:' frontiers ‘ Frontiers in Cell and Developmental Biology

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Yi Yao,
Renmin Hospital of Wuhan University, China

REVIEWED BY
Francis Yew Fu Tieng,

University of Malaya, Malaysia

Ateeq M. Khalig,

Indiana University Bloomington, United States

*CORRESPONDENCE

Wenqi Bai,
326498302@qg.com

Feng Li,
lifenglover@sina.com

"These authors have contributed equally
to this work

RECEIVED 29 April 2025
AccepTED 01 September 2025
PUBLISHED 29 September 2025

CITATION

Chen M, Cai Y, Han F, Li B, Xu Z, Cui K, Bai W
and Li F (2025) Single-cell and bulk
RNA-sequencing reveal PRRX2-driven
cancer-associated fibroblast-mediated
perineural invasion for predicting the
immunotherapy outcome in colorectal
cancer.

Front. Cell Dev. Biol. 13:1620388.

doi: 10.3389/fcell.2025.1620388

COPYRIGHT

© 2025 Chen, Cai, Han, Li, Xu, Cui, Bai and Li.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Cell and Developmental Biology

Type Original Research
PUBLISHED 29 September 2025
pol 10.3389/fcell.2025.1620388

Single-cell and bulk
RNA-sequencing reveal
PRRX2-driven cancer-associated
fibroblast-mediated perineural
Invasion for predicting the
Immunotherapy outcome in
colorectal cancer

Mingxiao Chen', Yue Cai?, Feng Han*', Bo Li*, Zhou Xu*,
Kaili Cui®, Wengqi Bai®* and Feng Li>*

'Department of Radiation Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to
Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical
University, Taiyuan, China, ?Department of Anesthesiology, Shanxi Province Cancer Hospital/Shanxi
Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital
Affiliated to Shanxi Medical University, Taiyuan, China, *Department of Information Management,
Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of
Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China, “Department
of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital,
Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University,
Taiyuan, China, *Central Laboratory, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to
Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical
University, Taiyuan, China, °Department of Colorectal Surgery, Shanxi Province Cancer
Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer
Hospital Affiliated to Shanxi Medical University, Taiyuan, China

Background: Perineural invasion (PNI) is common in a variety of solid tumors
and has been identified as an important pathway promoting tumor local
invasion and distant metastasis. Its presence is usually associated with increased
aggressiveness, malignant biology, and a worse patient prognosis. However,
its specific role and regulatory mechanisms in colorectal cancer (CRC)
remain unclear.

Methods: In this study, we integrated 20 CRC single-cell transcriptome datasets,
which contained 575,768 high-quality cells, and used the Scissor algorithm to
map PNI phenotypes in TCGA bulk samples to the single-cell level. Nine cancer-
associated fibroblast (CAF) subpopulations were identified and functionally
annotated. We evaluated the clinical relevance of CAF subsets in TCGA and three
independent cohorts (silu_2022, GSE39582, and GSE17536) using BayesPrism-
based deconvolution. We analyzed transcriptional regulatory networks using
pySCENIC and validated PRRX2 function by in vitro experiments. Immune
infiltration characteristics were quantified using the ssGSEA score, and the
association between the PRRX2 score and immune checkpoint inhibitor efficacy
was analyzed in conjunction with two immunotherapy cohorts. In addition, we
performed a drug sensitivity analysis based on the GDSC pharmacogenomics
database to screen potential therapeutic agents.

Results: In this study, we systematically revealed the characteristics of
the perineural invasion-associated fibroblast subsets and their regulatory
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mechanisms. In PNI-positive tumors, the proportion of fibroblasts was
significantly increased, with the enrichment of MMP2+ myofibroblastic cancer-
associated fibroblasts (myCAFs), and facilitated perineural infiltration through
extracellular matrix remodeling. Further analysis revealed that PRRX2 was
a core regulator of MMP2+myCAFs, promoting perineural invasion through
the activation of TGF-B signaling pathways. PRRX2 knockdown significantly
inhibited fibroblast proliferation, clonogenic formation, and invasive migration
capacity, and it reduced TGFB1 and NGF expressions. The clinical cohort
validation demonstrated a significant correlation between the PRRX2-score
and advanced tumor stage, along with vascular and lympho-vascular invasion
(LVI). Furthermore, patients with high PRRX2 scores had a significantly
worse prognosis. In addition, patients with high PRRX2 scores responded
poorly to immune checkpoint inhibitors but may be sensitive to targeted
agents or antibody-coupled drugs, which may serve as potential targets for
combination therapy.

Conclusion: This analysis established PRRX2-driven MMP2+myCAFs as pivotal
mediators of CRC perineural invasion through TGF-B/ECM remodeling.
The PRRX2 score serves as a biomarker for prognosis prediction and

immunotherapy outcome.
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1 Introduction

Colorectal cancer (CRC) is the third most prevalent malignant
gastrointestinal neoplasm tumor worldwide, with nearly 20%
recurrence within 5 years (Qaderi et al., 2021; Wang et al., 2024).
In recent years, perineural invasion (PNI) has emerged as an
independent metastatic pathway in a variety of gastrointestinal
neoplasms (Que et al., 2024; Li et al,, 2021; Yang et al., 2020).
Several studies have shown that PNI is associated with poor survival
prognosis in gastric cancer, pancreatic cancer, and other tumors,
and is often used as an essential basis for early treatment decisions
(Cienfuegos et al., 2017; Kang et al., 2022). In CRC, the incidence
of PNI ranges from 20% to 30% (Li et al., 2022). However, the
molecular mechanism of PNT in patients with CRC remains unclear.
Understanding the underlying mechanisms of PNI and exploring
potential predictive biomarkers may aid in more precise clinical
management.

Recent studies have shown that PNI has made significant
advances in exploring mechanisms and functions across various
cancers. Cancer-associated fibroblasts (CAFs) have been identified
as a key factor in promoting PNI events. Previous studies have
demonstrated that CAFs facilitate PNI by secreting extracellular
vesicles (EVs) to carry PNI-associated transcripts in pancreatic
cancer (Zheng et al., 2024). In oral squamous cell carcinomas, CAFs

Abbreviations: PNI, perineural invasion; CRC, colorectal cancer; CAF,
cancer-associated fibroblasts; myCAFs, myofibroblastic cancer-associated
fibroblasts; scRNA-seq, single-cell RNA sequencing; TCGA, The Cancer
Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes;
TFs, transcription factors; RSS, regulon specificity scores; HIFs, human
intestinal fibroblasts; HCT116, human colorectal carcinoma cells; OS,
overall survival; DFS, disease-free survival; T-stage, tumor infiltration depth;
N-stage, lymph node metastasis; ICBs, immune checkpoint inhibitors;
ADCs, antibody-coupled drugs.
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can secrete factors such as CXCL12 and IL-6 to activate Schwann
cells and induce the expression of neurotrophic factors and axon
guidance-related proteins, leading to enhanced neural infiltration
of tumor cells (Zhang et al., 2025). A high level of CAF infiltration
is associated with advanced TNM stages and a more severe degree
of PNI in gastric cancer (Zhang J. et al., 2020). However, CAFs are
highly heterogeneous (Luo et al., 2022). Hence, an in-depth study of
CAFs may aid in understanding the mechanism and function of PNL.

In this study, we integrated 20 single-cell RNA sequencing
(scRNA-seq) datasets with 575,768 cells from 291 patients.
MMP2+myCAFs were enriched in the PNI+ group and positively
associated with advanced clinical stages and poor prognosis. PRRX2
was identified as a key transcriptional regulator of MMP2+myCAFs
using the pySCENIC analysis. Based on PRRX2 and its target genes,
we developed a PRRX2-score risk prediction model. We found that
the PRRX2 score was associated with multiple clinical information
and predicted prognosis. The PRRX2 score could predict the benefit
of immunotherapy. Patients with low PRRX2 scores responded
to immunotherapy, whereas those with high PRRX2 scores had
a poor prognosis. However, through drug sensitivity analysis, we
found that patients with a high PRRX2 score could potentially
benefit from targeted drugs (ZM447439, BMS.754807, etc.), ADCs
(PIK3CA, MUC1, MET, etc.), and other combinations of treatment
(CZC24832, KU.55933, staurosporine, etc.).

2 Methods
2.1 Data collection
In this study, we integrated 20 scRNA-seq datasets

of CRC, encompassing 291 patients. These datasets were
obtained from the Gene Expression Omnibus (GEO) database
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(https://www.ncbinlm.nih.gov/geo/) and EMBL-EBI ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/), — with ~ the  following
accession numbers: GSE132257 (Lee et al, 2020), GSE132465
(Lee et al., 2020), GSE146771 (Zhang L. et al., 2020), GSE166555
(Uhlitz et al., 2021), GSE178341 (Pelka et al., 2021), GSE188711
(Guo et al., 2022), GSE200997 (Khaliq et al., 2022), GSE201349
(Becker et al., 2022), GSE205506 (Zhou et al., 2024), GSE231559
(Hsu et al., 2023), GSE178318 (Che et al.,, 2021), GSE161277
(Zheng et al., 2022), GSE179784 (Sui et al., 2022), GSE236581
(Chen et al., 2024), GSE242271, GSE245552 (Liu et al., 2024),
GSE163974 (Wang et al., 2021), GSE234804 (Berlin et al., 2023),
GSE144735, and E-MTAB-8107. Additionally, we incorporated
multiple bulk RNA-seq datasets, including The Cancer Genome
Atlas (TCGA) COAD and READ project (TCGA cohort)
from cBioPortal, the Siluo etal. cohort (silu_2022 cohort)
(Roelands et al., 2023), and the GEO datasets GSE39582
(Marisa et al, 2013) and GSE17536 (Smith et al., 2010)
(Supplementary Tables S1-53). Immunotherapy-related data were
derived from the following cohorts’ enrolled patients treated
with immune checkpoint inhibitors: the Korean gastric cancer
cohort (Kim et al.,, 2018) and the IMmotionl51 study, a phase-
III randomized controlled trial evaluating atezolizumab plus
bevacizumab versus sunitinib in advanced renal cell carcinoma
(Motzer et al, 2022). PNI annotations were extracted from
postoperative pathological reports provided by TCGA, which
were accessed via the cBioPortal platform (Gao et al, 2013).
For the TCGA cohort, clinical data, survival outcomes, and bulk
transcriptomic profiles were retrieved from the National Cancer
Institute’s GDC Data Portal. Clinical and prognostic information
for the GSE39582 and GSE17536 cohorts was sourced from its
original publication (Kim et al., 2018).

2.2 Data processing and analysis

The following analysis was performed using Seurat R package
(v4.4.0) (Hao et al., 2021). The NormalizeData function normalized
raw counts relative to the total library size. The top 2,000
highly variable features were identified by the FindVariableFeatures
function. Focusing on these genes was helpful for highlighting
biological signals in downstream analysis. The ScaleData function
was utilized to scale the data. After using RunPCA for dimension
reduction, harmony (v 1.2.3) was employed to eliminate batch
effects between samples. Then, the RunUMAP function was applied
for visualization with the top 30 harmony-reduced principal
components. The UMAP plots before and after batching are shown
in Supplementary Figures S1A, B. To evaluate clustering consistency
after integration, we calculated silhouette scores based on the
harmony-reduced embedding. To reduce computational complexity
in this large dataset, we implemented a subsampling strategy by
randomly selecting up to 5,000 cells per cluster. Silhouette widths
were computed using the silhouette () function from the cluster
R package, thus measuring intra-cluster cohesion and inter-cluster
separation. Violin plots of silhouette distributions across major cell
types are shown in Supplementary Figure S1C. FindNeighbors and
FindClusters functions were used to cluster different cells with a
resolution of 0.5. Ultimately, UMAP was applied to display the
clustering results in a two-dimensional space. Subsequently, we
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annotated each cluster to specific cell types using known classical
canonical markers. The following genes were utilized for cell-
type annotation: fibroblasts (FAP and COL1A1), epithelial cells
(EPCAM and KRT19), endothelial cells (VWF and PECAM1), B
cells (CD19, MS4A1, and MZB1), myeloid cells (FCGR3A and
CD68), T cells (CD3D and CD3E), and mast cells (TPSABI1
and CPA3). Subpopulations of fibroblasts were annotated, and
each subpopulation was labeled according to its marker gene
(Supplementary Table S4). Differences in gene expression between
the subpopulations were analyzed by the “FindAllMarkers” function
using the following parameters: min.pct = 0.1, logfc.threshold =
0.25, and only.pos = T. False discovery rate (FDR) correction
was automatically applied within the FindAllMarkers function
using the Benjamini-Hochberg (BH) method, and adjusted p-
values (p_val_adj) were used to determine statistical significance.
Pathway analysis was performed for each subpopulation using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database with
the R package clusterProfiler (v4.12.1) with BH FDR correction
(Yu et al.,, 2012). Pathways with adjusted p-values (p.adjust) <0.05
were considered to be statistically significant.

2.3 Assessment of cell-type infiltration
based on deconvolution for bulk RNA
datasets

To assess the function of different cell types in bulk RNA
datasets, we employed the Bayesian approach known as the
BayesPrism (v 2.2.2) method, which jointly predicts the cellular
composition and gene expression for each cell type (Chu et al., 2022).
Based on the single-cell read count matrix, we constructed cell-
type-specific expression profiles and estimated the proportions of
cell types from public large-scale RNA-seq using the constructed
cell-type reference. Differences in the infiltration proportions of
specific subpopulations across distinct clinicopathological groups
were assessed using a two-sided Wilcoxon rank-sum test, followed
by multiple testing correction using the Holm method. Furthermore,
the infiltration proportions of the subpopulations were also used to
assess prognosis in bulk cohorts to evaluate prognosis.

2.4 Transcription factor regulator analysis

Regulatory networks and regulator activities were analyzed
using the pySCENIC framework with default parameters
(version 0.11.2) (Van de Sande et al., 2020). Specifically, subgroup-
specific transcription factors (TFs) were identified through the
Wilcoxon rank-sum test. Additionally, the Jensen-Shannon
divergence was calculated using the philentropy software package,
which provided the regulon specificity scores (RSSs) for each
cell type. The activity of the regulators was quantified using the
AUCell module of pySCENIC, with activity scores represented as
AUC values. Active regulators were identified based on the default
thresholds set by AUCell. Genes with an importance score greater
than 20 were considered the target genes of PRRX2. Based on the
PRRX2 target genes, we performed enrichment analysis on each cell
using irGSEA (2.1.5).
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2.5 Differential expression analysis and
functional enrichment analysis

Differential expression analysis was performed between the
high and low PRRX2-score groups using the limma package
(v 3.56.2) (Ritchie et al., 2015). KEGG pathway enrichment was
assessed via the gene set enrichment analysis (GSEA) using the
gseKEGG function from the clusterProfiler package (v 4.12.1) with
BH FDR correction.

2.6 Drug sensitivity analysis

The drug sensitivity analysis was conducted using the
calcPhenotype function from the oncoPredict package. The
datasets for fitting the model were from the GDSC2 database
(https://www.cancerrxgene.org/).

2.7 Cell culture and transfection

Human intestinal fibroblasts (HIFs) and human colorectal
(HCT116)
resuspended in complete DMEM supplemented with 10% fetal

carcinoma cells were revived, centrifuged, and
bovine serum (FBS) and 1% penicillin-streptomycin. Cells
were maintained at 37°C in a humidified incubator with 5%
CO, and subcultured every 3days at a 1:3 split ratio. For
gene silencing experiments, PRRX2-targeting siRNA (50 uM)
was transfected using Lipofectamine™ 3000 according to the
manufacturer’s protocol. Cells were collected 24 h post-transfection
for downstream analyses.

2.8 RNA extraction, reverse transcription,
and qPCR

Total RNA was isolated from cultured cells using TRIzol
reagent following the manufacturer’s protocol. RNA purity and
concentration were assessed using spectrophotometry. First-
strand ¢cDNA was synthesized using the ReverTra Ace qPCR
RT Kit, and quantitative real-time PCR was carried out with
the SYBR Green qPCR Master Mix on an Applied Biosystems
7500 Real-Time PCR System. The primer sequences used were as
follows: PRRX2 (Forward: 5'- GCACCACGTTCAACAGCAG-3',
Reverse: 5'- TCCTTGGCCTTGAGACGGA-3'), TGFB1 (Forward:
5'- GGCCAGATCCTGTCCAAGC-3', Reverse: 5'- GTGGGTTTC
CACCATTAGCAC-3'), NGF (Forward: 5'- GGCAGACCCGC
AACATTACT-3’, Reverse: 5'- CACCACCGACCTCGAAGTC-3'),
(Forward: 5'- CATGTACGTTGCTATCCAGGC-3/,
Reverse: 5'- CTCCTTAATGTCACGCACGAT-3"), siPRRX2
(5'- CCGTCTCAAGGCCAAGGAGTT-3'), and siCtrl (5'- TTCT
CCGAACGTGTCACGT-3'). Gene expression was calculated using
the 27 AACt method, with -actin as the internal control. Each qPCR
experiment was repeated thrice, and the differences were calculated.

B-actin
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2.9 Cell proliferation assay (CCK-8)

HIFs and HCT116 cells were seeded into 96-well plates and
transfected; then, they were incubated for 24, 48, 72, and 96 h.
At each time point, 10 uL of CCK-8 solution was added per well,
followed by a 2-h incubation at 37 °C, and each assay was repeated
thrice. Cell viability was assessed by measuring absorbance at
450 nm using a microplate reader.

2.10 Colony formation assay

Transfected HIFs and HCT116 cells were seeded into 6-well
plates (1,000 cells per well) and cultured for 14 days. Cells were
fixed with 4% paraformaldehyde and stained with crystal violet, and
colonies (containing >50 cells) were counted under a microscope.

2.11 Transwell migration and invasion
assays

HCT116 cells were digested, washed, and resuspended in
serum-free medium at 4 x 10° cells/mL. An amount of 500 uL
of HIF cells (4 x 10° cells/mL) were seeded per well in
24-well plates. Matrigel-coated Transwell inserts (8.0-um pore) were
placed to allow direct contact with HIFs. Then, 200 uL of HCT116
cells (8 x 10°) were added to the upper chamber. After 24 h
incubation, non-migrated cells were removed, and invaded cells on
the lower membrane surface were fixed (methanol), stained (crystal
violet), and quantified under a microscope (100x), analyzing three
representative fields per insert. GraphPad Prism was used to draw
graphs and to count significance.

2.12 Statistical analysis

All analyses were conducted using R version 4.3.1. Survival
(v 3.5-7) [62] and Survminer (v 0.4.9) [63] packages were utilized
for survival analysis. Kaplan-Meier curves were used to compare
survival differences, and Cox proportional hazards regression
was utilized to assess survival rates. Statistical significance was
determined by the Wilcoxon’s rank-sum test, followed by multiple
testing correction using the Holm method. The differences in qPCR
expression and cell number were analyzed by t-tests. Differential
gene expression between the control and knockdown groups was
analyzed using t-tests, with paired comparisons analyzed using
the Wilcoxon signed-rank test. Enrichment analysis of drug-target
pathways was performed using hypergeometric testing, with
p-values adjusted using the BH method.

3 Results

3.1 Fibroblasts are associated with
perineural invasion in colorectal cancer

We integrated 20 CRC single-cell transcriptome datasets and
obtained 575,768 high-quality cells via the Seurat integration
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algorithm. We mapped bulk RNA-seq data with PNI tags from
the TCGA CRC cohort (Supplementary Table S5) to all scRNA-seq
data by using the Scissor method. Finally, a total of 45,789 PNI-
positive (PNI+, 33.5%) and 90,744 PNI-negative (PNI-, 66.5%)
cells were identified (Figure 1A; Supplementary Figure S1A, B).
In the study, we classified all cells into seven major cell
types (Figures 1B, C, G) based on the canonical marker gene.
Subsequently, we calculated the silhouette widths for representative
cells across each cell type based on the Harmony-integrated
embedding (Supplementary Figure S1C), which showed moderate
overall cluster separation with a global average silhouette score
of 0.439. After comparing the number and proportion of each
cell type in the PNI+/PNI- groups, we found that the proportion
of fibroblasts and epithelial cells was significantly higher in the
PNI+ group (Figure 1D).

To provide further confirmation of the importance of CAF in
promoting PNI, we investigated the function of CAF at different
levels. The results demonstrated that the proportion of CAF was the
greatest in the PNI+ group at the single-cell RNA level (Figure 1E).
Deconvolution analysis of bulk RNA from TCGA revealed that
the proportion of CAF was higher in the PNI+ population and
significantly different from that in the PNI- patients (Figure 1F).
The single-cell RNA results were highly consistent with the bulk
RNA data. In addition, we analyzed the expression of several
PNI-promoting factors that have been reported to be present in
CAE These factors include neurotrophic factors (e.g., NGF and
BDNF) (Xu et al, 2019), chemokines (e.g., CXCL12) (Xu et al.,
2019), and extracellular matrix remodeling enzymes (e.g., MMPs)
(Chen et al., 2023; Tassone et al., 2022). In CRC, we observed
high expressions of NGE BDNE and MMP2 in fibroblast
subpopulations (Figure 1H). This finding suggests the potential
for a similar signaling mechanism underlying perineural
infiltration in CRC.

3.2 MMP2+myCAF promotes perineural
invasion and is the biomarker of prognosis

Fibroblasts were significantly enriched in the PNI+ group and
were further classified into nine subsets with functional heterogeneity
(Figure 2A). In addition, MMP2+myCAE, PDPN + myCAE and
ANGPT2+pCAF were significantly higher in the PNI+ group
(Figures 2B-D), suggesting that these subsets may play a critical role in
the remodeling of the tumor microenvironment associated with neural
invasion. A previous study demonstrated that MMP2 was capable
of degrading collagen surrounding nerve bundles by facilitating the
dissemination of cancer cells within the perineural space in oral cavity
squamous cell carcinoma (Tassone et al., 2022).

We identified the highly expressed genes in each subgroup
using the FindAllMarkers function and performed KEGG pathway
enrichment analysis. The MMP2+myCAF subpopulation was found
to be significantly enriched in the ECM-receptor interaction,
vascular smooth muscle contraction, and focal adhesion pathway,
suggesting that this subset may promote tumor cell infiltration and
metastasis by remodeling the extracellular matrix (Figure 2E). The
ANGPT2+pCAF subpopulation demonstrated enrichment in the
PI3K-Akt signaling pathway and complement and coagulation
cascades, indicating its potential involvement in cell survival,
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proliferation, and metabolism, along with its influence on the
local inflammatory response and immune modulation. The
PDPN + myCAF subgroup was found to be associated with
endoplasmic reticulum protein processing pathways, including
protein processing in the endoplasmic reticulum.

The BayesPrism algorithm was employed to deconvolve the
aforementioned three CAF subgroups into TCGA and three
independent CRC bulk RNA-seq datasets (GSE39582, GSE17536,
and silu_2022), assessing their clinical relevance. The infiltration
score of MMP2+myCAF was found to be strongly associated
with poor patient prognosis in all four datasets. Patients with
high infiltration had significantly worse overall survival (OS) and
disease-free survival (DFS) scores (Figure 2F). Further clinical
stratification analysis of the TCGA cohort revealed that the degree of
MMP2+myCAF infiltration increased with increasing clinical stage,
and it was considerably higher in the T3-4, N1-2, and M1 groups
than in the earlier group (Figure 2G).

In summary, MMP2+myCAF is closely associated with the
neuroinvasive phenotype and significantly affects the survival
prognosis of patients.

3.3 PRRX2 drives perineural invasion via
TGF- signaling in MMP2+myCAF

To explore the key regulatory factors in MMP2+myCAF, we
utilized pySCENIC to evaluate the expression levels of transcription
factors and their activities in the regulatory network. Using the
RSS analysis, MMP2+myCAF type-specific regulons (Figure 3A)
and PNI+ group-specific regulons (Figure 3B) were identified.
Importantly, the PRRX2 regulon was significantly shared between
the two different groups. The expression analysis revealed that
PRRX2 was significantly highly expressed and most active in
MMP2+myCAF (Figures 3C-E). Furthermore, PRRX2 and its
target genes exhibited significantly higher AUCell values in PNI+
samples than in PNI- samples (Figure 3F; Supplementary Table S6),
thereby offering additional evidence in support of its hypothesized
driving role in the development of PNI. PRRX2 targets showed
significant enrichment in the TGF-p signaling pathway and the
ECM-receptor interaction pathway, suggesting that PRRX2 may
play a role in the invasive behavior of tumor cells in the tumor
microenvironment (Figure 3G).

PRRX2 gene knockout in vitro resulted in decreased expression
of TGF-B1 and NGE indicating that PRRX2 may promote nerve
invasion through the downstream effectors (Figure 3H). The CCK-
8 cell proliferation assay revealed a substantial decrease in the
proliferation capacity of tumor-associated fibroblasts following
PRRX2 knockdown (Figure 3I). Moreover, the number of cell clones
was significantly reduced after PRRX2 knockdown in HIFs and co-
culture with the CRC cell line HCT116 by the clone formation assay
(Figure 3I). Furthermore, the Transwell invasion and migration
(Figure 3], K; Supplementary Figure S2) assays further confirmed
that PRRX2 knockdown significantly inhibited the cell invasiveness
and migration ability, suggesting its multiple mechanistic roles in
promoting tumor progression and PNI.

Overall, PRRX2 played a core regulatory role in MMP2+myCAF
and a key role in promoting the PNI by regulating TGF-B-
related pathways.
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FIGURE 1
Mapping and annotation of perineural invasion in single-cell data. (A) Scissor mapping results of colorectal cancer samples, where positive represents
the PNI(+) cells and negative represents the PNI(-) cells. (B) UMAP plot of total cell annotation of merged colorectal cancer single-cell data, where
different colors represent different cell types. (C) Bubble plot of the expression of marker genes for each annotated cell type. (D) Sankey plot of the
distribution of PNI groups across different cell types. (E) Bar plot showing the number of cells in each subtype and corresponding proportions with
PNI+ and PNI-. (F) Boxplot comparing the deconvoluted infiltration scores of each subtype between patients with or without PNI. (G) Feature plot
showing the expression of representative marker genes for each subpopulation. (H) Feature plot showing the expression of PNI-related factors. ns: p >
0.05;*: p<0.05;**: p < 0.01.
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FIGURE 2
Heterogeneity of fibroblast cells. (A) UMAP map of fibroblast cells, with different colors representing distinct subsets. (B) Sankey plot showing variation
in the proportions of different subtypes between PNI-positive (PNI+) and PNI-negative (PNI-) groups. (C) Bar plot showing the number of cells in each
subpopulation and corresponding proportions with PNI+ and PNI-. (D) Boxplot of nine CAF subpopulation proportions across single-cell samples. (E)
Bubble plot of the top 10 KEGG pathway enrichment for marker genes of nine CAF subpopulations. (F) Survival analysis of MMP2+myCAF infiltration
scores: overall survival in TCGA, silu_2022, and GSE39582 cohorts (left three panels); disease-free survival in TCGA and GSE17536 (right two panels).
(G) Boxplots comparing MMP2+myCAF infiltration scores between patients with or without vascular invasion, lymphovascular invasion, and PNI, and
across patients with different TNM stages. Statistical significance was evaluated using the Wilcoxon rank-sum test, with multiple testing correction
performed using the Holm method.

3.4 High PRRX2-score predicts poor Kaplan-Meier survival analysis was performed after categorizing

prognosis and correlates with
features

malignant patients into high- and low-expression groups according to the
median PRRX2 score. The high-score patients had significantly
poorer OS and DFS (both p < 0.05) (Figure 4A). Further analysis

We constructed a PRRX2 score using the ssGSEA method in  revealed a significant positive correlation between the PRRX2 score
four datasets of the CRC transcriptome to predict the prognosis. The ~ and tumor progression (Figure 4B). The PRRX2 score exhibited a
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Mechanisms driving perineural invasion in fibroblasts. (A) Rank points of the top 10 TFs specifically enriched in the MMP2+myCAF groups. (B) Rank
points of the top 10 TFs specifically enriched in PNI+ groups. (C) Violin plots of PRRX2+ regulon activities across CAF subpopulations. (D) DimPlot of all
CAF cells, with MMP2+myCAF shown in red. (E) Feature plot showing the regulon activity of PRRX2+ regulon. (F) Boxplot showing the PRRX2+ regulon
activity scores calculated using AUCell. Wilcoxon's test was used to calculate the statistical significance between PNI (+) vs. PNI (-). (G) Bar plot
showing the enriched KEGG pathway of PRRX2+ targets. (H) PRRX2 knockdown assay in HIF cell line. (I) CCK8 and colony formation assay showing
inhibition upon PRRX2 knockdown in the HCT116 cell line. Transwell assay demonstrating reduced invasion (J) and migration (K) after PRRX2
knockdown. Statistical tests were performed using t-test.”: p < 0.05,"*: p < 0.01, and***: p < 0.001.

progressive increase with the progression of the clinical stage, and it
was also significantly upregulated in patients with more advanced
tumor infiltration depth (T-stage) and lymph node metastasis
(N-stage). Notably, the PRRX2 score was significantly higher in
patients with LVI and PNI, indicating that this characteristic
score can effectively reflect the aggressive biological behavior of
the tumor (Figure 4B).
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The samples were grouped into high and low PRRX2 score
groups based on the median value. Subsequent differential
expression analysis uncovered several genes that were significantly
upregulated in the high-score subgroup (Figure 4C). These genes
were enriched in the PI3K-AKT and TGF- pathways, as shown
by KEGG pathway enrichment analysis (Figure 4D). GSVA was
used to compare the cancer hallmark enrichment between high and
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low PRRX2 score groups, and the results showed that the PRRX2-
high group was enriched in EMT, myogenesis, and other pathways
(Figure 4E). The results demonstrated that the PRRX2 regulon may
promote tumor progression, proliferation, and invasive behavior by
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regulating these key cancer-related pathways in MMP2+myCAE
We then compared immune infiltration between the two groups.
Patients with elevated PRRX2 scores exhibited an increase in
immunosuppressive cell populations, including natural killer cells
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and regulatory T cells (Figure 4F). These findings suggest that
PRRX2 may play a synergistic role in immune escape and tumor
microenvironment remodeling to evade immunosurveillance.

In summary, the PRRX2 score could be used as an independent
predictor of prognosis in CRC (Supplementary Figure S3). High
PRRX2 scores were associated with a stronger immunosuppressive
immune microenvironment and promotion of EMT, which was the
key reason for PNI.

3.5 PRRX2 score predicts immunotherapy
outcomes and promising treatment agents

The PRRX2 score could effectively predict immunotherapy
response and prognosis. In this work, we found that patients with
low PRRX2 scores had a good prognosis for immunotherapy (Kim
cohort: p = 0.042; IMmotionl51 cohort: p = 0.035) in several
immunotherapy cohorts (Figures 5A,B; Supplementary Table S7).
In the two immunotherapy cohorts, the area under the curve
(AUC) for distinguishing immunotherapy response based on the
PRRX2 score was higher than 0.7 (Kim cohort: AUC = 0.732;
IMmotion151 cohort: AUC = 0.716), and the PRRX2 score of
the non-response group was higher than that of the response
group (Figures 5A, B).

To improve patient benefit, we continued to explore alternative
treatment strategies. We performed drug sensitivity analysis and
identified several inhibitors that may be effective in patients
with low PRRX2 scores, such as EGFR inhibitors and MEK/ERK
pathway inhibitors (Figure 5C). Patients with elevated PRRX2
scores were sensitized to several targeted chemotherapy agents
(CZC24832, KU.55933, staurosporine, efc.) and ADCs (ZM447439,
BMS.754807, etc.) (Figure 5C). These findings indicated that
potential alternative options were available for patients with
poor immunotherapy outcomes. Subsequently, an analysis was
conducted on the expression levels of ADC-related targets. The
results revealed that genes such as PIK3CA, MUCI, and MET were
highly expressed in the high PRRX2-score population (Figure 5E).
This finding indicated that these ADCs may also have a helpful
effect in treating patients with high PRRX2 scores, which
provides a new approach for the precision treatment for these
patients with CRC.

In summary, the PRRX2 score can be used to predict the
response to immunotherapy and survival. This model provides an
important adjuvant role for personalized precision therapy. For
patients with high PRRX2 scores, potentially beneficial combination
therapy options such as ADC and targeted therapy can be used as
alternatives.

4 Discussion

Although the mechanism of action of PNI has been investigated
in some solid tumors, the underlying molecular mechanism in CRC
is not completely understood (Knijn et al., 2016; Cao et al., 2020).
In our study, we integrated 20 single-cell transcriptome datasets
to explore the cellular and molecular basis of PNI in CRC. We
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revealed a significant enrichment of CAF in PNI-positive cells.
Among nine CAF subtypes, MMP2+myCAF exhibited the most
significant accumulation. In addition, MMP2+myCAF was found to
have a strong correlation with advanced clinical stages and a poor
prognosis.

We identified PRRX2 as a critical transcription factor in
MMP2+myCAF utilizing a regulatory network-based analysis.
PRRX2 enhanced the PNI capacity of CAFs by activating the TGF-(3
signaling pathway. Knockdown of PRRX2 resulted in significant
downregulation of TGFB1 and NGE which suggested that
PRRX2 may promote PNI through these downstream effectors. In
addition, co-culture experiment results demonstrated that PRRX2
knockdown significantly inhibited the proliferation and invasive
migration ability of cancer-associated fibroblasts. Conclusively, our
results confirmed that PRRX2 may promote PNI through multiple
molecular mechanisms.

To further explore the key regulators that promote PNI in
MMP2+myCAE, we performed a regulatory network analysis
and focused on the action of the PRRX2 regulon. The PRRX2
score was effective in differentiating patient prognosis, and high
scores were significantly associated with advanced clinical stages,
vascular/lymphatic infiltration, and PNI. A high PRRX2 score
presented increased Treg and NK cell infiltration. Moreover,
immunotherapy prognosis and response could also be significantly
predicted by the PRRX2 score. High PRRX2-score patients may
benefit from combination therapy with targeted agents, such
as AZD8055 and NU7441, or ADC drugs, such as PIK3CA,
MUCI, and MET.

However, there are some limitations to our study. First, this study
lacks in vivo experimental validation, such as mouse experiments.
Additionally, subsequent studies will need to validate the function
of the PRRX2 score in large clinical cohorts.

5 Conclusion

In conclusion, our study identified MMP2+myCAF as a
significant CAF subpopulation of PNI+ cells. In the MMP2+myCAF
subpopulation, PRRX2 was a typical regulator that can promote PNI
through the TGF-p signaling pathway. In the future, the integration
of single-cell multi-omics may elucidate how PRRX2+CAF
cooperates with other microenvironmental components to promote
PNI and provide a theoretical basis for precision therapy.
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