortical interneurons have indeed identified several guidance
receptors at the ciliary surface, namely, the TrkB receptor for
BDNF (Brain-derived neurotrophic factor), the GFRα-1 receptor
for GDNF (glial cell line-derived neurotrophic factor), CXCR4 and
CXCR7 receptors for the CXCL12 chemokine, the ErbB4 receptor
for Neuregulin1 (NRG-1), serotonin receptor 6 (5HT6), receptors
Robo1 and 2 for Slit, and the MET receptor for HGF/SF (hepatocyte
growth factor/scatter factor; Higginbotham et al., 2012). In addition
to these receptors, an in vivo BioID (iBioID) proteomic screen has
recently revealed in the PC of adult neurons (Loukil et al., 2023)
the presence of Ephrin (involved both in neuronal migration and
axon guidance processes) and GABA-A and GABA-B receptors,
involved in synaptogenesis (Fiorentino et al., 2009; Sui et al.,
2024) and neuronal migration (Heck et al., 2007). Finally, the
receptor tyrosine kinase PDGFR-α (Clement et al., 2013), the
CD44 hyaluronan receptor (Jones et al., 2012; Lee et al., 2020) and
neuropilin 1 (Pinskey et al., 2017), all involved in different neuronal
guidance processes (see sections below), have also been localised
to the PC of non-neuronal cells. Future studies will be crucial to
unravel how this multitude of ciliary signalling receptors regulate
specific steps of neuronal guidance, in a cell type and cell stage
specific manner.

Together, these studies pinpoint the neuronal PC as a
key subcellular signalling compartment in neuronal guidance,
integrating a variety of extracellular cues at the crossroads
between different guidance processes. The downstream signalling
effectors activated by ciliary guidance receptors, and how they
regulate guidance processes, remain however obscure. This is
mostly due to the technological challenge that represents the
dissection of the ciliary-specific functions of guidance signalling
receptors/effectors, with dual subcellular localisation (i.e., ciliary
and extra-ciliary). Yet, during the past decade, some labs have
developed innovative strategies to tackle this issue and provided
important new insights into the molecular mechanisms underlying
the PC-elicited regulation of neuronal guidance pathways. In the
following sections, we will review our current knowledge of PC
function in neuronal migration and axon guidance, and discuss
future avenues to be explored.

3 Primary cilium signalling in neuronal
migration

3.1 The primary cilium compartment in
neuronal migration

A role for the PC in the acquisition of cell polarity and directed
cell migration has long been established in various non-neuronal
systems (Christensen et al., 2013; Veland et al., 2014). In fibroblasts,
for example, the PC–together with the centrosome–re-orients prior
to the initiation of migration (Katsumoto et al., 1994) and is then
oriented parallel to the direction of the movement (Albrecht-
Buehler, 1977). Furthermore, the PC genetic ablation abrogates
chemical or electrical stimuli-evoked directed cell migration in
fibroblasts or mesenchymal stem cells (Schneider et al., 2005;
2010; Pruski et al., 2016; 2019; Lee et al., 2020; Nakazato et al.,
2023). Mutation of a ciliopathy-associated gene was also found to
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induce neural crest cell migration defects in the zebrafish model
(Tobin et al., 2008). Despite such evidence, a role for primary cilia
in neuronal migration has remained vaguer and more controversial,
with some data reporting PC formation in the neocortex only
after neuroblast migration has occurred, and no PC involvement
in the establishment of neuronal polarity, neuronal migration or
cortical laminar organisation (Arellano et al., 2012). By contrast,
other groups have reported a role for primary cilia in the apico-
basal polarity of radial glial cells (Higginbotham et al., 2013), in the
tangential migration of cortical interneurons (Baudoin et al., 2012;
Higginbotham et al., 2012), as well as in neuroblasts migrating
postnatally through the rostral migratory stream towards the
olfactory bulb (Matsumoto et al., 2019; Stoufflet et al., 2020).
Strengthening the decisive role of the PC in neuronal migration,
several gene mutations responsible for neurodevelopmental
disorders–including ciliopathies or focal malformations of cortical
development–and affecting ciliogenesis have been reported to
impair radial or tangential neuronal migration in the developing
cortex (Guo et al., 2015; Park et al., 2018).

3.2 Guidance cue-evoked primary cilium
molecular pathways in neuronal migration

Neuronal migration is a well-documented cyclic saltatory
process (Bellion et al., 2005; Schaar and McConnell, 2005; Tsai and
Gleeson, 2005). In the first step of the cycle, migrating neurons
probe their surroundings by extending and stabilising a leading
process in an attractive or permissive environment. The centrosome
then moves forwards to a proximal region within this process,
called the dilatation or swelling compartment, before the nucleus
dynamically translocates towards the centrosome in a process
termed nucleokinesis. In 2012, Baudoin and colleagues showed that
the PC genetic ablation altered the ability of interneurons migrating
ex vivo in brain organotypic slices to exit their tangential migration
stream and invade their target destination (i.e., the developing
cortical plate), in a way that mimics Shh pathway inhibition,
suggesting a role for Shh-initiated PC signalling in neuronal
migration (Baudoin et al., 2012). The same year, Higginbotham
and colleagues identified by immunohistochemistry experiments
many guidance cue receptors in the PC of migrating cells
(i.e., TrkB, GFRα-1, CXCR4, CXCR7, ErbB4, 5HT6, Robo1 and
2, MET). Using a microfluidic device, they moreover cultured
cortical interneurons and dorsal cortical cells in two opposite
chambers linked by microlanes, allowing to expose the cortical
interneurons of one chamber to a gradient of migration-regulating
cues secreted by the dorsal cortical cells of the other chamber.
Using this setup, the authors further revealed that PC-ablated
cortical interneurons (i.e., interneurons carrying a null-mutation
for the small regulatory GTPase Arl13b) exhibit defective migration
towards the source of the gradient, compared to wild-type
interneurons (Higginbotham et al., 2012).These two pioneer studies
have opened the exciting and complex question of how the activation
of guidance receptors at the PC may regulate the different steps of
neuronal migration: what are the specific downstream signalling
events and cellular processes regulated by these PC-dependant
guidance signals?

Very few studies have started to tackle this question. In a
study performed in tangentially-migrating mouse neurons in the
postnatal rostral migratory stream, genetic ablation of the PC led
to altered nucleokinesis of migrating neurons, in a mechanism
dependent on a centrosome-located cAMP hotspot, thereby linking
the PC regulation of migration to a downstream centrosomal
component (Stoufflet et al., 2020). Recently, the same group
proposed a ciliary pathway involving GPR161 mechanosensitivity
as the upstream trigger regulating the centrosomal cAMP hotspot
and the organisation of the nuclear cage of microtubules, required
for proper nucleokinesis to occur (Paillard et al., 2025). Given the
wide range of guidance receptors expressed at the ciliary surface,
linking specific PC-elicited guidance signals to specific downstream
effectors and migratory behaviours remains however challenging.
The fact that many ciliary membrane receptors are also expressed
at the extra-ciliary plasma membrane further complexifies the
situation, highlighting the need to develop new tools to bypass loss of
function approaches and alter PC-elicited signals specifically at the
ciliary compartment. Using newly developed genetically encoded
molecular tools targeted to the PC to selectively modulate (i.e.,
increase or buffer) PC-elicited second messenger signals, combined
with live cell imaging and pharmacological/genetic approaches,
Atkins and colleagues recently added some pieces to the puzzle.
They showed that the CXCL12 chemokine controls the cell polarity
and branching behaviour of migrating cortical interneurons by
decreasing the ciliary cAMP/cGMP ratio upon binding to its CXCR4
receptor (Atkins et al., 2023b; Figure 2, top). Such technological
development paves theway towards the dissection of the specific role
on migratory behaviours of other guidance receptors present at the
ciliary surface, and to the identification of their specific downstream
molecular effectors.

Precious clues may be gained from studies already linking
ciliary molecular mechanisms to cell migration in non-neuronal
cells. Interestingly, in such systems, PC-elicited signals have been
reported to impact cell migration through the regulation of various
mechanisms.

3.2.1 The primary cilium and the regulation of
membrane dynamics

One of those mechanisms concerns the regulation of
membrane dynamics (Figure 2, middle). In a study conducted
by the Christensen lab in fibroblast cells, the Platelet-Derived
Growth Factor AA (PDGF-AA) protein activated the PI3K-AKT
and MEK1/2-ERK1/2-p90RSK pathways at the PC, and inhibiting
these pathways counteracted the ability of PDGF-AA to stimulate
migration in scratch-assay experiments (Clement et al., 2013),
corroborating previous studies from the group (Schneider et al.,
2005; 2010). Moreover, Clement et al. found that PDGF-AA
signalling at the PC activates the Na+/H+ exchanger NHE1 and
is critical for directed migration. More precisely, they show that
while AKT inhibition impedes NHE1 vesicles from reaching the
plasma membrane, inhibition of MEK1/2 abolishes the preferential
localisation of NHE1 to the plasma membrane of the cell front,
with cells displaying a broader NHE1 membrane distribution in
multiple membrane locations (Clement et al., 2013). This study
builds upon a previous study from the group involving NHE1 in
directed cell migration downstream of ciliary PDGF-AA signalling
(Schneider et al., 2009), and is in agreement with other studies
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FIGURE 2
Primary cilium-elicited signalling pathways in neuronal migration. Top: in neurons, regulation of the ciliary cAMP/cGMP ratio downstream of
CXCL12/CXCR4 activation at the PC surface was found to regulate the cell polarity and direction of migrating cells (top), although the downstream
effectors activated in the cytoplasm remain to be identified (Atkins et al., 2023b). Middle and bottom summarise the research on downstream
cytoplasmic effectors performed in migrating non-neuronal cells, that converge on the regulation of membrane dynamics (middle; Clement et al.,
2013) or the microtubule (left-hand bottom; Clement et al., 2013; Pruski et al., 2016) and actin network (right-hand bottom; Jones et al., 2012;
Mansini et al., 2019; Lee et al., 2020). In all panels, experimental manipulations (genetic, optogenetic or pharmacological) performed to alter ciliary
signals, together with their phenotypic consequences, are colour-coded in black.
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establishing a role for NHE1 in cell migration and invasion
(Cardone et al., 2005; Stock and Schwab, 2006; Stock and Pedersen,
2017), through various mechanisms, such as the regulation of
cell polarity by anchoring actin filaments to the cell front plasma
membrane (Denker and Barber, 2002). Of note, this role for ciliary
MEK1/2 activation in NHE1 asymmetric membrane localisation
is highly coherent with the well-established role of the PC in cell
polarity and directed migration, also reported in migrating neurons
(Atkins et al., 2023b). Together, these data open the possibility
of a role for the PC in the regulation of the cell front behaviour
through the control of membrane dynamics and/or the targeting of
specific receptors to the plasma membrane (Figure 2). Interestingly,
the PDGFR-α receptor for PDGF-AA has been found expressed
in migrating neurons of the external germinal layer (EGL) of
the cerebellum (Andrae et al., 2001). However, although it has
been involved in the migration of astrocytes (Itoh et al., 2011),
its role in neuronal migration remains uncharacterised. On the
other hand, NHE1 has been involved in the migration and invasive
behaviour of cancer cells in glioblastoma (Cong et al., 2014), as
well as in early neurite outgrowth during neuronal development
(Sin et al., 2009; 2020). To our knowledge, its regulation of neuronal
migration has so far not been described, let alone downstream
of neuronal PC activation. Thus, while they appear as attractive
candidate players in PC-dependant cellmigration, future studieswill
be required to determine whether PC-elicited guidance pathways,
PDGFR-α-NHE1-related or -independent, may regulate membrane
dynamics to control cell polarity or plasma membrane composition
in a context of neuronal migration.

3.2.2 The primary cilium and the regulation of
cytoskeletal dynamics

Another key cell process reported in non-neuronal migrating
cells downstream of PC-elicited pathways is the regulation of
cytoskeletal dynamics (Figure 2, bottom). Very few studies have
analysed the effect of PC signalling on microtubule dynamics.
The Christensen lab has nevertheless reported defects in extra-
ciliary microtubule bundling downstream of PDGF-AA signalling
at the PC (Clement et al., 2013), in addition to an effect of an
Arl13b null mutation on microtubule detyrosination (i.e., a post-
translationnal modification that correlates with a more stable state
of microtubules) reported by Pruski and colleagues in mouse
embryonic fibroblast cells (Pruski et al., 2016). By contrast, more
studies have addressed the question of a role for the PC on actin
dynamics during cell migration, with the identification of different
F-actin regulators activated by PC signalling during cell migration.
First, genetic ablation of the PC by siRNA-mediated knockdown of
the intraflgellar transport 88 (IFT88) protein was found to abolish
the phosphorylation of focal adhesion kinase (FAK, a tyrosine
kinase that functions as a signalling scaffold for the assembly and
maturation of the focal contacts regulating cell adhesion), that
occurs in response to osteopontin (OPN) signalling at the PC inwild
type migrating mesenchymal stem cells (Lee et al., 2020). A similar
decrease in FAK phosphorylation following PC genetic ablation
(deletion of intraflagellar transport protein Tg737: Tg737orpk/orpk)
was observed in endothelial cells, in association with a decreased
directionality of migrating cells (Jones et al., 2012). Moreover, in
migrating cholangiocytes, ATP stimulation of the ciliary purinergic
receptor P2Y11 induced a rapid degradation of FAK in ciliated

cells, which was abolished in de-ciliated cells (Mansini et al., 2019).
Another F-actin regulator targeted byPC signalling is the Src kinase,
whose phosphorylation dynamics are disrupted in migrating cells
upon PC genetic ablation compared to controls, whether in basal
conditions or following OPN signalling (Lee et al., 2020). Of note,
the same study reported an increased expression of the Cdc42 Rho
GTPase in IFT88-silenced cells. Finally, and in addition to these
different actin regulators, the PC has been suggested to regulate the
stress fibre network of migrating endothelial cells, which regulates
several functions in migrating cells, such as the generation of
traction forces, the maturation of integrin-based adhesions, the
establishment of cell polarity (Vicente-Manzanares et al., 2009).
Intriguingly, studies report a reduction of the actin stress fibres
observed in mutated endothelial cells displaying impaired PC
assembly (Tg737orpk/orpk), compared to controls (Jones et al., 2012).
To our knowledge, the P2Y11 purinergic receptor and the CD44
surface hyaluronan receptor (for OPN) have not been localised
to neuronal primary cilia. However, independently of the PC,
CD44 has been involved in the migration of neural precursor cells
(Deboux et al., 2013). Similarly, purinergic receptors have been
involved in neuronal migration or axon guidance (Rodrigues et al.,
2019), although the P2Y11 receptor has not been reported so far in
such processes.

Importantly, microtubule and F-actin remodelling are
well established as key driving forces of neuronal migration
(Schaar and McConnell, 2005; Shan et al., 2021) and axon
guidance (Sánchez-Huertas and Herrera, 2021; Atkins et al.,
2023a). Consistently, several guidance receptors found by
the Anton lab in the PC of migrating cortical interneurons
(Higginbotham et al., 2012; see Figure 1) are known to regulate
membrane or cytoskeletal dynamics in a PC-independent context.
These data highlight the need to dissect whether and how guidance
signals elicited in neuronal primary cilia regulate cytoskeletal
remodelling and/or membrane/receptor trafficking to drive specific
migratory or axon steering behaviours.

4 Primary cilium signalling in axon
guidance

4.1 The primary cilium compartment in
axon guidance

Evidence of a role for the PC in axon navigation processes
came from axonal tract defects observed in patients. Indeed,
several ciliopathies (i.e., Joubert, Meckel Gruber, Acrocallosal
and Orofacial Digital Syndromes) have been associated with a
defective development of the corpus callosum (CC; Salonen, 1984;
Odent et al., 1998; Holub et al., 2005; Takanashi et al., 2009;
Poretti et al., 2011; Putoux et al., 2011), which consists in the
largest axonal tract of the brain, formed by millions of axons
that connect homologous cortical areas of the two brain cerebral
hemispheres. Consistently, in Joubert Syndrome, defects of other
major axonal tracts, displaying failure to cross the midline, have also
been reported, such as the corticospinal tract (CST; Poretti et al.,
2007; Théoret et al., 2013) and the superior cerebellar peduncle
(SCP) tract (Spampinato et al., 2008). Of note, the molar tooth
sign, characterised by thickened and elongated SCPs that fail to
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cross the midline, is one of the hallmarks of Joubert Syndrome
and related disorders (Maria et al., 1999; Sattar and Gleeson, 2011;
Romani et al., 2013). Defective decussation, fasciculation and/or
branching of axonal tracts–including the SCP, CST, CC tracts and
developing sensory corneal nerves–has also been reported in mouse
models of Joubert syndrome and related disorders (Guo et al.,
2019) or following the conditional knockout of the ciliopathy-
associated IFT88 gene (Portal et al., 2019). Additionally, abnormal
projection of thalamocortical axons towards the amygdala was
reported in two ciliary mouse mutants (Magnani et al., 2015).
Similarly, RNAi silencing of the Joubert Syndrome gene C5orf42 in
chick embryos led to pathfinding defects of the commissural dI1
axons (Asadollahi et al., 2018). Corroborating these studies, in a
genetic screen based on the in utero electroporation of a library of
30 shRNA targeting ciliopathy-linked genes in the cortex of E14,5
mouse embryos, Guo and colleagues identified aberrant axonal
trajectory and fasciculation of neurons depleted for BBS5, BBS7,
BBS9, BBS11, BBS12 and TMEM216 (Guo et al., 2015). Of note,
changes in the adhesion properties of a developing neuron are likely
to modify the way its axon will interact with other axons and/or
cells from the surrounding environment, in a complex manner
that can lead to axon guidance defects. Consistently, in the case of
BBS5 and BBS7 knockdown, the authors moreover report defective
axonal midline crossing towards the contralateral cortex, with miss-
directed axons that, instead of crossing, project aberrantly towards
subcortical targets once they have reached the midline.

4.2 Guidance cue-evoked primary cilium
molecular pathways in axon guidance

While some of these axonal tract defects have been shown
to occur in a non-cell autonomous manner, as a result of the
defective distribution of glial and neuronal guide post cells
(Benadiba et al., 2012; Laclef et al., 2015; Putoux et al., 2019),
studies have also identified a cell autonomous role for the ciliary
compartment in the regulation of axon pathfinding, involving
different PC-elicited signalling pathways. In a study performed by
the Anton lab, the conditional knockdown of the Joubert Syndrome-
associated gene Arl13b in cultured deep cerebellar nuclei (DCN)
neurons led to reduced dynamic axonal branching, aberrant growth
cone morphology with altered filopodia-lamellipodia balance (i.e.,
numerous longer filopodial protrusions), as well as impaired
axon-axon adhesion associated with reduced recruitment of the
protocadherin-17 (Pcdh17) to axon-axon contacts (Guo et al., 2019;
Figure 3, bottomandmiddle). Interestingly, these axonal and growth
cone morphological defects were associated to an increase in the
ciliary levels of the PIP3 second messenger. Using elegant tools
based on the CIBN/CRY2 dimerization optogenetic system, Guo
and colleagues showed that recruiting PIP3 or AKT to the PC
of DCN neurons is sufficient to alter growth cone morphology
and dynamics by inducing filopodial protrusions. They further use
DREAAD chemo-genetic tools to show that modulating the activity
of ciliary G-protein coupled receptors GPCRs (that are known
to converge onto PIP3) recapitulates the PIP3-AKT-linked growth
cone morphological defects (Figure 3, top). Together, these data
highlight PIP3-AKT as a PC-elicited signalling pathway involved in
growth cone remodelling and behaviour.

Given that the PC, that is organised by the centrosome, is
located near the cell soma and consequently at a distance from the
axonal growth cone, such results raise the question of the ciliary
downstream molecular effectors and mechanisms that propagate the
signals down the axon to the exploring growth cone. Interestingly,
Guo and colleagues observed a gradual increase in PIP3 activity at
the growth cone of DCN neurons following ciliary PIP3 activation
(Guo et al., 2019; Figure 3, top), and propose that positive feedback
networks involving kinase-dependent cascades may rapidly spread
locally-inducedPC signalling over longdistances. FollowingRNA-seq
analyses in E12.5Arl13b−⁄− and control embryos, they further propose
PC-induced regulation of transcriptional programs as an additional
mechanism to regulate axon navigation processes (Figure 3, bottom).
Their identification in ciliarymutants of differentially expressed genes
involved(amongotherprocesses) incell adhesionopens thepossibility
that the defective Pcdh17-mediated axon-axon adhesion observed in
Arl13b conditional knockout neurons may be due to altered gene
transcription. In agreement, the Stoeckli lab has recently identified a
role for the PC of developing chick commissural axons inmediating a
transcriptional switch of Shh receptors, required to elicit the well-
documented behavioural switch (from attraction to repulsion) of
commissural axons crossing the midline (Dumoulin et al., 2024). In
chick dI1 neurons, the authors indeed showed that IFT88 silencing
impaired dI1 axon midline crossing in a cell autonomous manner.
IFT88 silencing was moreover associated in in situ hybridisation
experiments with a reduced expression of the Hhip (hedgehog-
interacting protein) receptor, which is required for the repulsive
response to Shh and the rostral turn of post-crossing commissural
axons (Bourikas et al., 2005; Wilson and Stoeckli, 2013). Importantly,
preventing Smo entry in the PC in response to Shh activation,
pharmacologically or genetically (using a hSmoCLD construct that
prevents Smo ciliary localisation after endogenous Smo silencing), led
to misprojecting commissural dI1 axons or reduced Hhip expression,
respectively, supporting the requirement of Shh signalling at the
PC for the induction of Hhip transcription and correct dI1 axon
guidance (Dumoulin et al., 2024; Figure 3, bottom). This elegant
study further opens the question of whether additional mechanisms
required for axon guidance may be regulated by the PC, such as
the axonal transport or exocytosis of Hhip at the growth cone
membrane. In addition to a role for canonical Shh signalling in
mediating gene transcription required for axon guidance, a non-
canonical Shh pathway (i.e., that is transcription independent) that
relies on the PC has been reported in the axonogenesis of chick
postmitotic neurons (Toro-Tapia and Das, 2020). In developing chick
embryos, neuroepithelial cells undergoing proliferation have been
reported to delaminate from the neuroepithelium as they exit the
cell cycle. Postmitotic neurons then initiate axon outgrowth and
navigation for the formation of functional neuronal circuits. In this
study, authors showed that as neuroepithelial cells delaminate, the
PC is disassembled through apical abscission, followed by a PC re-
assembly at the onset of axonogenesis. Preventing ciliary re-assembly
by chromophore-assisted light inactivation impaired the axonogenesis
of newborn neurons by inducing axonal collapse. Using a Gli reporter
construct, authors further observed that canonical Shh signalling
(i.e., Gli activity-dependent) in the PC is lost upon delamination,
and is no longer observed in the newly assembled PC. Although
this newly-assembled PC gradually displayed Smo accumulation
(suggestive of Shh signalling), immunostaining revealed the presence
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FIGURE 3
Primary cilium-elicited signalling pathways in axon pathfinding. Signalling pathways elicited at the PC (left-hand boxed regions, full line) induce
phenotypic changes at the axonal and/or growth cone compartments (right-hand boxed region, large and small dotted lines, respectively). PC-elicited
signalling pathways have been found to regulate axon pathfinding dynamics through the regulation of growth cone morphology (top; Guo et al., 2019),
axon-axon adhesion (middle; Guo et al., 2019) and transcription (bottom; Guo et al., 2019; Dumoulin et al., 2024). In all panels, experimental
manipulations (genetic, chemo-genetic, optogenetic or pharmacological) performed to alter ciliary signals, together with their phenotypic
consequences, are colour-coded in black. Left- and right-hand boxed regions correspond to a higher magnification of the PC (full line), axon (large
dotted line) or growth cone (small dotted line) compartments of the developing neuron depicted above. GPCR, G-protein coupled receptor; bPAC,
bacterial (Beggiatoa) photoactivated adenylyl cyclase; Shh, Sonic hedgehog.
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of the GPR161 negative regulator of canonical Shh signalling. Finally,
pharmacological inhibition of the Src family kinases, which mediate
the cytoskeletal rearrangements downstream of non-canonical Shh
signalling, induced axon collapse, supporting a model in which the
re-assembled PC is required for axonogenesis by mediating non-
canonical Shh signalling.Whether the non-canonical Shh signalling is
also required during growth cone turning events, in addition to axon
extension, remains to be uncovered.

Taken together, these studies show to what extent guidance
signalling pathways initiated in the ciliary compartment close to
the soma influence the axon and growth cone behaviours required
for accurate axon navigation. It is interesting to note that a long-
distance influence of ciliary signals was also reported to regulate the
branching behaviour of the leading process in the case of neuronal
migration (Atkins et al., 2023b). Further studies will be required to
precisely unravel the molecular effectors linking ciliary signals to
axonal and growth cone behavioural remodelling.

5 Conclusion: Insights to be gained
from ciliary guidance pathways for our
understanding of the aetiology of
neurodevelopmental disorders

Theincreasing interest for theonce-neglectedciliarycompartment
initially arose from the discovery of its involvement in a wide range of
disorders. Indeed, in addition to ciliopathies, a dysfunction of the
PC has now been involved in different neurodevelopmental (e.g.,
schizophrenia, autismspectrumdisorder, bipolardisorder, intellectual
disability …) and neurodegenerative disorders (Valente et al., 2014;
Kaliszewski et al., 2015; Youn and Han, 2018; Park et al., 2019;
Hasenpusch-Theil and Theil, 2021; Karalis et al., 2022; Ma et al.,
2022; Volos et al., 2025), as well as in cancer cell migration/invasion
(Eguether and Hahne, 2000; Higgins et al., 2019), including
glioblastoma (Álvarez-Satta and Matheu, 2018). Conversely, studying
the PC-elicited signalling pathways and molecular mechanisms
regulatingguidanceprocesses inphysiological conditionsnowappears
as a key step to better understand the aetiology of such disorders.
Interestingly, our increasing knowledge of PC-elicited guidance
signalling and its functional and molecular versatility, both refines
and complexifies our understanding of the role of this tiny organelle
in pathology, at multiple levels.

First, the PC can regulate multiple aspects of a same neuronal
guidance process. For example, during cell migration, the PC controls
membrane dynamics, cytoskeletal dynamics but also focal adhesion
dynamics. This occurs either through the activation of different
ciliary membrane receptors (e.g., PDGFR-α, P2Y11, CXCR4), or
through the activation of a same ciliary receptor (e.g., PDGFR-α)
that can regulate multiple cellular mechanisms (e.g., membrane and
microtubule dynamics, see Figure 2), sequentially or concomitantly
through the activation of several parallel downstream pathways.

Second, a same ciliary signalling molecule can be involved in
different stages of neuronal guidance. For example, in the genetic
screen performed by Guo and colleagues, silencing of the Bardet-
Biedl Syndrome-associatedBBS7 gene led to a disrupted apical-basal
polarity of radial glial cells, but also to a defective multipolar to
bipolar transition of migrating principal neurons, and to altered
axonal trajectory and fasciculation of cortical neurons (Guo et al.,

2015). Likewise, while Shh appears to regulate the migration of
developing cortical interneurons (Baudoin et al., 2012), it is also
involved in the extension and navigation of developing axons, either
through the transcriptional regulation of key guidance receptors
(Dumoulin et al., 2024), or through a non-canonical pathway
involving Src kinase activation (Toro-Tapia and Das, 2020).

Third, the presence of multiple guidance receptors both at
the PC and growth cone surface highlights the importance of
understanding the specific function of guidance receptor activation
at each subcellular compartment. For example, guidance receptors
such asRobo1/2 andErBb4have been linked to neurodevelopmental
disorders, such as Autism Spectrum Disorder for Robo1/2
(Anitha et al., 2008) and schizophrenia and bipolar disorder for
ErbB4 (Iwakura and Nawa, 2013; Mei and Nave, 2014). Identifying
the specific contribution of the compartmentalised ciliary signalling
of these receptors appears crucial in this context to better apprehend
the complexity of such disorders and gain new insigths into their
aetiology and treatment. Likewise, in cancer cell migration, while
CXCL12 (Guo et al., 2016; Luo et al., 2019; Hayasaka et al., 2022)
and Ephrin (Campbell et al., 2006; Wang, 2011; Cho et al., 2018)
signalling have been linked tometastasis, the specific role on invasive
behaviour of their local signalling at the ciliary compartment
remains poorly characterised. Unravelling PC-elicited signalling
pathways and downstream molecular effectors may therefore
provide precious clues for future translational studies aiming to
identify new therapeutic targets specific to PC signalling in order to
selectively correct specific cell behaviours (i.e., invasion).

Understanding the specific role of the identified ciliary guidance
receptors (see Figure 1) in different steps of neuronal guidance
is a crucial step of this complex process. The complexity of
the task lies in the diversity of ciliary receptors, that are not
always exclusive to the ciliary compartment. Rising to this
challenge will critically rely on the use and development of
new tools to selectively manipulate (i.e., block/activate) specific
membrane receptors located exclusively at the ciliary surface
(without affecting the other ciliary receptors through PC genetic
ablation, for example,) or their downstream second messenger
signals. Such genetic, chemo-genetic and optogenetic tools are
already starting to emerge to selectively buffer endogenous ciliary
second messenger signals or trigger specific second messenger
signalling within the ciliary compartment (Guo et al., 2019;
Hansen et al., 2022; Atkins et al., 2023b).
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