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The polar code for patterning:
how polarity and the
cytoskeleton orchestrate
asymmetric cell division during
plant development

Akanksha Garhewal† , Gabriel J. Angres† and
Andrew Muroyama*

Department of Cell and Developmental Biology, Division of Biological Sciences, UC San Diego, La
Jolla, CA, United States

Cell polarity is fundamental to morphogenesis across living organisms. In plants,
a dynamic interplay between polarity cues and the cytoskeleton orchestrates
essential asymmetric cell divisions across diverse species. Here, we focus
on three functions for the cytoskeleton—organelle positioning, cell growth
and mitosis—and discuss our current understanding of how polarity controls
these processes. By taking a comparative approach that highlights what is
known about these pathways across plant species, we spotlight both the
broadly conserved and cell type-specific ways that polarity can regulate division
orientation. Because there have been significant developments in the field
within the last several years, we focus our attention on recent work and give
our perspective on exciting future avenues of investigation into the reciprocal
relationship between polarity and the cytoskeleton.
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Introduction

Polarity imposes spatial information on a cell that is used to activate signaling cascades,
organize the cytosol, and direct cell behavior. Polarization is itself a broad term that can
refer to anisotropy at different levels. In this review, we focus our attention on polarized
behaviors in asymmetrically dividing cells, which are essential for the development of many
plant tissues (De Smet and Beeckman, 2011). In these cells, polarization is necessary to
create two daughter cells of different identities and, often, sizes.Whilemultiple definitions of
polarity exist, polarization often refers to the creation of asymmetrically distributed, plasma
membrane-associated protein complexes. These polarity domains scaffold the recruitment
of effectors to control cellular dynamics, often in a cell cycle-dependent and tissue-specific
manner. The list of proteins that are capable of polarizing continues to grow, revealing
that some are relatively recent evolutionary innovations while others are conserved down
to bryophytes (van Dop et al., 2020; Nir et al., 2022). The current challenge is now to
define the mechanisms that link polar domain formation to downstream effects in the cell.
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Mutant phenotypes upon polarity disruption are varied, but
one that is shared in many loss-of-function and over-expression
mutants is aberrant tissue patterning and associated cell division
defects. Therefore, many groups have focused on understanding
how polar domains control asymmetric cell divisions (ACDs).
This regulation is mediated, in part, through polarization-
enhanced signaling cascades, which promote division via effects
on transcription and hormone responses (Zhang et al., 2015;
Houbaert et al., 2018; Vukašinović et al., 2025). Here, however,
we focus on a different facet of this regulation: polarity-mediated
effects on the cytoskeleton that control division within developing
tissues. As we highlight commonalities and important differences
between pathways in different cell types, we point out future areas
for investigation that we believe will be especially exciting in the
coming years.

Pre-division organelle positioning
informs ACD orientation

Division orientation depends, in part, on the position of
organelles before mitotic onset. More specifically, nuclear position
instructs cell division by 1) scaffolding the site of the preprophase
band (PPB) and 2) nucleating the site of spindle assembly upon
nuclear envelope breakdown (Rasmussen and Bellinger, 2018). As
such, most of the polarity-mediated ACDs studied to date are
preceded by directional nuclear migration before PPB formation.
While these migrations depend on cell cycle-regulated cytoskeletal
reorganization, they can be directed either toward or away from
the polar site, revealing that there is no universal mode of pre-
ACD nuclear migration in plants (Figure 1). Instead, polarity can
differentially remodel F-actin and/or microtubules to promote
nuclear migration depending on the cell type and plant species.

Stomatal development in grasses depends
on pre-division nuclear migration

Stomatal formation inmaize (Z.mays) has long been an excellent
model for interrogating polarity-controlled nuclear migrations, and
over two decades of research on this system have made it a valuable
point of reference for other nuclear migrations. Stomatal complexes
in grasses, such as Zea mays, are composed of four cells: paired
guard cells (GCs) that generate the stomatal pore and a pair of
flanking subsidiary cells (SCs) that facilitate pore opening and
closing (Raissig et al., 2017; Pichaco et al., 2024). Two ACDs
are required to generate these complexes. The first is a poorly
understood ACD that generates the guardmother cell (GMC). Polar
proteins that control this division have not been identified, but time-
lapse imaging of a maize line harboring nuclear and microtubule
reporters has shown that directed nuclear migration in the tip-ward
direction precedes ACD, indicating that yet-unknown upstream
cues control nuclear position (Ashraf et al., 2023). Future work will
be required to clarify the underlying cytoskeletal regulators involved
in this process.

Much more is known about the subsequent ACD that generates
SCs from the subsidiary mother cells (SMCs) that flank the GMC.
SC recruitment requires a pre-division nuclear migration in SMCs

towards a polar domain that forms at the GMC/SMC contact
site (Gallagher and Smith, 2000). The first step of this process
is polar localization of BRICK1 (BRK1), a component of the
SCAR/WAVE complex that activates the branched actin nucleating
Arp2/3 complex (Frank and Smith, 2002; Frank et al., 2004;
Facette et al., 2015). Along with the closely related BRK3, BRK1
recruits the leucine-rich repeat receptor-like kinases (LRR-RLKs)
PANGLOSS1 (PAN1) and PANGLOSS2 (PAN2) (Cartwright et al.,
2009; Zhang et al., 2012; Facette et al., 2015). PAN2, in turn, is
required for polar localization of WEB1/PMI2-RELATED (WPR)
proteins, which were shown to bind to F-actin (Nan et al., 2023a).
Finally, subsequent recruitment of RHO GTPASES OF PLANTS
2 (ROP2) and ROP9 activates Arp2/3-dependent formation of
an F-actin patch at the polarized contact site (Humphries et al.,
2011) (Figure 1D). Mutants in any of these components result in
SMC division orientation defects of varying severity, reinforcing
that hierarchical recruitment of polarized proteins is necessary for
stomatal development in maize. A recent study showed that loss of
the Brachypodium distachyon PAN1 homolog, BdPAN1, similarly
results in failed nuclear migration and ACD orientation defects,
highlighting conservation of key regulators in these processes across
different grass species (Zhang et al., 2022).

How does the polar domain control pre-division nuclear
migration? An attractive hypothesis is that polarization promotes
F-actin patch formation, which subsequently directs the nucleus to
move toward the SMC/GMC contact site. Indeed, treatment with
the F-actin depolymerizing drug latrunculin B eliminates F-actin
patch formation and impairs nuclear migration (Panteris et al.,
2006). Additionally, pre-division nuclear movement and subsidiary
cell formation require Maize LINC KASH AtSINE-like2 (MLKS2),
a KASH domain protein that links F-actin to the nuclear envelope
(Gumber et al., 2019; Ashraf et al., 2023). Finally, F-actin is
required for stochastic nuclear movements and other, directed
nuclear migrations not associated with cell division, for example,
during fertilization and in growing root hairs and pollen tubes
(Kawashima et al., 2014; Brueggeman et al., 2022;Wang et al., 2024).
However, nuclei were polarly localized in a significant fraction of
SMCs that did not form an F-actin patch in panmutants, suggesting
that these two processes can be uncoupled (Cartwright et al., 2009).
Therefore, even though polarization triggers F-actin reorganization
and F-actin is required for nuclearmigration, the precise connection
between polarity-mediated F-actin reorganization and nuclear
migration remains mysterious.

Paired nuclear migrations control ACD
orientation in the Arabidopsis stomatal
lineage

Polarization is also a hallmark of the ACDs that create stomata
in eudicots like Arabidopsis. Before each ACD, two opposing
polar domains form at the plasma membrane. The more well-
defined of the two contains BREAKING OF ASYMMETRY IN THE
STOMATAL LINEAGE (BASL), BREVIS-RADIX family (BRXf)
proteins, and POLAR LOCALIZATION DURING ASYMMETRIC
DIVISION AND REDISTRIBUTION (POLAR) (Dong et al.,
2009; Pillitteri et al., 2011; Rowe et al., 2019), which scaffold
the recruitment of effectors including BSL1, BIN2, PRAF and
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FIGURE 1
Nuclear migration and cell polarity during asymmetric cell division (ACD). (A) Following fertilization, the zygotic nucleus (dark grey) migrates toward the
apical side of the cell. The zygote then undergoes an asymmetric division, producing a smaller apical cell and a larger basal cell. Disruption of F-actin
using latrunculin B impairs nuclear migration, resulting in symmetric division. (B) Asymmetrically dividing cells in the Arabidopsis stomatal lineage use a
cortical polarity domain defined by BASL (blue) to control two phases of nuclear migration. Before ACD, the nucleus migrates away from this domain in
a microtubule-dependent manner. After division, the nucleus migrates toward the cortical polarity domain in an F-actin–dependent manner. Without
BASL, directional nuclear migration is disrupted, leading to abnormal division patterns. (C) After specification, F-actin-dependent nuclear migration in
lateral root founder cells is directed towards the shared cell wall. F-actin disruption results in more symmetric divisions and defective lateral root
primordia. (D) A cortical polar domain classically defined by PAN1 (purple) forms at the interface between the guard mother cell (GMC) and SMC during
subsidiary cell formation. The nucleus migrates toward this site in an F-actin-dependent manner. Disrupting polar domain formation in these cells
leads to misoriented divisions and defective subsidiary cell formation.
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YDA (Zhang et al., 2015; Houbaert et al., 2018; Guo et al.,
2021; Wang et al., 2022). Collectively, the proteins in this BASL-
containing domain ensure differential daughter cell fates. A
second polar domain defined by the OCTOPUS-LIKE (OPL)
proteins forms opposite the BASL domain and influences division
potential (Wallner et al., 2023).

In addition to shaping cell identity, it has long been hypothesized
that the BASL-containing polar domain might also control division
orientation.This assumption had its roots in the observation that the
smaller meristemoid is always generated distal to the site of BASL
polarization, which suggested that BASL might orient the ACD.
Recently, Muroyama et al. showed that each ACD is bookended by
opposing nuclear migrations that are directed by the BASL domain
(Muroyama et al., 2020) (Figure 1B). Interestingly, there are several
key differences between these nuclear migrations in the Arabidopsis
stomatal lineage and in SMCs in grasses. First, these two pre-division
nuclear migrations are oppositely oriented with respect to the polar
site; the BASL crescent repels the nucleus in Arabidopsis while the
nucleus is attracted to the PAN1 domain in SMCs. Second, the pre-
division nuclear migration in Arabidopsis depends on microtubules,
not F-actin; treatment with the microtubule depolymerizing drug
oryzalin blocks pre-division nuclear migration while latrunculin B
treatment has no effect. Third, there is a second, post-ACD nuclear
migration in Arabidopsis where the nucleus exhibits a striking,
F-actin-dependent migration towards the BASL domain in the
stomatal lineage ground cell (SLGC). Based on these observations,
the post-division nuclear migration more closely resembles the
pre-division nuclear migration in grass SMCs, while the pre-
division nuclear migration in Arabidopsis appears to use a wholly
separate mechanism. Recent work has shown that polarized BASL
locally disrupts the cortical microtubule array (explained in more
detail below) (Muroyama et al., 2023), although a direct connection
between this effect onmicrotubule stability and pre-division nuclear
migration has not been established. To date, it remains unclear if
and how BASL influences F-actin organization to direct the post-
division nuclear migration; fluorescent reporters of F-actin are not
obviously enriched at the polar site and no F-actin regulators have
been reported to polarize along with BASL. Careful characterization
of changes to the F-actin and microtubule arrays before and after
ACD will be important to clarify this process in the future.

Nuclear migration precedes branching in
moss

Microtubule-dependent pre-division nuclear migration has
been described during protonemal branching in the moss
Physcomitrium patens. Like the other nuclear migrations discussed
thus far, the first step of this process is the formation of a polarized
domain at the plasma membrane. In this case, a ROP polar domain
forms a bulge within the subapical cell that attracts the nucleus
(Yi and Goshima, 2020). Nuclear movement and branching are
impaired in the higher order rop2rop3rop4 mutant, and treatment
with pharmacological inhibitors of F-actin and microtubules
revealed that microtubules and F-actin are both required for
this movement through different mechanisms. Microtubule
depolymerization severely impacted nuclear movement without
impacting formation of the ROP bulge. Conversely, latrunculin

A treatment impeded bulging at the ROP domain and nuclear
migration, although nuclear migration proceeded normally in
plants that were treated with latrunculin A after bulge formation,
indicating that bulge formation is upstream of nuclear migration
but that F-actin is dispensable for the migration itself (Yi and
Goshima, 2020).

Befitting its role in nuclear migration, the ROP domain is a
site of cytoskeletal reorganization. F-actin fluorescent reporters are
concentrated in the nascent bulge, linking polarization with local
F-actin reorganization (Vidali et al., 2009). Tracking microtubule
polymerization with a fluorescent EB1 reporter revealed that the
majority of microtubule plus ends in this region grow into the
bulge (Yi and Goshima, 2020). As a similar effect is seen in tip-
growing cells in moss, the authors speculate that biased microtubule
growth into the bulge could be a secondary consequence of cell
geometry rather than a directed polymerization to that site (Yamada
and Goshima, 2018). Taken together, these results highlight the
potentially critical role cell morphology plays in reinforcing
cytoskeletal organization to control nuclear migration.

ACD-associated nuclear migrations in
other polarized cell types

We have discussed examples of cells where polar domains
are essential landmarks that direct nuclear migration. However,
it is worth noting that nuclear migrations are not a universal
feature of ACD. For example, nuclei are centrally positioned and
do not migrate before undergoing ACD in the 8-cell Arabidopsis
embryo (Vaddepalli et al., 2021). Conversely, there are critical
ACDs that generate daughter cells with striking size asymmetry
without a known associated polar domain. For example, new
lateral root primordia are created by ACDs in the xylem pole
pericycle (XPP) that are triggered by the expression of auxin-
responsive transcription factors (De Rybel et al., 2010; Goh et al.,
2012). After specification, the nuclei in the two founder cells
undergo F-actin-dependent nuclear migrations toward the shared
wall (Vilches Barro et al., 2019). F-actin depolymerization, either
with latrunculin B treatment or tissue-specific expression of the
F-actin disrupting DeActs construct (Harterink et al., 2017),
disrupts nuclear migration, leading to symmetric division and
defective development of the lateral root primordia (Figure 1C).
How the two nuclear migrations are oriented in opposite
directions toward the shared wall remains unknown. The first
zygotic division in Arabidopsis is another ACD without a known
polar regulator. Kimata et al. used two-photon microscopy and
pharmacological treatments to show that the nucleus migrates
toward the apical pole in an F-actin-dependent manner before
this ACD (Kimata et al., 2016) (Figure 1A). The regulators that are
responsible for F-actin reorganization prior to nuclear migration
remain unknown.

Future directions in polarity-mediated
organelle positioning

We now have a roster of well-documented, developmentally
important ACDs that depend on polarized nuclear migrations,
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but we remain far from a truly mechanistic understanding of this
process. We believe that one of the first steps toward this goal
should be to identify the cytoskeletal regulators, motor proteins,
and polarized linkers that are required for each of these nuclear
migrations. From the published work, it is reasonable to conclude
that there is no single mechanism controlling nuclear migrations
across asymmetrically dividing cells in plants. However, there
is an opportunity to leverage our knowledge of these diverse
nuclear migrations to identify the common regulators that may
be shared across cell types. For example, the myosin myosin
XI-I was shown to be essential for the post-division, F-actin-
dependent nuclear migration in the Arabidopsis stomatal lineage
(Muroyama et al., 2020). Myosin XI-I was first identified as
a nuclear envelope-localized myosin that was required for F-
actin-dependent nuclear shape changes and nuclear movement
in non-proliferative cell types (Tamura et al., 2013), hinting at
a potential shared function. Although the closest myosin XI-
I homolog in maize, OPAQUE1, is not required for nuclear
migration in maize SMCs (Nan et al., 2023b), could myosin
XI-I regulate other F-actin-dependent nuclear migrations in
Arabidopsis?

In the same vein, several kinesins, including members of
the kinesin 14 family (KCBP and KCH) and the Armadillo
Repeat-Containing Kinesins (ARKs), are required for nuclear
transport in P. patens and rice and are, therefore, excellent
potential candidates for kinesins that could drive pre-division
nuclear migration in the Arabidopsis stomatal lineage (Frey et al.,
2010; Miki et al., 2015; Yamada et al., 2017; Yamada and
Goshima, 2018). In fact, KIN14H and KIN14G, members of
the kinesin 14 family in Arabidopsis, were recently shown to
control microtubule-dependent nuclear migration in growing
pollen tubes (Wang et al., 2024). The same approach could
be taken to define the proteins that link the cytoskeleton to
the nuclear envelope. The obvious candidates for these are
WIT, WIP, and SUN, components of the LINC complex that
bridges the F-actin cytoskeleton and nuclear envelope. Indeed,
myosin XI-I localization to the nuclear envelope depends on
WIT1/WIT2, and loss-of-function alleles in the LINC components
negatively impact nuclear movement in non-proliferative cell types
(Tamura et al., 2013; Zhou et al., 2014; Zhou and Meier, 2014;
Moser et al., 2020; Brueggeman et al., 2022).

Beyond identifying additional regulators, there are numerous
broader questions that warrant additional investigation. How do
polar domains locally control cytoskeletal organization? How is
cytoskeleton reorganization in polarized cells coupled to the cell
cycle? How is cell morphology coupled with the geometry of
the cytoskeleton array to control the directionality of nuclear
movement? We are particularly intrigued by the prospect that self-
organization may allow asymmetrically dividing cells to robustly
reorient their cytoskeletons in response to an initial and highly
localized symmetry-breaking event. Programs that model how
a cytoskeletal array evolves over time in a cell of defined
geometry will be particularly useful for these efforts (Saltini and
Deinum, 2024).

Finally, whether polarity controls the active partitioning of
all of the other organelles in the cell during asymmetric cell
division in plants remains mostly unexplored. Recent work from
the Ueda group has made initial progress by characterizing

vacuole and mitochondria positioning during the initial ACD
in the Arabidopsis zygote. Upon fertilization, the large vacuole
shrinks and redistributes across the apical and basal regions
(Kimata et al., 2019). As the zygote elongates, the vacuole
forms a thin tubular structure around the migrating nucleus
and only enlarges at the basal end, resulting in an asymmetric
vacuole distribution in the fully elongated zygote. Vacuole
reorganization depends on longitudinal F-actin arrays (Figure 2A)
and, intriguingly, proper vacuole distribution is necessary for
nuclear positioning. In the shoot gravitropism (sgr2-1) mutant, the
vacuole ismisshapen and lessmobile, altering nuclearmigration and
division orientation (Kimata et al., 2019). By revealing a surprising
interplay between the positioning of different organelles, this work
serves as a strong motivator to further explore these relationships in
other cell types.

The same group examined the dynamics ofmitochondria during
this zygotic division and found that polarized F-actin distribution
concentrates mitochondria in the apical cell (Kimata et al., 2020).
Molecular regulators of this process remain unknown, although
myosin XI family members, such as myosin XI-K, myosin XI-
1, and myosin XI-B, have been shown to control mitochondria
motility in non-proliferative cell types and would be excellent
candidates for future studies (Avisar et al., 2008; Peremyslov et al.,
2008; Prokhnevsky et al., 2008). The functional significance of
regulated mitochondria inheritance in plants remains unknown,
but it is worth noting that there is a growing body of work
from animals and fungi that implicate asymmetric mitochondria
partitioning in proliferative potential, cell fate decisions, and
general cell function (Katajisto et al., 2015; Döhla et al., 2022;
Loeffler et al., 2022; Sun et al., 2023). It will be fascinating to
determine whether asymmetric segregation of mitochondria and
other organelles have similar functional consequences following
ACD in plants.

Polarized changes to cytoskeletal
organization promote morphological
changes

Cell morphology is, itself, a major determinant of division
orientation in plants. This is primarily due to the fact that, in
the absence of other inputs, many plant cells will tend to divide
along the axis of maximal tensile stress (Louveaux et al., 2016).
Therefore, division orientation in some tissues can be accurately
predicted by knowing both the cell shape and pre-division nuclear
position (Louveaux et al., 2016; Höfler et al., 2024). As such,
polarity-mediated changes to cell morphology and expansion
could be reasonably predicted to be important regulators of ACD
orientation.

Polarized cell expansion before ACD

There is strong evidence that morphological changes are
required for proper division orientation for two of the ACDs we
have discussed: the first division of the one-cell Arabidopsis zygote
and the paired ACDs in lateral root founder cells (Figure 2). Pre-
division anisotropic growth in both of these cells requires dynamic
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FIGURE 2
Cytoskeletal rearrangement and cell polarity during asymmetric cell division. (A) Upon fertilization, F-actin (green) and microtubules (red) reorganize in
the elongating zygote. This reorganization establishes a polarization axis and is important for F-actin–mediated asymmetric organelle localization. (B)
Cortical BASL (blue) locally destabilizes microtubules (red) within the polar domain, preventing preprophase band (PPB) formation at this site. This
ensures asymmetric inheritance of the polar domain by the stomatal lineage ground cell (SLGC) after ACD. (C) During lateral root initiation, both
F-actin (green) and microtubules (red) undergo dynamic rearrangement that control asymmetric radial expansion in founder cells. (D) The localization
of PAN1 (purple) excludes cortical POLAR localization (pink). In turn, POLAR blocks TAN1 localization, ensuring proper PPB (red) placement.
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rearrangements of both F-actin and microtubules, the molecular
underpinnings of which we are just beginning to understand.
In the one-cell zygote, microtubules form a subapical transverse
ring and spiral cortical array at the zygote base, while F-actin
accumulates at the apical tip and aligns longitudinally along
the apicobasal axis (Kimata et al., 2016; Hiromoto et al., 2023).
Microtubules are required for the dramatic cell elongation that
precedes ACD but not for ensuring that the apical daughter
is smaller (Figure 2A). Latrunculin B treatment also impaired
cell elongation, although it remains unclear whether this points
to a direct role for F-actin in the elongation or whether the
failure to elongate is a secondary consequence of failed nuclear
migration.

Lateral root founder cells undergo an asymmetric radial
expansion that accompanies pre-division nuclear migration
(Vilches Barro et al., 2019). As the founder cells expand, cortical
microtubules reorganize in two spatially defined domains.
Microtubules are relatively isotropic in the “central” region, which
is the side of the cell facing the shared wall between founder
cells. In contrast, microtubules are organized in transverse arrays
in the peripheral domain at the opposite end of the cell. Cell
expansion is restricted in this peripheral domain, leading to the
observed asymmetric expansion (Figure 2C). Pharmacological
or genetic disruption of the microtubule arrays in these cells
leads to isotropic cell expansion, indicating that the transverse
cortical microtubules locally constrain expansion. Interestingly, F-
actin depolymerization also disrupts asymmetric radial expansion,
indicating that there is coupling between F-actin and microtubule
organization. In sum, these examples reinforce that coordination
between polarized cell expansion and nuclear migration can
be critical for ACD orientation. These data also point to a
still mysterious interplay between the F-actin and microtubule
cytoskeletons. Identification of the direct cytoskeletal regulators
responsible for the formation of these polarized arrays will begin to
shed light on this important question.

Is local control of cell expansion a shared
function across polar domains?

Polar domains are associated with local cell expansion and
cell wall remodeling in several developmental contexts, such as
pavement cell lobing, trichome morphogenesis, and root hair
initiation (Fu et al., 2005; Yanagisawa et al., 2018; Denninger et al.,
2019; Lauster et al., 2022). In all of these cases, polarized ROP
domains locally alter F-actin and microtubule organization to
drive morphogenesis. Taken together with the previously discussed
examples of asymmetric cell expansion in the Arabidopsis zygote
and lateral root founder cells, it is tempting to speculate that
the polar domains that control stomatal development might also
locally control cell expansion. However, although the PAN1 site
in SMCs polarize ROPs and there is some minimal bulging at
this site (Panteris et al., 2018), there is no phenotypic evidence
indicating that polarized cell growth at the SMC/GMC contact site
precedes ACD in the maize leaf.

Intriguingly, BASL preferentially localizes to lobed regions of
the membrane when ectopically expressed in tobacco BY-2 cells and
Arabidopsis (Mansfield et al., 2018; Chan et al., 2020).The position of

the polarized BASL domain is also correlatedwith the overall growth
axis when expressed in BY-2 cells, and BASL overexpression in the
hypocotyl epidermis induces ectopic lobing (Dong et al., 2009).
While these data are consistent with a model where BASL promotes
local cell expansion, it remains unclear whether BASL normally
has this activity in the stomatal lineage and what the functional
significance would be. Time-lapse data of BASL polarization in the
stomatal lineage has not shown that BASL polarization increases
expansion before cell division, but careful, quantitative analyses
will be required to definitively evaluate this hypothesis. A deeper
understanding of the cytoskeleton-associated proteins that may co-
localize with division-associated polar sites would also open new
avenues into this question.

Polarity-mediated control of division
plane placement

Thus far, we have discussed ways that polarized cells can
regulate ACD by controlling the cytoskeleton during interphase.
While cytoskeleton-dependent effects on nuclear position and
cell morphology inform division orientation, the position of the
new cell wall is ultimately determined by the phragmoplast, an
F-actin and microtubule-based structure that guides membrane
deposition to separate the two daughter cells during cytokinesis.
In angiosperms, phragmoplast expansion follows the position of
a transient band of cortical microtubules called the preprophase
band (PPB), which forms around the nucleus in late G2.
Even though the PPB itself is disassembled upon entry into
mitosis, it recruits a suite of proteins, such as TANGLED,
POK1/2, and AIR9, that remain at the plasma membrane in a
band called the cortical division zone (CDZ) (Rasmussen and
Bellinger, 2018). It is these CDZ proteins that help guide the
phragmoplast during cytokinesis to control formation of the
new cell wall.

There are numerous examples of polar domains controlling
ACD orientation in bacteria, fungi and animals (Thanbichler
and Shapiro, 2006; Kiekebusch et al., 2012; Venkei and
Yamashita, 2018; Miller et al., 2020). Specific mechanisms vary by
species, but they all have a means of regulating mitotic cytoskeletal
organization via polar domains. Inspired by this large body of
literature and the fact that many polarity mutants exhibit division
orientation defects, it has been speculated that similar mechanisms
might exist in plants. Excitingly, several recent studies have
found evidence that such pathways exist in plants, providing an
experimental foothold into this long-standing question.

Polar domains specify division plane
placement during stomatal development

The strongest evidence for polarity-mediated control of cell
division machinery comes from studies of stomatal formation
(Figure 2). A recent study in B. distachyon SMCs found
that opposing polar domains specify the localization of the
phragmoplast-guiding TANGLED1 (BdTAN1) at the plasma
membrane (Zhang et al., 2022). The PAN1 homolog, BdPAN1,
is recruited to the same SMC/GMC interface in B. distachyon as
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PAN1 in maize. Most of the remaining plasma membrane forms an
opposing polar domain that recruits BdPOLAR. Zhang et al. found
that BdTAN1 is localized to a BdPOLAR-depleted region flanking
the BdPAN1 site. BdTAN1 is ectopically recruited to inappropriate
sites in bdpolar even though nuclear migration proceeds normally
in this mutant background. BdTAN1 mistargeting leads to SMC
division orientation defects, indicating that 1) nuclear migration is
not sufficient to orient divisions in these cells and 2) the BdPOLAR
domain can somehow restrict recruitment of an important
CDS/Z protein (Figure 2D). How BdTAN1 membrane localization
inhibits BdTAN1 recruitment remains to be determined.

In complementary work, polarized BASL was recently shown
to locally deplete cortical microtubules to control PPB positioning
during stomatal lineage ACDs in Arabidopsis (Muroyama et al.,
2023) (Figure 2B). The first indication that polarized BASL could
constrain division orientation came from time-lapse analysis of
ACDs in morphologically varied stomatal progenitors, which
showed that a significant fraction of ACDs did not divide along
the predicted shortest distance. The authors used cell type-specific
microtubule reporters and quantitative analyses of microtubule
behavior to show that the plus ends of cortical microtubules
rapidly undergo catastrophe within the BASL polar domain. They
proposed that this destabilizing effect on microtubules prevents
PPB formation within the polar site, thereby ensuring that the
division plane avoids cortical BASL. In support of this model,
the authors showed in the same study that BASL loses control
of division site placement in the trm678 mutant, which cannot
make normal PPBs (Schaefer et al., 2017). In trm678, the division
plane frequently bisects the polar domain, leading to cortical BASL
inheritance in both daughters, associated fate stalling and stomatal
patterning defects. Future studies are required to determine if BASL
interacts with microtubules directly or if it recruits an unknown
effector to impact microtubule dynamics.

Potential polar regulators of division
orientation in the root meristem

Whether other polar domains found outside the stomatal
lineage control division orientation through similar interactions
with microtubules or microtubule-associated proteins remains to be
determined. In the rootmeristem, the LRR-RLK INFLORESCENCE
AND ROOT APICES RECEPTOR KINASE (IRK) is polarly
localized along global tissue axes (Campos et al., 2020). SOSEKI
family proteins, ancient polar proteins found in the genomes
of plants down to bryophytes, similarly show global polarity
along tissue axes in the root. IRK and SOSEKI loss-of-function
or overexpression mutants show aberrant division patterns,
demonstrating a link to cell proliferation (Yoshida et al.,
2019; Campos et al., 2020; Rodriguez-Furlan et al., 2022). The
mechanisms underlying these developmental phenotypes await
further investigation, as does whether these polar domains control
microtubule or MAP localization to the membrane. Intriguingly,
IP-MS data identified ANGUSTIFOLIA, a protein that influences
the organization of cortical microtubule arrays (Kim et al., 2002),
as a SOSEKI interactor, although the functional relevance of the
interaction remains to be determined (van Dop et al., 2020).

Conclusions and future directions

Here, we focused on three ways that polar domains can control
division orientation via the cytoskeleton: organelle positioning,
cell growth, and division plane placement. While we described
these topics separately for improved clarity, it is important to
keep in mind that there is likely significant cross-talk between
these pathways. For example, F-actin disruption blocked nuclear
migration in lateral root founder cells but also altered asymmetric
cell expansion (Vilches Barro et al., 2019). In some ways, the fact
that polarity-mediated changes to cytoskeletal organization impact
multiple pathways is unsurprising given our extensive knowledge
about the many functions for the cytoskeleton in plant cells. A more
compelling approach would be to identify whether there are any
regulators that allow polar domains to specifically control a single
pathway at a time. Additionally, developing a truly mechanistic
understanding will require the development of new tools to target
cytoskeletal arrays with subcellular resolution, as has been achieved
using optogenetics in mammalian cells (Wittmann et al., 2020).
Future work that adapts these or other technologies for precise
manipulation of subcellular cytoskeletal dynamics in plants will be
a huge boon to the field.

Because most of these division-associated polar proteins are
predicted to function primarily as scaffolds, a better catalogue of
recruited and activated effectors would help address this question.
A recent study that used proximity labeling to identify polarity-
associated proteins in the Arabidopsis stomatal lineage identified
some interesting candidates linking OPL2 to the microtubule
cytoskeleton, highlighting hownew approaches can be used to tackle
these problems (Wallner et al., 2024).

In addition to the pathways covered here, there are a number
of exciting future directions that remain mostly unexplored. To
conclude, we pose some of the open questions that we are most
excited by.

1) How is directionality of nuclear movement robustly controlled
during ACD?

2) Does the organization of the microtubule and/or F-actin array
influence where the polar domain will form?

3) How are dynamic rearrangements of polarized
cytoskeletal arrays controlled by progression through the
cell cycle?

4) What is the role for cell mechanics in polarization in different
cell types? Do mechanical feedback loops ensure robust
polarization and ACD orientation?

Deepening our understanding of the relationship between
polarity and the cytoskeleton across a variety of developmental
contexts will continue to shed light on which components represent
common polarity modules and which have evolved for specific
morphogenetic functions.
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