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Rising rates of infertility have stimulated interest in dietary supplements to
improve oocyte quality through mitochondrial function, antioxidant activity,
and epigenetically regulated metabolic pathways. Mitochondria provides
adenosine triphosphate for oocyte maturation, with Coenzyme Q10 (CoQ10)
demonstrating efficacy in animal models by alleviating oxidative damage and
enhancing blastocyst formation. In aged mice, CoQ10 restored mitochondrial
activity and reduced chromosomal abnormalities, while preliminary human
studies noted improved embryo quality in poor responders, though randomized
controlled trials (RCTs) remain inconclusive. Antioxidants like melatonin counter
reactive oxygen species (ROS)-induced spindle defects and mitochondrial
dysfunction, showing benefits in murine oocyte maturation and blastocyst
development. Resveratrol enhanced bovine oocyte quality through metabolic
modulation. Human trials on antioxidants show reduced granulosa cell stress but
lack robust evidence. Epigenetically, folate supports DNAmethylation critical for
embryonic gene expression, with deficiencies linked to hyperhomocysteinemia
and developmental defects in animal models. Human observational studies
associate folate-rich diets with lower aneuploidy and better assisted
reproductive technology outcomes, while omega-3 fatty acids aid chromatin
remodeling via histone deacetylase regulation. Despite compelling preclinical
data, human trials face inconsistencies due to variable designs and confounders.
Standardized RCTs are urgently needed to translate mechanistic insights into
clinical guidelines, addressing the disconnect between animal studies and
human reproductive outcomes.
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1 Introduction

Infertility is defined as the inability to conceive after 1 year of unprotected sexual
intercourse.While male factors, such as low sperm count, poor spermmotility, or hormonal
imbalances, contribute to this condition, reduced female reproductive capacity remains a
critical determinant (Hosseini et al., 2024). Poor female fertility is frequently associated
with clinical features such as elevated body mass index (BMI), advanced maternal age,
and polycystic ovary syndrome (PCOS). For instance, PCOS is characterized by hormonal
imbalances, including elevated anti-Müllerian hormone (AMH), luteinizing hormone
(LH), and androgen levels, alongside reduced follicle-stimulating hormone (FSH), which
impair ovulation and fertility (Zabieglo et al., 2025). Furthermore, age-related declines in
ovarian reserve and BMI-related metabolic disturbances, such as increased free androgen
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index (FAI) and decreased sex hormone-binding globulin (SHBG),
are also significant contributors to fertility challenges.

In vitro fertilization (IVF) has emerged as a leading assisted
reproductive technology (ART) for overcoming infertility, offering
hope to millions of couples worldwide. However, the high costs
associated with IVF treatments, coupled with their emotional and
psychological toll, pose significant challenges. Couples often spend
an average of $61,377 out-of-pocket across 2.7 cycles to achieve
a live birth, placing substantial financial and emotional strain on
individuals and families (Peterson et al., 2025). This burden is
further exacerbated by the uncertain outcomes of IVF procedures,
which can lead to repeated cycles and additional costs. In light of
these challenges, optimizing the efficacy of IVF protocols, including
the use of dietary supplements, becomes evenmore critical to reduce
the overall economic and psychological toll on patients.

Although pharmacological therapies retain their efficacy, dietary
supplements, including coenzyme Q10 (CoQ10), myo-inositol,
melatonin, and vitamins, have emerged as a promising adjunct in
infertility management due to their potential to mitigate oxidative
stress, improve hormonal balance, and enhance reproductive
capacity (Vitagliano et al., 2021). However, despite accumulating
evidence, inconsistencies in findings related to macromolecule and
nutrient intake highlight the need for clearer mechanistic insights.
For example, CoQ10 has demonstrated efficacy in improving oocyte
quality and clinical pregnancy rates, particularly in the context of
ovarian aging (Shang et al., 2024). Similarly, other supplements
such as myo-inositol, melatonin, and vitamins have also show
significant benefits in IVF outcomes. Myo-inositol, for example,
enhances embryo quality and reduces unsuitable oocytes under
optimal drug stimulation (Zheng et al., 2017; Wdowiak et al., 2025).
Notably, myo-inositol is a key molecule in FSH signaling and oocyte
maturation, and its supplementation has been shown to improve the
metaphase II (MII) oocyte rate and fertilization rate, particularly
in women with PCOS and non-obese PCOS (Zhang et al., 2025).
Additionally, it reduces the amount of gonadotropins required for
ovarian stimulation and shortens the stimulation length, especially
in women with PCOS (Lagana et al., 2018). Emerging evidence
also suggests that myo-inositol supplementation may improve ART
outcomes in poor ovarian responders, evidenced by increased
fertilization rates, elevated ovarian sensitivity index, and reduced
gonadotropin demands (Mohammadi et al., 2021).

Furthermore, while serum mineral supplementation has
been associated with improved oocyte quality, supports embryo
development, mitigates oxidative stress, regulates hormonal
balance, and optimizes IVF outcomes, while concurrently reducing
miscarriage rates (Kapper et al., 2024). In patients with PCOS,
vitamin D supplementation elevates ovulation and pregnancy
rates, lowers androgen levels and miscarriage rates, and reduces
FSH and LH concentrations, despite having no measurable
impact on cleavage or fertilization rates (Yang et al., 2023).
Astaxanthin, a potent antioxidant, enhances oocyte quality and
reduces oxidative stress in ART procedures (Maleki-Hajiagha et al.,
2024). Notably, astaxanthin improves total antioxidant capacity
(TAC) in follicular fluid but exerts inconsistent effects on catalase
(CAT), malondialdehyde (MDA), or superoxide dismutase (SOD)
levels. While it moderately enhances oocyte and embryo quality,
its impact on fertility rates remains statistically insignificant
(Rodrigues et al., 2025). Oral melatonin administration during IVF

cycles has been associated with increased mature oocytes yields and
higher clinical pregnancy rates, although these improvements lack
statistical significance (Mejlhede et al., 2021). However, melatonin
supplementation during controlled ovarian stimulation, while
linked to low rates of congenital abnormalities, shows no clinical
benefits in terms of oocyte retrieval efficiency or miscarriage
prevention (Seko et al., 2014). Mitochondrial supplementation,
though safe, fails to improve oocyte competence, with studies
reporting no significant changes in embryo development or
fertilization rates (Ferreira et al., 2021).

Despite accumulating evidence, inconsistencies in findings
related to macromolecule and nutrient intake highlight the need
for clearer mechanistic insights. This review synthesizes current
evidence onmolecular pathways underlying infertility interventions
and emphasizes priority directions for future research.

2 Mechanistic and biological
pathways involving dietary
supplements on oocytes

The rising rates of infertility have stimulated interest in dietary
supplements to improve oocyte quality through mitochondrial
function, antioxidant activity, and epigenetically regulated
metabolic pathways. This section discusses the mechanisms and
biological pathways of dietary supplements in improving oocyte
quality, with a focus on their roles in different animal models and
human studies.

2.1 Mitochondrial function

Mitochondrial dysfunction is a key factor in oocyte quality
decline, and dietary supplements have shown promising effects in
enhancing mitochondrial adenosine triphosphate (ATP) synthesis,
reducing oxidative stress, and ultimately improving oocyte quality.
Specifically, nicotinamide riboside (NR) supplementation during
early embryonic development has been demonstrated to mitigate
reactive oxygen species (ROS) accumulation, thereby preventing
apoptosis and DNA damage in IVM mouse models. Although
nicotinamide adenine dinucleotide (NAD+), a critical redox
cofactor, declines in post-ovulatory oocytes, NR supplementation
effectively prevents this loss, restoring metaphase II (MII) oocyte
quality by maintaining chromosomal integrity and alleviating
mitochondrial dysfunction, which may enhance ART success
(Li H. et al., 2023). Notably, NAD+precursors also show therapeutic
potential for ovarian infertility in a PCOS mouse model (Zhu et al.,
2025). Furthermore, CoQ10 increases glucocorticoid receptor
expression while reducing immunophilins (FK506-binding protein
5, FKBP5) and hydroxysteroid dehydrogenases (HSD11B1),
thereby promoting oocyte maturation (Ruiz-Conca et al., 2022).
In addition, CoQ10 activates ATP synthesis and mitigates
mitochondrial ROS-induced oxidative damage (Rodriguez-Varela
and Labarta, 2021). Particularly in older women, CoQ10 improves
IVF/IVM success rates by restoring Krebs cycle activity, balancing
ROS levels, and reducing DNA damage and oocyte apoptosis
(Brown and McCarthy, 2023). Interestingly, in cattle, vitamin
E has been shown to outperform CoQ10 and vitamin C in
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supporting IVM, IVF, and embryo development under heat stress,
as evidenced by elevated trophectoderm, ICM, and blastocyst
cell counts (Maddahi et al., 2024).

In addition to these supplements, salidroside has been found
to reduce ROS levels and enhance intracellular glutathione
(GSH) concentrations, promoting cytoplasmic maturation via
increased ATP production, mitochondrial membrane potential,
and mtDNA copy number. Moreover, salidroside activates
MAPK phosphorylation, driving nuclear oocyte maturation and
blastocyst pluripotency (Shi et al., 2023). Similarly, α-Ketoglutarate
(α-KG), a TCA cycle metabolite, enhances follicle numbers
and oocyte quality in aging oocytes (Wang H. et al., 2023).
Nicotinamide mononucleotide (NMN) supplementation also
restores mitochondrial function, suppresses ROS and apoptosis,
and improves ART outcomes (Miao et al., 2020). Importantly,
vitamin D supplementation has been shown to improve embryo
quality in ICSI procedures by elevating follicular fluid and serum
vitamin D levels (Baldini et al., 2024).

Finally, folic acid has been observed to influence in vitro
oocyte maturation and gene expression patterns (Gennari et al.,
2021), while asiatic acid reduces oxidative stress by boosting
GSH production, ATP generation, and mitochondrial membrane
potential (Qi et al., 2021). In a similar vein, anethole elevates ferric-
reducing antioxidant power (FRAP), cleavage/morula/blastocyst
rates, and mitochondrial membrane potential, all of which
contribute to improved embryo development (Sa et al., 2020).
These findings collectively underscore the significant role of
dietary supplements in enhancing mitochondrial function and
oocyte quality, thereby offering potential therapeutic strategies for
improving ART outcomes.

2.2 Antioxidant activity

Oxidative stress, which is a major contributor to oocyte aging,
is mitigated by antioxidant supplements that operate downstream
of mitochondrial dysfunction by directly neutralizing oxidative
damage through exogenous radical scavenging and endogenous
defense potentiation, thereby enhancing cellular redox balance
and preserving oocyte genomic integrity and developmental
competence (Lucia Dos Santos Silva et al., 2023). For instance, in
rabbit models, a quercetin-supplemented diet positively correlates
with retrieved oocyte number, follicle count, and the proportion
of A-grade oocytes; however, it does not significantly affect
oocyte maturation (Naseer et al., 2017). Similarly, in mice,
Euterpe oleracea exhibits variable effects on antioxidant pathways
and cell growth by upregulating β-adrenergic signaling while
downregulating apoptosis and proinflammatory signaling (Katz-
Jaffe et al., 2020). Furthermore, melatonin plays a critical role
in protecting against nonylphenol-induced oxidative stress and
DNA damage in mice by rescuing mitochondrial membrane
potential and correcting aberrant mitochondrial distribution via
lysosomal regulation through Rab11 and lysosomal-associated
membrane protein 2 (LAMP2) (Hu et al., 2022). Additionally,
melatonin improves IVF outcomes by upregulating ATPase copper-
transporting beta (ATP7B) and glutathione peroxidase 4 (GPX4)
gene expression, thereby enhancing resilience against metal-
induced toxicity and oxidative stress. In vitro studies using HGL5

cells, melatonin has been demonstrated to restore glycolysis,
tricarboxylic acid (TCA) cycle activity, and redox balance, effectively
protecting oocytes (Tsui et al., 2024).

In addition to melatonin, boric acid has been shown to
preserve ovarian reserve by restoring stem cell factor (SCF) and
AMH levels, downregulating sirtuin 1 (SIRT1), and upregulating
mTOR signaling. Consequently, boric acid reduces CAT and
SOD activity while suppressing MDA, tumor necrosis factor-
alpha (TNF-α), interleukin-6 (IL-6), and neutrophil protease
(NP) levels (Onder et al., 2023). Moreover, L-carnitine, when
combined with bone marrow mesenchymal stem cell-conditioned
medium, enhances IVF rates by modulating endometriosis-induced
nitro-oxidative stress, increasing TAC, reducing NO levels, and
correlating with improved blastocyst formation (Kalehoei et al.,
2022). Silibinin also counteracts butyl benzyl phthalate toxicity by
reducing autophagy and oxidative stress (Li Y. et al., 2023). Notably,
zearalenone (ZEN) disrupts oocyte-cumulus cell interactions, delays
cell cycle progression, and induces cytoskeletal abnormalities;
however, these effects are mitigated by ZEN modification with
hydrated sodium calcium aluminosilicate (Xu et al., 2021).

The beneficial effects of supplementing n-3 polyunsaturated
fatty acids (PUFAs) on cow reproduction have been previously
reported. Freret et al. confirmed that supplementation with n-3
PUFAs modify lipid composition in oocyte membranes, enhancing
membrane fluidity and reducing susceptibility to lipid peroxidation
(Freret et al., 2019). Alpha-lipoic acid (ALA) supplementation
has been shown to reverse cyclophosphamide (CY)-induced
meiotic maturation failure in oocytes. CY disrupts cytoskeletal
assembly, organelle dynamics, and cortical granule/mitochondrial
integrity—key indicators of cytoplasmic maturation. Remarkably,
ALA suppresses oxidative stress-induced apoptosis and DNA
damage, thereby protecting oocytes from CY-induced deterioration
(Wang W. et al., 2023). In sheep models, zinc reduces ROS levels
and enhances mitochondrial activity and GSH concentrations,
thereby improving oocyte quality and embryonic development
during in vitro maturation (IVM) (Yao et al., 2023). Similarly,
zinc chloride (ZnCl2) and sodium selenite (Na2SeO3) promote
oocyte progression to metaphase II during IVM, increasing TAC
and reducing hydrogen peroxide (H2O2) and MDA levels, which
correlate with upregulated antiapoptotic and antioxidative gene
expression (Khalil et al., 2021). In contrast, lycopene scavenges
oocyte ROS and enhances embryo cleavage under heat shock
conditions, increasing inner cell mass (ICM) numbers without
significantly affecting blastocyst development (Residiwati et al.,
2021). These findings collectively highlight the diverse mechanisms
by which antioxidants can mitigate oxidative stress and improve
oocyte quality, offering promising therapeutic avenues for
enhancing reproductive outcomes.

2.3 Epigenetically regulated metabolic
pathways

Epigenetically regulated metabolic pathways play a pivotal
role in enhancing oocyte quality and developmental competence.
Notably, fibroblast growth factor 2 (FGF2), leukemia inhibitory
factor (LIF), and insulin-like growth factor 1 (IGF1), collectively
termed FLI medium, significantly improve mouse oocyte quality,
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as evidenced by enhanced blastocyst formation rates. Specifically,
FLI medium promotes glucose metabolism through the pentose
phosphate pathway, hexosamine biosynthesis, and glycolysis, while
also upregulating transcripts of endothelial growth factor-like
factors, reducing spindle abnormalities, and enhancing cumulus
cell expansion. During IVM, FLI medium activates key signaling
pathways, including the phosphorylation of protein kinase B (AKT),
mitogen-activated protein kinase 1/3 (MAPK1/3), signal transducer
and activator of transcription 3 (STAT3), and the mammalian
target of rapamycin (mTOR) downstream target ribosomal protein
S6 kinase B1 (RPS6KB1) (Nahar et al., 2024). Intriguingly, FLI
medium, when combined with porcine follicular fluid, methionine,
and cysteine supplementation, correlates with reduced polyspermic
zygote formation and increased monospermic zygote formation
(Currin et al., 2022). Additionally, L-carnitine modulates gene
expression during embryo development (Carrillo-G et al., 2023),
while alanine enhances embryonic competence by upregulating
fibroblast growth factor receptor 2 (FGFR2) and POU class 5
homeobox 1 (POU5F1) mRNA levels, as well as increasing intra-
oocyte GSH concentrations (Lee et al., 2019).

Other interventions further underscore the importance of
metabolic regulation in oocyte development. For instance, the
cathepsin B inhibitor E-64, when added to IVM medium, improves
the developmental competence of ovum pick-up-derived immature
oocytes (Balboula et al., 2022). Similarly, granulocyte colony-
stimulating factor (G-CSF) enhances IVM of poor-quality cumulus-
oocyte complexes (Cai et al., 2024). Interestingly, introducing
mitochondrial DNA (mtDNA) into Sus scrofa oocytes alters
DNA methylation profiles and gene expression, thereby modifying
epigenetic programming during oogenesis (Okada et al., 2022).
mtDNA supplementation studies reveal upregulated blastocyst-
related genes, addressing mtDNA deficiency during pregnancy
(Oka et al., 2023). Furthermore, myo-inositol plays a critical
role in female endocrine and metabolic balance. Beyond its
antioxidant activity, myo-inositol improves oocyte quality, enhances
fertilization rates, and supports early embryonic development by
modulating insulin signaling and FSH sensitivity (Alviggi et al.,
2016). Recent evidence highlights that myo-inositol, administered
with D-chiro-inositol in a physiological ratio of 40:1, which
synergistically improves ovarian function andmetabolic parameters
in patients with PCOS (Dinicola et al., 2021). The efficacy of
myo-inositol in improving IVF outcomes is further supported
by clinical trials. For instance, supplementation with 1 g myo-
inositol and 400 µg folic acid significantly increased mature
oocytes in 133 PCOS women (Vartanyan et al., 2017), while
4 g myo-inositol and 400 µg folic acid reduced rFSH dose and
cycle duration while increasing pregnancy rates in 98 infertile
PCOS patients (Emekci Ozay et al., 2017).

Growth hormone (GH) supplementation has also been shown
to increase euploid blastocyst rates, potentially reducing aneuploidy
and improving pregnancy outcomes in cases of recurrent pregnancy
loss (Guo et al., 2023). Additionally, GH lowers cycle cancellation
rates, improves endometrial patterns, and enhances implantation
and pregnancy rates (Lan et al., 2019). Similarly, putrescine increases
meiosis resumption rates, oocyte cleavage efficiency, and blastocyst
cell counts (Bicici et al., 2023). Propylene glycol alters gene
expression and follicular fluid composition (Gamarra et al., 2018),
while cytokine supplementation improves somatic cell nuclear

transfer (SCNT) efficiency in IVF (Keim et al., 2023). Importantly,
dietary interventions targeting oocyte quality are guided by
follicular fluid fatty acid composition analyses, which reveal elevated
levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) (Kermack et al., 2021). Probiotics and prebiotics modulate
gut microbiota activity through amino acid metabolism, thereby
mitigatingmetabolic syndrome and supporting female reproductive
health (Dai et al., 2015). Collectively, these findings highlight
the intricate interplay between epigenetic regulation, metabolic
pathways, and oocyte quality, offering promising strategies to
optimize reproductive outcomes Table 1.

3 Human clinical trials on dietary
supplements and oocyte outcomes

In human clinical trials, dietary interventions with methyl
donors during FSH stimulation in women with PCOS have
demonstrated significant benefits. Specifically, these interventions
reduce FSH requirements and improve implantation rates, while
follicular homocysteine levels are negatively correlated with
clinical pregnancy rates. These findings suggest that methyl
donor-enriched diets may enhance outcomes in PCOS patients
(Kucuk et al., 2023). Similarly, flaxseed oil supplementation in
women with diminished ovarian reserve (DOR) has been shown
to reduce recombinant human follicle-stimulating hormone (r-
hFSH) dosage and stimulation duration, while increasing peak
estradiol (E2), MII oocyte rate, fertilization, cleavage, and high-
quality embryo rates. This indicates a positive correlation between
flaxseed oil supplementation and improvedMII oocyte rates inDOR
patients (Chu et al., 2024). Furthermore, dehydroepiandrosterone
(DHEA) supplementation in aging women has been found to
increase day 3 embryo yield and top-quality day 3 embryos, as
well as improve ongoing pregnancy rates and clinical pregnancy
rates. These results suggest that DHEA enhances IVF outcomes
in aging women, partially through the reprogramming of
metabolic pathways (Li et al., 2021).

On the other hand, not all dietary interventions yield positive
results. For instance, antioxidant supplementation in women with
unexplained subfertility has not shown significant changes in age,
BMI, basal FSH, mature MII oocyte count, or clinical pregnancy
rate. This indicates that oral multivitamin/mineral antioxidants
do not improve oocyte quality (Youssef et al., 2015). However,
certain combination therapies have shown promise. Melatonin
and myo-inositol combination therapy in patients with PCOS
has demonstrated synergistic enhancement of oocyte quality
and embryo quality, suggesting that this combined therapy is
recommended for IVF protocols in PCOS (Pacchiarotti et al., 2016).
Additionally, vitamin E and D3 co-supplementation in patients
with PCOS has been found to increase clinical pregnancy and
implantation rates while decreasing serum TAC. Although there
is a weak association between vitamin D and implantation rate,
these findings indicate that vitamins E/D3 improve IVF success via
antioxidant mechanisms (Fatemi et al., 2017).

Moreover, n-3 PUFAs intervention in reproductive-age women
has shown reduced omega-6/omega-3 ratio, FSH, and FSH response
to GnRH, as well as decreased serum IL-1β/TNF-α in the obese
subgroup. This suggests that omega-3 PUFA benefits women
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TABLE 1 Summary of dietary supplements, mechanisms, and effects on oocyte quality.

Supplement Mechanism Effect on oocyte quality References

Nicotinamide Riboside (NR) Enhances mitochondrial ATP synthesis,
reduces ROS, prevents DNA damage

Restores MII oocyte quality, improves
chromosomal integrity

Li H. et al. (2023), Zhu et al. (2025)

CoQ10 Activates ATP synthesis, reduces
oxidative stress, modulates
glucocorticoid receptor

Improves IVF/IVM success rates,
supports oocyte maturation

Ruiz-Conca et al. (2022),
Rodriguez-Varela and Labarta (2021),

Brown and McCarthy (2023)

Vitamin E Scavenges ROS, enhances membrane
stability

Supports IVM, IVF, and embryo
development under heat stress

Maddahi et al. (2024)

Salidroside Increases ATP production, enhances
mitochondrial membrane potential

Promotes cytoplasmic and nuclear
maturation, improves blastocyst
pluripotency

Shi et al. (2023)

α-Ketoglutarate (α-KG) Enhances TCA cycle activity, reduces
oxidative stress

Improves follicle numbers and oocyte
quality in aging oocytes

Wang H. et al. (2023)

Nicotinamide Mononucleotide (NMN) Restores mitochondrial function,
suppresses ROS and apoptosis

Improves ART outcomes Miao et al. (2020)

Vitamin D Elevates follicular fluid and serum
vitamin D levels

Enhances embryo quality in ICSI
procedures

Baldini et al. (2024)

Folic Acid Modulates gene expression, supports
DNA synthesis

Improves in vitro oocyte maturation Gennari et al. (2021)

Asiatic Acid Boosts GSH production, enhances ATP
generation

Reduces oxidative stress, improves
mitochondrial function

Qi et al. (2021)

Anethole Elevates FRAP, enhances mitochondrial
membrane potential

Improves cleavage, morula, and
blastocyst rates

Sa et al. (2020)

Quercetin Neutralizes oxidative stress, upregulates
β-adrenergic signaling

Increases retrieved oocyte number and
follicle count

Naseer et al. (2017)

Melatonin Protects against oxidative stress, rescues
mitochondrial membrane potential

Improves IVF outcomes, protects
against nonylphenol-induced damage

Hu et al. (2022), Tsui et al. (2024)

Boric Acid Restores SCF and AMH levels,
modulates mTOR signaling

Preserves ovarian reserve, reduces
oxidative stress

Onder et al. (2023)

L-Carnitine Modulates nitro-oxidative stress,
enhances TAC

Improves IVF rates and blastocyst
formation

Kalehoei et al. (2022)

Silibinin Reduces autophagy and oxidative stress Counteracts butyl benzyl phthalate
toxicity

Li Y. et al. (2023)

n-3 PUFAs Modifies lipid composition, reduces
lipid peroxidation

Enhances membrane fluidity, improves
oocyte quality

Freret et al. (2019)

Alpha-Lipoic Acid (ALA) Suppresses oxidative stress-induced
apoptosis, protects against DNA
damage

Reverses cyclophosphamide-induced
meiotic maturation failure

Wang W. et al. (2023)

Zinc Reduces ROS, enhances mitochondrial
activity

Improves oocyte quality and embryonic
development during IVM

Yao et al. (2023), Khalil et al. (2021)

Lycopene Scavenges ROS, enhances embryo
cleavage

Improves inner cell mass (ICM)
numbers under heat shock conditions

Residiwati et al. (2021)

FLI Medium (FGF2, LIF, IGF1) Promotes glucose metabolism,
upregulates key signaling pathways

Enhances blastocyst formation, reduces
spindle abnormalities

Nahar et al. (2024), Currin et al. (2022)

Myo-Inositol Modulates insulin signaling, improves
FSH sensitivity

Enhances oocyte quality, fertilization
rates, and early embryonic development

Alviggi et al. (2016), Dinicola et al.
(2021)

(Continued on the following page)

Frontiers in Cell and Developmental Biology 05 frontiersin.org

https://doi.org/10.3389/fcell.2025.1619758
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Chen et al. 10.3389/fcell.2025.1619758

TABLE 1 (Continued) Summary of dietary supplements, mechanisms, and effects on oocyte quality.

Supplement Mechanism Effect on oocyte quality References

Growth Hormone (GH) Reduces aneuploidy, improves endometrial
patterns

Increases euploid blastocyst rates, enhances
implantation and pregnancy rates

Guo et al. (2023), Lan et al. (2019)

Putrescine Enhances meiosis resumption, improves
blastocyst cell counts

Increases oocyte cleavage efficiency Bicici et al. (2023)

FIGURE 1
Mechanistic and biological pathways on human clinical trial for dietary supplements on oocyte.

with diminished ovarian reserve (Al-Safi et al., 2016). In PCOS
patients undergoing IVF, n-3 PUFA specifically improves oocyte
maturation by inhibiting oxidative stress, clearing free radicals,
and maintaining spindle/chromosome integrity (Ma et al., 2023).
Furthermore, myo-inositol supplementation in poor responders
undergoing ICSI has not shown differences in gonadotropin dose,
oxidative stress index (OSI), or total retrieved and mature oocytes
count. However, ovulation triggering improves fertilization rates
and embryo quality (Nazari et al., 2020). Standardized multi-
nutrient supplementation in women undergoing ICSI has been
shown to improve pregnancy outcomes, indicating that multi-
nutrient regimens enhance embryo developmental competence
(Nouri et al., 2017). Multi-nutrient supplementation also confers
positive effects on follicular output ratewhile reducing gonadotropin
requirements (Gopinath et al., 2024). Additionally, early-onset
estrogen supplementation improves the quality of retrieved

immature oocytes, enhancing maturation rates during IVM cycles
(Hatirnaz et al., 2021) Figure 1.

4 Precision medicine in oocyte
enhancement

The integration of precision medicine into reproductive health
offers transformative potential for addressing female infertility,
particularly through targeting the enhancement of oocyte quality.
Precision medicine customizes interventions based on genetic,
metabolic, and biomarker profiles, addressing the molecular
heterogeneity that underlying infertility. Although the efficacy
of dietary supplements remains debated, they have emerged as
critical modulators of oocyte health, exerting their effects through
antioxidant, mitochondrial, and hormonal pathways.
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4.1 Genetic strategies

Genetic variability significantly influences ovarian reserve,
oxidative stress responses, and mitochondrial function, thereby
shaping individual responses to supplementation. For instance,
polymorphisms in genes such as SOD or GPX4 can influence
the efficacy of antioxidant therapies. Melatonin, which upregulates
the expression of ATP7B and GPX4 in cumulus cells, may be
particularly beneficial individuals with genetic variants that disrupt
metal ion homeostasis or lipid peroxidation defenses (Tsui et al.,
2024). Similarly, CoQ10’s ability to restore mitochondrial electron
transport chain activity may be critical for carriers of PDSS2
or COQ6 mutations linked to age-related oocyte decline (Ben-
Meir et al., 2015; Desbats et al., 2015).

In PCOS, INSR variants correlate with insulin resistance,
guiding the use of myo-inositol to improve FSH signaling and
glucose uptake (Unfer et al., 2017; Han et al., 2024). Genetic
screening for such variants could stratify patients for personalized
supplementation protocols, thereby enhancing ART outcomes.

4.2 Metabolic profiling

Metabolic dysregulation, including mitochondrial dysfunction
or insulin resistance, significantly influences the efficacy of
supplements. NAD + precursors such as NR can mitigate age-
related NAD+ depletion in oocytes, thereby restoring chromosomal
integrity and mitochondrial membrane potential in murine models
(Li H. et al., 2023). Women with metabolic syndrome or PCOS,
often exhibiting mitochondrial inefficiency, may benefit from
NMN to boost ATP production and reduce ROS (Miao et al.,
2020). Lipidomic profiling of follicular fluid reveals elevated
EPA and DHA correlating with improved oocyte maturation,
particularly in PCOS patients (Freret et al., 2019; Ma et al., 2023).
Precision lipid supplementation could thus target individuals
with suboptimal fatty acid profiles. Similarly, α-KG, a TCA
cycle intermediate, enhances follicle numbers in aging oocytes
by restoring metabolic flux, suggesting utility in women with
diminished ovarian reserve (Wang H. et al., 2023).

4.3 Biomarker-driven optimization

Biomarkers such as AMH, oxidative stress markers, and
follicular fluid composition provide a means for real-time
monitoring of interventions. CoQ10 supplementation has
been shown to increase AMH-positive follicles and reduces
oxidative DNA damage in cisplatin-treated rats, highlighting
its role in preserving ovarian reserve (Ozcan et al., 2016). In
humans, follicular fluid vitamin D levels correlate with embryo
quality, supporting its use in vitamin D-deficient patients
undergoing ICSI (Baldini et al., 2024).

Dynamic biomarkers, such as mitochondrial membrane
potential or redox balance (GSH/GSSG ratio), could guide dose
adjustments. For example, melatonin’s restoration of glycolysis and
TCA cycle activity in HGL5 granulosa cells suggests that women
with metabolic dysregulation in cumulus-oocyte complexes may
require higher doses (Tsui et al., 2024). Similarly, elevated FDX1

levels linked to mitochondrial efficiency could identify candidates
for CoQ10 or ubiquinol supplementation (Serrano et al., 2022).

4.4 Challenges and future directions

Although significant progress has been made, key challenges
remain, including genetic heterogeneity such as MTHFR variants
complicating folate dosing, limited clinical validation of oxidative
stress biomarkers for infertility, and reliance on animal models,
highlighting the need for human RCTs with stratified cohorts
(Vitagliano et al., 2021;Woodward et al., 2022). Emerging tools such
as multi-omics (genomics, metabolomics) and AI-driven predictive
models offer solutions for instance, integrating genomic data with
follicular fluid metabolomics to predict antioxidant responses
(astaxanthin and vitamin E) (Maddahi et al., 2024; Tripathi et al.,
2023). Precision medicine is reshaping oocyte enhancement
by aligning interventions like melatonin and CoQ10 (targeting
mitochondrial dysfunction and oxidative stress in age-related
decline) or myo-inositol and omega-3 PUFAs (addressing PCOS-
specific dysregulation) with individual genetic, metabolic, and
biomarker profiles. To realize this potential, future research must
prioritize human trials, biomarker validation, and integrative omics
approaches, advancing fertility care from empirical practices to
evidence-based precision therapeutics.

5 Limitations of current evidence and
recommendations for future research

The following section discusses the key limitations of existing
studies on dietary interventions and oocyte quality, as well as
actionable recommendations to address these gaps and advance
future research. While the cited articles provide valuable insights,
their mechanistic and clinical heterogeneities highlight the need for
a more standardized and pathway-centric approach in this field.

5.1 Limitations

5.1.1 Mechanistic gaps
One of the primary obstacles in optimizing dietary interventions

for oocyte quality is the lack of clarity regarding nutrient-specific
pathways. For instance, while quercetin has been linked to
improved IVF oocyte retrieval outcomes, its apparent negative
impact on embryo quality remains mechanistically unclear,
which complicates its clinical application (Baltazar et al., 2018).
Similarly, cysteamine’s dual role in upregulating molecular
markers during cumulus-oocyte complex (COC) maturation
while downregulating embryonic development-related genes
highlights a knowledge gap in its gene regulatory networks
(Doroftei et al., 2024). The role of α-KG in oocyte quality
and stem cell dynamics despite its documented influence on
differentiation and reprogramming lacks clarity, particularly in
how these processes directly translate to reproductive performance
(Karayiannis et al., 2018). Oxidative stress interventions also face
mechanistic ambiguities: GSH only partially rescues ovarian follicle
loss, suggesting incomplete understanding of redox balance in
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follicular survival (Hohos et al., 2020), while melatonin’s ability
to ameliorate age-related meiotic defects via the SIRT2-dependent
H4K16 deacetylation pathway requires deeper exploration to define
its broader applicability (Wu et al., 2024). Metabolic interactions
further exemplify mechanistic uncertainties. High-energy diets,
though promoting follicular growth through elevated insulin,
paradoxically impair oocyte quality, indicating unresolved links
between metabolic signaling and oocyte competence (Li Z. et al.,
2023). Similarly, fatty acid supplementation in bovine models
fails to modify lipid metabolism or developmental capacity,
underscoring a disconnect between fatty acid’s theoretical benefits
and practical outcomes (Gardinal et al., 2018).

5.1.2 Clinical heterogeneity
Clinical translation is hindered by variability in diagnostic

and dosing frameworks. The absence of standardized criteria for
ovarian dysfunction and “poor responder” classification limits
generalizability across studies, complicating the identification of
target populations (Chantrasiri et al., 2025). Dosing inconsistencies
further exacerbate reproducibility challenges: melatonin’s broad
dosage range (2–18 mg/day) and unclear optimal thresholds for
selenium in female reproductive health reflect a lack of precision
in therapeutic protocols (Genario et al., 2019; Chowdhury et al.,
2021). Variable supplement durations, as seen in bovine studies
where prepartum whole raw soybean supplementation showed
no effect on oocyte quality, highlight the need for standardized
timelines (Tomita et al., 2023). Species-specific differences also
limit translational relevance. For example, melatonin’s integration
into bovine breeding management faces practical challenges
despite its theoretical benefits, and rodent-derived data on high-
fat diets or fatty acid supplementation poorly predict human
responses, emphasizing the need for human-centric models
(Piscopo et al., 2025). Even promising interventions, like sunflower
seed supplementation or crude protein’s adverse effects on embryo
development, lack consistency across species, underscoring the
risks of extrapolating animal data to clinical practice (Plante-
Dube et al., 2021; Lim et al., 2020).

5.2 Recommendations

5.2.1 Pathway-centric trials
Mitochondrial and Redox Pathways: Targeted interventions

aimed at enhancing mitochondrial function and redox balance
are critical for improving oocyte quality. The evaluation of
compounds such as CoQ10, DHEA, and Cleo-20 T3 could
potentially increase the levels of ferredoxin 1 (FDX1), a key
regulator ofmitochondrial TCA cycle activity and electron transport
chain efficiency, thereby mitigating lipid peroxidation and apoptosis
in oocytes (Serrano et al., 2022). FDX1’s dual role in energy
metabolism and oxidative stress reduction positions it as a
therapeutic target for age-related declines in oocyte competence,
particularly in IVF settings where mitochondrial dysfunction is
prevalent.

5.2.1.1 Kinase signaling
Evaluating kinase-driven pathways offers opportunities

to address metabolic and maturation defects in oocytes. For

instance, combining myo-inositol with folic acid in PCOS patients
modulates extracellular signal-regulated kinase 1/2 (ERK1/2)
phosphorylation, reducing phosphorylated AKT levels and
improving insulin sensitivity, a key factor in PCOS-associated
infertility (Unfer et al., 2017). Similarly, FLI medium in follicular
fluid enhances oocyte meiotic maturation by activating MAPK
pathways, which regulate cytoskeletal dynamics and developmental
competence (Thongkittidilok et al., 2022). Prioritizing trials on
kinase signaling could refine therapies for conditions like PCOS and
poor ovarian response.

5.2.1.2 Antioxidant synergy
Optimizing antioxidant combinations, such as chlorogenic acid,

curcumin, and β-mercaptoethanol, may amplify protection against
oxidative damage during embryo development. While individual
antioxidants show partial efficacy, synergistic formulations could
enhance blastocyst formation rates by targeting multiple redox
pathways simultaneously (Anchordoquy et al., 2022). This approach
is particularly relevant for patients with elevated oxidative stress,
such as those with advanced maternal age or metabolic disorders.

5.2.2 Standardized dosing
5.2.2.1 Reproductive protocols

Defining optimal dosages for supplements like melatonin
(2–18 mg/day) is essential to balance efficacy and safety, especially
regarding gestational and neonatal outcomes (Chowdhury et al.,
2021). Trace minerals (Cu, Se, Mn, Zn) during in vitro maturation
(IVM) improve embryo quality, but standardized thresholds are
needed to avoid toxicity and ensure reproducibility (Tabatabaie et al.,
2022). Similarly, omega-3 PUFAs require dose-dependent studies to
validate their role in restoring ovarian gene expression disrupted by
high-fat diets (Li et al., 2020).

5.2.2.2 Dietary interventions
Standardizing components of the Mediterranean diet rich

in antioxidants, monounsaturated fats, and polyphenols could
improve IVF pregnancy rates by reducing inflammation and
oxidative stress (Machado et al., 2020). Concurrently, validating
peripartum oleic acid dosing is critical to support follicular
and oocyte health during metabolic stressors like negative
energy balance (Mintziori et al., 2020).

5.2.2.3 Toxicity thresholds
Establishing safe upper limits for supplements is vital. For

example, crude protein over-supplementation may impair embryo
development, necessitating guidelines to avoid unintended harm
(Lim et al., 2020). Similarly, while niacin reduces oxidative stress,
its optimal dosing for ovarian follicle rescue without adverse
effects remains undefined (Almubarak et al., 2021). Prioritizing
pathway-centric trials and standardized dosing frameworks will
bridge mechanistic knowledge gaps and clinical inconsistencies,
enabling precision-based strategies to enhance oocyte quality and
fertility outcomes.

6 Conclusion

Dietary supplements and nutritional interventions influence
oocyte quality through diverse mechanisms across species, targeting
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oxidative stress, mitochondrial function, and metabolic pathways.
Key findings include the benefits of antioxidants in reducing ROS
and improving IVF outcomes, the role of myo-inositol and n-3
PUFAs in enhancing oocyte quality in patients with PCOS, and
the ability of CoQ10 and α-KG to counteract age-related oocyte
decline. Preclinical studies highlight promising compounds such as
quercetin, SDF-1, and lycopene, which improve oocyte retrieval,
cytoplasmicmaturation, and stress resilience in rodents and bovines.
However, several limitations hinder translational progress, including
inconsistent dosages, mixed outcomes, and a lack of standardized
protocols. High-energy diets and crude protein supplementations
may impair oocyte quality, while clinical heterogeneity and species-
specific responses further complicate the application of preclinical
findings. TO address these challenges, future research should
prioritize human-centric studies, standardized dosing frameworks,
and pathway-centric trials targeting mitochondrial function and
antioxidant synergy. Establishing evidence-based protocols and
focusing on clinical reproducibility will be essential to translate these
insights into reliable therapies for infertility. In summary, while
dietary supplements offer significant potential to improve oocyte
quality, a more systematic and standardized approach is urgently
needed to bridge the gap between preclinical discoveries and clinical
applications.
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