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Background: Perineural invasion (PNI) is common in a variety of solid tumors 
and has been identified as an important pathway promoting tumor local 
invasion and distant metastasis. Its presence is usually associated with increased 
aggressiveness, malignant biology, and a worse patient prognosis. However, 
its specific role and regulatory mechanisms in colorectal cancer (CRC) 
remain unclear.
Methods: In this study, we integrated 20 CRC single-cell transcriptome datasets, 
which contained 575,768 high-quality cells, and used the Scissor algorithm to 
map PNI phenotypes in TCGA bulk samples to the single-cell level. Nine cancer-
associated fibroblast (CAF) subpopulations were identified and functionally 
annotated. We evaluated the clinical relevance of CAF subsets in TCGA and three 
independent cohorts (silu_2022, GSE39582, and GSE17536) using BayesPrism-
based deconvolution. We analyzed transcriptional regulatory networks using 
pySCENIC and validated PRRX2 function by in vitro experiments. Immune 
infiltration characteristics were quantified using the ssGSEA score, and the 
association between the PRRX2 score and immune checkpoint inhibitor efficacy 
was analyzed in conjunction with two immunotherapy cohorts. In addition, we 
performed a drug sensitivity analysis based on the GDSC pharmacogenomics 
database to screen potential therapeutic agents.
Results: In this study, we systematically revealed the characteristics of 
the perineural invasion-associated fibroblast subsets and their regulatory 
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mechanisms. In PNI-positive tumors, the proportion of fibroblasts was 
significantly increased, with the enrichment of MMP2+ myofibroblastic cancer-
associated fibroblasts (myCAFs), and facilitated perineural infiltration through 
extracellular matrix remodeling. Further analysis revealed that PRRX2 was 
a core regulator of MMP2+myCAFs, promoting perineural invasion through 
the activation of TGF-β signaling pathways. PRRX2 knockdown significantly 
inhibited fibroblast proliferation, clonogenic formation, and invasive migration 
capacity, and it reduced TGFB1 and NGF expressions. The clinical cohort 
validation demonstrated a significant correlation between the PRRX2-score 
and advanced tumor stage, along with vascular and lympho-vascular invasion 
(LVI). Furthermore, patients with high PRRX2 scores had a significantly 
worse prognosis. In addition, patients with high PRRX2 scores responded 
poorly to immune checkpoint inhibitors but may be sensitive to targeted 
agents or antibody-coupled drugs, which may serve as potential targets for 
combination therapy.
Conclusion: This analysis established PRRX2-driven MMP2+myCAFs as pivotal 
mediators of CRC perineural invasion through TGF-β/ECM remodeling. 
The PRRX2 score serves as a biomarker for prognosis prediction and 
immunotherapy outcome.

KEYWORDS

PRRX2, perineural invasion, colorectal cancer, single-cell RNA, immunotherapy 

1 Introduction

Colorectal cancer (CRC) is the third most prevalent malignant 
gastrointestinal neoplasm tumor worldwide, with nearly 20% 
recurrence within 5 years (Qaderi et al., 2021; Wang et al., 2024). 
In recent years, perineural invasion (PNI) has emerged as an 
independent metastatic pathway in a variety of gastrointestinal 
neoplasms (Que et al., 2024; Li et al., 2021; Yang et al., 2020). 
Several studies have shown that PNI is associated with poor survival 
prognosis in gastric cancer, pancreatic cancer, and other tumors, 
and is often used as an essential basis for early treatment decisions 
(Cienfuegos et al., 2017; Kang et al., 2022). In CRC, the incidence 
of PNI ranges from 20% to 30% (Li et al., 2022). However, the 
molecular mechanism of PNI in patients with CRC remains unclear. 
Understanding the underlying mechanisms of PNI and exploring 
potential predictive biomarkers may aid in more precise clinical 
management.

Recent studies have shown that PNI has made significant 
advances in exploring mechanisms and functions across various 
cancers. Cancer-associated fibroblasts (CAFs) have been identified 
as a key factor in promoting PNI events. Previous studies have 
demonstrated that CAFs facilitate PNI by secreting extracellular 
vesicles (EVs) to carry PNI-associated transcripts in pancreatic 
cancer (Zheng et al., 2024). In oral squamous cell carcinomas, CAFs 

Abbreviations: PNI, perineural invasion; CRC, colorectal cancer; CAF, 
cancer-associated fibroblasts; myCAFs, myofibroblastic cancer-associated 
fibroblasts; scRNA-seq, single-cell RNA sequencing; TCGA, The Cancer 
Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
TFs, transcription factors; RSS, regulon specificity scores; HIFs, human 
intestinal fibroblasts; HCT116, human colorectal carcinoma cells; OS, 
overall survival; DFS, disease-free survival; T-stage, tumor infiltration depth; 
N-stage, lymph node metastasis; ICBs, immune checkpoint inhibitors; 
ADCs, antibody-coupled drugs.

can secrete factors such as CXCL12 and IL-6 to activate Schwann 
cells and induce the expression of neurotrophic factors and axon 
guidance-related proteins, leading to enhanced neural infiltration 
of tumor cells (Zhang et al., 2025). A high level of CAF infiltration 
is associated with advanced TNM stages and a more severe degree 
of PNI in gastric cancer (Zhang J. et al., 2020). However, CAFs are 
highly heterogeneous (Luo et al., 2022). Hence, an in-depth study of 
CAFs may aid in understanding the mechanism and function of PNI.

In this study, we integrated 20 single-cell RNA sequencing 
(scRNA-seq) datasets with 575,768 cells from 291 patients. 
MMP2+myCAFs were enriched in the PNI+ group and positively 
associated with advanced clinical stages and poor prognosis. PRRX2 
was identified as a key transcriptional regulator of MMP2+myCAFs 
using the pySCENIC analysis. Based on PRRX2 and its target genes, 
we developed a PRRX2-score risk prediction model. We found that 
the PRRX2 score was associated with multiple clinical information 
and predicted prognosis. The PRRX2 score could predict the benefit 
of immunotherapy. Patients with low PRRX2 scores responded 
to immunotherapy, whereas those with high PRRX2 scores had 
a poor prognosis. However, through drug sensitivity analysis, we 
found that patients with a high PRRX2 score could potentially 
benefit from targeted drugs (ZM447439, BMS.754807, etc.), ADCs 
(PIK3CA, MUC1, MET, etc.), and other combinations of treatment 
(CZC24832, KU.55933, staurosporine, etc.). 

2 Methods

2.1 Data collection

In this study, we integrated 20 scRNA-seq datasets 
of CRC, encompassing 291 patients. These datasets were 
obtained from the Gene Expression Omnibus (GEO) database
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(https://www.ncbi.nlm.nih.gov/geo/) and EMBL-EBI ArrayExpress 
(https://www.ebi.ac.uk/arrayexpress/), with the following
accession numbers: GSE132257 (Lee et al., 2020), GSE132465 
(Lee et al., 2020), GSE146771 (Zhang L. et al., 2020), GSE166555 
(Uhlitz et al., 2021), GSE178341 (Pelka et al., 2021), GSE188711 
(Guo et al., 2022), GSE200997 (Khaliq et al., 2022), GSE201349 
(Becker et al., 2022), GSE205506 (Zhou et al., 2024), GSE231559 
(Hsu et al., 2023), GSE178318 (Che et al., 2021), GSE161277 
(Zheng et al., 2022), GSE179784 (Sui et al., 2022), GSE236581 
(Chen et al., 2024), GSE242271, GSE245552 (Liu et al., 2024), 
GSE163974 (Wang et al., 2021), GSE234804 (Berlin et al., 2023), 
GSE144735, and E-MTAB-8107. Additionally, we incorporated 
multiple bulk RNA-seq datasets, including The Cancer Genome 
Atlas (TCGA) COAD and READ project (TCGA cohort)
from cBioPortal, the Siluo et al. cohort (silu_2022 cohort) 
(Roelands et al., 2023), and the GEO datasets GSE39582 
(Marisa et al., 2013) and GSE17536 (Smith et al., 2010) 
(Supplementary Tables S1–S3). Immunotherapy-related data were 
derived from the following cohorts’ enrolled patients treated 
with immune checkpoint inhibitors: the Korean gastric cancer 
cohort (Kim et al., 2018) and the IMmotion151 study, a phase-
III randomized controlled trial evaluating atezolizumab plus 
bevacizumab versus sunitinib in advanced renal cell carcinoma 
(Motzer et al., 2022). PNI annotations were extracted from 
postoperative pathological reports provided by TCGA, which 
were accessed via the cBioPortal platform (Gao et al., 2013). 
For the TCGA cohort, clinical data, survival outcomes, and bulk 
transcriptomic profiles were retrieved from the National Cancer 
Institute’s GDC Data Portal. Clinical and prognostic information 
for the GSE39582 and GSE17536 cohorts was sourced from its 
original publication (Kim et al., 2018). 

2.2 Data processing and analysis

The following analysis was performed using Seurat R package
(v 4.4.0) (Hao et al., 2021). The NormalizeData function normalized 
raw counts relative to the total library size. The top 2,000 
highly variable features were identified by the FindVariableFeatures 
function. Focusing on these genes was helpful for highlighting 
biological signals in downstream analysis. The ScaleData function 
was utilized to scale the data. After using RunPCA for dimension 
reduction, harmony (v 1.2.3) was employed to eliminate batch 
effects between samples. Then, the RunUMAP function was applied 
for visualization with the top 30 harmony-reduced principal 
components. The UMAP plots before and after batching are shown 
in Supplementary Figures S1A, B. To evaluate clustering consistency 
after integration, we calculated silhouette scores based on the 
harmony-reduced embedding. To reduce computational complexity 
in this large dataset, we implemented a subsampling strategy by 
randomly selecting up to 5,000 cells per cluster. Silhouette widths 
were computed using the silhouette () function from the cluster 
R package, thus measuring intra-cluster cohesion and inter-cluster 
separation. Violin plots of silhouette distributions across major cell 
types are shown in Supplementary Figure S1C. FindNeighbors and 
FindClusters functions were used to cluster different cells with a 
resolution of 0.5. Ultimately, UMAP was applied to display the 
clustering results in a two-dimensional space. Subsequently, we 

annotated each cluster to specific cell types using known classical 
canonical markers. The following genes were utilized for cell-
type annotation: fibroblasts (FAP and COL1A1), epithelial cells 
(EPCAM and KRT19), endothelial cells (VWF and PECAM1), B 
cells (CD19, MS4A1, and MZB1), myeloid cells (FCGR3A and 
CD68), T cells (CD3D and CD3E), and mast cells (TPSAB1 
and CPA3). Subpopulations of fibroblasts were annotated, and 
each subpopulation was labeled according to its marker gene 
(Supplementary Table S4). Differences in gene expression between 
the subpopulations were analyzed by the “FindAllMarkers” function 
using the following parameters: min.pct = 0.1, logfc.threshold = 
0.25, and only.pos = T. False discovery rate (FDR) correction 
was automatically applied within the FindAllMarkers function 
using the Benjamini–Hochberg (BH) method, and adjusted p-
values (p_val_adj) were used to determine statistical significance. 
Pathway analysis was performed for each subpopulation using the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database with 
the R package clusterProfiler (v4.12.1) with BH FDR correction
(Yu et al., 2012). Pathways with adjusted p-values (p.adjust) <0.05 
were considered to be statistically significant. 

2.3 Assessment of cell-type infiltration 
based on deconvolution for bulk RNA 
datasets

To assess the function of different cell types in bulk RNA 
datasets, we employed the Bayesian approach known as the 
BayesPrism (v 2.2.2) method, which jointly predicts the cellular 
composition and gene expression for each cell type (Chu et al., 2022). 
Based on the single-cell read count matrix, we constructed cell-
type-specific expression profiles and estimated the proportions of 
cell types from public large-scale RNA-seq using the constructed 
cell-type reference. Differences in the infiltration proportions of 
specific subpopulations across distinct clinicopathological groups 
were assessed using a two-sided Wilcoxon rank-sum test, followed 
by multiple testing correction using the Holm method. Furthermore, 
the infiltration proportions of the subpopulations were also used to 
assess prognosis in bulk cohorts to evaluate prognosis. 

2.4 Transcription factor regulator analysis

Regulatory networks and regulator activities were analyzed 
using the pySCENIC framework with default parameters 
(version 0.11.2) (Van de Sande et al., 2020). Specifically, subgroup-
specific transcription factors (TFs) were identified through the 
Wilcoxon rank-sum test. Additionally, the Jensen–Shannon 
divergence was calculated using the philentropy software package, 
which provided the regulon specificity scores (RSSs) for each 
cell type. The activity of the regulators was quantified using the 
AUCell module of pySCENIC, with activity scores represented as 
AUC values. Active regulators were identified based on the default 
thresholds set by AUCell. Genes with an importance score greater 
than 20 were considered the target genes of PRRX2. Based on the 
PRRX2 target genes, we performed enrichment analysis on each cell 
using irGSEA (2.1.5). 
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2.5 Differential expression analysis and 
functional enrichment analysis

Differential expression analysis was performed between the 
high and low PRRX2-score groups using the limma package 
(v 3.56.2) (Ritchie et al., 2015). KEGG pathway enrichment was 
assessed via the gene set enrichment analysis (GSEA) using the 
gseKEGG function from the clusterProfiler package (v 4.12.1) with 
BH FDR correction. 

2.6 Drug sensitivity analysis

The drug sensitivity analysis was conducted using the 
calcPhenotype function from the oncoPredict package. The 
datasets for fitting the model were from the GDSC2 database
(https://www.cancerrxgene.org/). 

2.7 Cell culture and transfection

Human intestinal fibroblasts (HIFs) and human colorectal 
carcinoma cells (HCT116) were revived, centrifuged, and 
resuspended in complete DMEM supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin–streptomycin. Cells 
were maintained at 37 ℃ in a humidified incubator with 5% 
CO2 and subcultured every 3 days at a 1:3 split ratio. For 
gene silencing experiments, PRRX2-targeting siRNA (50 μM) 
was transfected using Lipofectamine™ 3000 according to the 
manufacturer’s protocol. Cells were collected 24 h post-transfection 
for downstream analyses. 

2.8 RNA extraction, reverse transcription, 
and qPCR

Total RNA was isolated from cultured cells using TRIzol 
reagent following the manufacturer’s protocol. RNA purity and 
concentration were assessed using spectrophotometry. First-
strand cDNA was synthesized using the ReverTra Ace qPCR 
RT Kit, and quantitative real-time PCR was carried out with 
the SYBR Green qPCR Master Mix on an Applied Biosystems 
7500 Real-Time PCR System. The primer sequences used were as 
follows: PRRX2 (Forward: 5′- GCACCACGTTCAACAGCAG-3′,
Reverse: 5′- TCCTTGGCCTTGAGACGGA-3′), TGFB1 (Forward:
5′- GGCCAGATCCTGTCCAAGC-3′, Reverse: 5′- GTGGGTTTC
CACCATTAGCAC-3′), NGF (Forward: 5′- GGCAGACCCGC
AACATTACT-3′, Reverse: 5′- CACCACCGACCTCGAAGTC-3′),
β-actin (Forward: 5′- CATGTACGTTGCTATCCAGGC-3′,
Reverse: 5′- CTCCTTAATGTCACGCACGAT-3′), siPRRX2
(5′- CCGTCTCAAGGCCAAGGAGTT-3′), and siCtrl (5′- TTCT
CCGAACGTGTCACGT-3′). Gene expression was calculated using 
the 2−ΔΔCt method, with β-actin as the internal control. Each qPCR 
experiment was repeated thrice, and the differences were calculated. 

2.9 Cell proliferation assay (CCK-8)

HIFs and HCT116 cells were seeded into 96-well plates and 
transfected; then, they were incubated for 24, 48, 72, and 96 h. 
At each time point, 10 μL of CCK-8 solution was added per well, 
followed by a 2-h incubation at 37 ℃, and each assay was repeated 
thrice. Cell viability was assessed by measuring absorbance at 
450 nm using a microplate reader. 

2.10 Colony formation assay

Transfected HIFs and HCT116 cells were seeded into 6-well 
plates (1,000 cells per well) and cultured for 14 days. Cells were 
fixed with 4% paraformaldehyde and stained with crystal violet, and 
colonies (containing >50 cells) were counted under a microscope. 

2.11 Transwell migration and invasion 
assays

HCT116 cells were digested, washed, and resuspended in 
serum-free medium at 4 × 106 cells/mL. An amount of 500 μL 
of HIF cells (4 × 106 cells/mL) were seeded per well in
24-well plates. Matrigel-coated Transwell inserts (8.0-μm pore) were 
placed to allow direct contact with HIFs. Then, 200 μL of HCT116 
cells (8 × 105) were added to the upper chamber. After 24 h 
incubation, non-migrated cells were removed, and invaded cells on 
the lower membrane surface were fixed (methanol), stained (crystal 
violet), and quantified under a microscope (100×), analyzing three 
representative fields per insert. GraphPad Prism was used to draw 
graphs and to count significance. 

2.12 Statistical analysis

All analyses were conducted using R version 4.3.1. Survival
(v 3.5–7) [62] and Survminer (v 0.4.9) [63] packages were utilized 
for survival analysis. Kaplan–Meier curves were used to compare 
survival differences, and Cox proportional hazards regression 
was utilized to assess survival rates. Statistical significance was 
determined by the Wilcoxon’s rank-sum test, followed by multiple 
testing correction using the Holm method. The differences in qPCR 
expression and cell number were analyzed by t-tests. Differential 
gene expression between the control and knockdown groups was 
analyzed using t-tests, with paired comparisons analyzed using 
the Wilcoxon signed-rank test. Enrichment analysis of drug–target 
pathways was performed using hypergeometric testing, with
p-values adjusted using the BH method. 

3 Results

3.1 Fibroblasts are associated with 
perineural invasion in colorectal cancer

We integrated 20 CRC single-cell transcriptome datasets and 
obtained 575,768 high-quality cells via the Seurat integration 
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algorithm. We mapped bulk RNA-seq data with PNI tags from 
the TCGA CRC cohort (Supplementary Table S5) to all scRNA-seq 
data by using the Scissor method. Finally, a total of 45,789 PNI-
positive (PNI+, 33.5%) and 90,744 PNI-negative (PNI-, 66.5%) 
cells were identified (Figure 1A; Supplementary Figure S1A, B). 
In the study, we classified all cells into seven major cell 
types (Figures 1B, C, G) based on the canonical marker gene. 
Subsequently, we calculated the silhouette widths for representative 
cells across each cell type based on the Harmony-integrated 
embedding (Supplementary Figure S1C), which showed moderate 
overall cluster separation with a global average silhouette score 
of 0.439. After comparing the number and proportion of each 
cell type in the PNI+/PNI- groups, we found that the proportion 
of fibroblasts and epithelial cells was significantly higher in the 
PNI+ group (Figure 1D).

To provide further confirmation of the importance of CAF in 
promoting PNI, we investigated the function of CAF at different 
levels. The results demonstrated that the proportion of CAF was the 
greatest in the PNI+ group at the single-cell RNA level (Figure 1E). 
Deconvolution analysis of bulk RNA from TCGA revealed that 
the proportion of CAF was higher in the PNI+ population and 
significantly different from that in the PNI- patients (Figure 1F). 
The single-cell RNA results were highly consistent with the bulk 
RNA data. In addition, we analyzed the expression of several 
PNI-promoting factors that have been reported to be present in 
CAF. These factors include neurotrophic factors (e.g., NGF and 
BDNF) (Xu et al., 2019), chemokines (e.g., CXCL12) (Xu et al., 
2019), and extracellular matrix remodeling enzymes (e.g., MMPs)
(Chen et al., 2023; Tassone et al., 2022). In CRC, we observed 
high expressions of NGF, BDNF, and MMP2 in fibroblast 
subpopulations (Figure 1H). This finding suggests the potential 
for a similar signaling mechanism underlying perineural 
infiltration in CRC. 

3.2 MMP2+myCAF promotes perineural 
invasion and is the biomarker of prognosis

Fibroblasts were significantly enriched in the PNI+ group and 
were further classified into nine subsets with functional heterogeneity 
(Figure 2A). In addition, MMP2+myCAF, PDPN + myCAF, and 
ANGPT2+pCAF were significantly higher in the PNI+ group 
(Figures 2B–D), suggesting that these subsets may play a critical role in 
the remodeling of the tumor microenvironment associated with neural 
invasion. A previous study demonstrated that MMP2 was capable 
of degrading collagen surrounding nerve bundles by facilitating the 
dissemination of cancer cells within the perineural space in oral cavity 
squamous cell carcinoma (Tassone et al., 2022). 

We identified the highly expressed genes in each subgroup 
using the FindAllMarkers function and performed KEGG pathway 
enrichment analysis. The MMP2+myCAF subpopulation was found 
to be significantly enriched in the ECM–receptor interaction, 
vascular smooth muscle contraction, and focal adhesion pathway, 
suggesting that this subset may promote tumor cell infiltration and 
metastasis by remodeling the extracellular matrix (Figure 2E). The 
ANGPT2+pCAF subpopulation demonstrated enrichment in the 
PI3K–Akt signaling pathway and complement and coagulation 
cascades, indicating its potential involvement in cell survival, 

proliferation, and metabolism, along with its influence on the 
local inflammatory response and immune modulation. The 
PDPN + myCAF subgroup was found to be associated with 
endoplasmic reticulum protein processing pathways, including 
protein processing in the endoplasmic reticulum.

The BayesPrism algorithm was employed to deconvolve the 
aforementioned three CAF subgroups into TCGA and three 
independent CRC bulk RNA-seq datasets (GSE39582, GSE17536, 
and silu_2022), assessing their clinical relevance. The infiltration 
score of MMP2+myCAF was found to be strongly associated 
with poor patient prognosis in all four datasets. Patients with 
high infiltration had significantly worse overall survival (OS) and 
disease-free survival (DFS) scores (Figure 2F). Further clinical 
stratification analysis of the TCGA cohort revealed that the degree of 
MMP2+myCAF infiltration increased with increasing clinical stage, 
and it was considerably higher in the T3-4, N1-2, and M1 groups 
than in the earlier group (Figure 2G).

In summary, MMP2+myCAF is closely associated with the 
neuroinvasive phenotype and significantly affects the survival 
prognosis of patients. 

3.3 PRRX2 drives perineural invasion via
TGF-β signaling in MMP2+myCAF

To explore the key regulatory factors in MMP2+myCAF, we 
utilized pySCENIC to evaluate the expression levels of transcription 
factors and their activities in the regulatory network. Using the 
RSS analysis, MMP2+myCAF type-specific regulons (Figure 3A) 
and PNI+ group-specific regulons (Figure 3B) were identified. 
Importantly, the PRRX2 regulon was significantly shared between 
the two different groups. The expression analysis revealed that 
PRRX2 was significantly highly expressed and most active in 
MMP2+myCAF (Figures 3C–E). Furthermore, PRRX2 and its 
target genes exhibited significantly higher AUCell values in PNI+ 
samples than in PNI- samples (Figure 3F; Supplementary Table S6), 
thereby offering additional evidence in support of its hypothesized 
driving role in the development of PNI. PRRX2 targets showed 
significant enrichment in the TGF-β signaling pathway and the 
ECM–receptor interaction pathway, suggesting that PRRX2 may 
play a role in the invasive behavior of tumor cells in the tumor 
microenvironment (Figure 3G).

PRRX2 gene knockout in vitro resulted in decreased expression 
of TGF-β1 and NGF, indicating that PRRX2 may promote nerve 
invasion through the downstream effectors (Figure 3H). The CCK-
8 cell proliferation assay revealed a substantial decrease in the 
proliferation capacity of tumor-associated fibroblasts following 
PRRX2 knockdown (Figure 3I). Moreover, the number of cell clones 
was significantly reduced after PRRX2 knockdown in HIFs and co-
culture with the CRC cell line HCT116 by the clone formation assay 
(Figure 3I). Furthermore, the Transwell invasion and migration 
(Figure 3J, K; Supplementary Figure S2) assays further confirmed 
that PRRX2 knockdown significantly inhibited the cell invasiveness 
and migration ability, suggesting its multiple mechanistic roles in 
promoting tumor progression and PNI.

Overall, PRRX2 played a core regulatory role in MMP2+myCAF 
and a key role in promoting the PNI by regulating TGF-β-
related pathways. 
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FIGURE 1
Mapping and annotation of perineural invasion in single-cell data. (A) Scissor mapping results of colorectal cancer samples, where positive represents 
the PNI(+) cells and negative represents the PNI(−) cells. (B) UMAP plot of total cell annotation of merged colorectal cancer single-cell data, where 
different colors represent different cell types. (C) Bubble plot of the expression of marker genes for each annotated cell type. (D) Sankey plot of the 
distribution of PNI groups across different cell types. (E) Bar plot showing the number of cells in each subtype and corresponding proportions with 
PNI+ and PNI-. (F) Boxplot comparing the deconvoluted infiltration scores of each subtype between patients with or without PNI. (G) Feature plot 
showing the expression of representative marker genes for each subpopulation. (H) Feature plot showing the expression of PNI-related factors. ns: p > 
0.05;∗: p < 0.05;∗∗: p < 0.01.

Frontiers in Cell and Developmental Biology 06 frontiersin.org

https://doi.org/10.3389/fcell.2025.1620388
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Chen et al. 10.3389/fcell.2025.1620388

FIGURE 2
Heterogeneity of fibroblast cells. (A) UMAP map of fibroblast cells, with different colors representing distinct subsets. (B) Sankey plot showing variation 
in the proportions of different subtypes between PNI-positive (PNI+) and PNI-negative (PNI-) groups. (C) Bar plot showing the number of cells in each 
subpopulation and corresponding proportions with PNI+ and PNI-. (D) Boxplot of nine CAF subpopulation proportions across single-cell samples. (E)
Bubble plot of the top 10 KEGG pathway enrichment for marker genes of nine CAF subpopulations. (F) Survival analysis of MMP2+myCAF infiltration 
scores: overall survival in TCGA, silu_2022, and GSE39582 cohorts (left three panels); disease-free survival in TCGA and GSE17536 (right two panels).
(G) Boxplots comparing MMP2+myCAF infiltration scores between patients with or without vascular invasion, lymphovascular invasion, and PNI, and 
across patients with different TNM stages. Statistical significance was evaluated using the Wilcoxon rank-sum test, with multiple testing correction 
performed using the Holm method.

3.4 High PRRX2-score predicts poor 
prognosis and correlates with malignant 
features

We constructed a PRRX2 score using the ssGSEA method in 
four datasets of the CRC transcriptome to predict the prognosis. The 

Kaplan–Meier survival analysis was performed after categorizing 
patients into high- and low-expression groups according to the 
median PRRX2 score. The high-score patients had significantly 
poorer OS and DFS (both p < 0.05) (Figure 4A). Further analysis 
revealed a significant positive correlation between the PRRX2 score 
and tumor progression (Figure 4B). The PRRX2 score exhibited a 
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FIGURE 3
Mechanisms driving perineural invasion in fibroblasts. (A) Rank points of the top 10 TFs specifically enriched in the MMP2+myCAF groups. (B) Rank 
points of the top 10 TFs specifically enriched in PNI+ groups. (C) Violin plots of PRRX2+ regulon activities across CAF subpopulations. (D) DimPlot of all 
CAF cells, with MMP2+myCAF shown in red. (E) Feature plot showing the regulon activity of PRRX2+ regulon. (F) Boxplot showing the PRRX2+ regulon 
activity scores calculated using AUCell. Wilcoxon’s test was used to calculate the statistical significance between PNI (+) vs. PNI (−). (G) Bar plot 
showing the enriched KEGG pathway of PRRX2+ targets. (H) PRRX2 knockdown assay in HIF cell line. (I) CCK8 and colony formation assay showing 
inhibition upon PRRX2 knockdown in the HCT116 cell line. Transwell assay demonstrating reduced invasion (J) and migration (K) after PRRX2 
knockdown. Statistical tests were performed using t-test.∗: p < 0.05,∗∗: p < 0.01, and∗∗∗: p < 0.001.

progressive increase with the progression of the clinical stage, and it 
was also significantly upregulated in patients with more advanced 
tumor infiltration depth (T-stage) and lymph node metastasis 
(N-stage). Notably, the PRRX2 score was significantly higher in 
patients with LVI and PNI, indicating that this characteristic 
score can effectively reflect the aggressive biological behavior of 
the tumor (Figure 4B).

The samples were grouped into high and low PRRX2 score 
groups based on the median value. Subsequent differential 
expression analysis uncovered several genes that were significantly 
upregulated in the high-score subgroup (Figure 4C). These genes 
were enriched in the PI3K-AKT and TGF-β pathways, as shown 
by KEGG pathway enrichment analysis (Figure 4D). GSVA was 
used to compare the cancer hallmark enrichment between high and 
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FIGURE 4
PRRX2 score may predict patient prognosis and is significantly associated with malignant clinical characteristics. (A) Kaplan–Meier survival curves 
demonstrating the relationship between the PRRX2 score and patient overall survival in the TCGA, silu_2022, and GSE39582 cohorts. (B) Boxplot 
comparing the PRRX2 scores between patients with or without vascular invasion, lymphovascular invasion, and PNI, and across patients with different 
TNM stages. Statistical significance was evaluated using the Wilcoxon rank-sum test, with multiple testing correction performed using the Holm 
method. (C) Volcano plots showing the differentially expressed genes between high and low PRRX2-score groups. (D) Gene-set enrichment analysis 
(GSEA) showing the enrichment in the KEGG pathway for the differentially expressed genes. (E) Differential pathway enrichment analysis based on 
GSVA between PRRX2-high and PRRX2-low groups. The bar plot displays pathways ranked by the t-value of the GSVA score (high vs. low PRRX2 score).
(F) Heatmap showing the infiltration level of 22 immune-cell types in high and low PRRX2-score groups.∗: p < 0.05;∗∗: p < 0.01;∗∗∗: p < 0.001;∗∗∗∗: p 
< 0.0001.

low PRRX2 score groups, and the results showed that the PRRX2-
high group was enriched in EMT, myogenesis, and other pathways 
(Figure 4E). The results demonstrated that the PRRX2 regulon may 
promote tumor progression, proliferation, and invasive behavior by 

regulating these key cancer-related pathways in MMP2+myCAF. 
We then compared immune infiltration between the two groups. 
Patients with elevated PRRX2 scores exhibited an increase in 
immunosuppressive cell populations, including natural killer cells
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FIGURE 5
PRRX2 score can predict immunotherapy outcomes and promising drug agents. Kaplan–Meier survival curves demonstrating the relationship between 
the PRRX2 score and patient overall survival in (A) Kim and (B) IMmotion151 cohorts (left panel). Receiver operating characteristic (ROC) curve for 
PRRX2 score in predicting immunotherapy response in (A) Kim and (B) IMmotion151 immunotherapy cohorts (middle panel). Boxplot comparing the 
PRRX2 score between immunotherapy response and non-response groups of (A) Kim and (B) IMmotion151 cohorts (right panel). (C) Spearman 
correlation analysis between PRRX2-score high prefer (left) and PRRX2-score low prefer (right) scores. (D) Violin plot of the expression of ADC drug 
target genes across high PRRX2-score and low PRRX2-score groups.
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and regulatory T cells (Figure 4F). These findings suggest that 
PRRX2 may play a synergistic role in immune escape and tumor 
microenvironment remodeling to evade immunosurveillance.

In summary, the PRRX2 score could be used as an independent 
predictor of prognosis in CRC (Supplementary Figure S3). High 
PRRX2 scores were associated with a stronger immunosuppressive 
immune microenvironment and promotion of EMT, which was the 
key reason for PNI. 

3.5 PRRX2 score predicts immunotherapy 
outcomes and promising treatment agents

The PRRX2 score could effectively predict immunotherapy 
response and prognosis. In this work, we found that patients with 
low PRRX2 scores had a good prognosis for immunotherapy (Kim 
cohort: p = 0.042; IMmotion151 cohort: p = 0.035) in several 
immunotherapy cohorts (Figures 5A,B; Supplementary Table S7). 
In the two immunotherapy cohorts, the area under the curve 
(AUC) for distinguishing immunotherapy response based on the 
PRRX2 score was higher than 0.7 (Kim cohort: AUC = 0.732; 
IMmotion151 cohort: AUC = 0.716), and the PRRX2 score of 
the non-response group was higher than that of the response
group (Figures 5A, B).

To improve patient benefit, we continued to explore alternative 
treatment strategies. We performed drug sensitivity analysis and 
identified several inhibitors that may be effective in patients 
with low PRRX2 scores, such as EGFR inhibitors and MEK/ERK 
pathway inhibitors (Figure 5C). Patients with elevated PRRX2 
scores were sensitized to several targeted chemotherapy agents 
(CZC24832, KU.55933, staurosporine, etc.) and ADCs (ZM447439, 
BMS.754807, etc.) (Figure 5C). These findings indicated that 
potential alternative options were available for patients with 
poor immunotherapy outcomes. Subsequently, an analysis was 
conducted on the expression levels of ADC-related targets. The 
results revealed that genes such as PIK3CA, MUC1, and MET were 
highly expressed in the high PRRX2-score population (Figure 5E). 
This finding indicated that these ADCs may also have a helpful 
effect in treating patients with high PRRX2 scores, which 
provides a new approach for the precision treatment for these
patients with CRC.

In summary, the PRRX2 score can be used to predict the 
response to immunotherapy and survival. This model provides an 
important adjuvant role for personalized precision therapy. For 
patients with high PRRX2 scores, potentially beneficial combination 
therapy options such as ADC and targeted therapy can be used as 
alternatives. 

4 Discussion

Although the mechanism of action of PNI has been investigated 
in some solid tumors, the underlying molecular mechanism in CRC 
is not completely understood (Knijn et al., 2016; Cao et al., 2020). 
In our study, we integrated 20 single-cell transcriptome datasets 
to explore the cellular and molecular basis of PNI in CRC. We 

revealed a significant enrichment of CAF in PNI-positive cells. 
Among nine CAF subtypes, MMP2+myCAF exhibited the most 
significant accumulation. In addition, MMP2+myCAF was found to 
have a strong correlation with advanced clinical stages and a poor 
prognosis.

We identified PRRX2 as a critical transcription factor in 
MMP2+myCAF utilizing a regulatory network-based analysis. 
PRRX2 enhanced the PNI capacity of CAFs by activating the TGF-β 
signaling pathway. Knockdown of PRRX2 resulted in significant 
downregulation of TGFB1 and NGF, which suggested that 
PRRX2 may promote PNI through these downstream effectors. In 
addition, co-culture experiment results demonstrated that PRRX2 
knockdown significantly inhibited the proliferation and invasive 
migration ability of cancer-associated fibroblasts. Conclusively, our 
results confirmed that PRRX2 may promote PNI through multiple 
molecular mechanisms.

To further explore the key regulators that promote PNI in 
MMP2+myCAF, we performed a regulatory network analysis 
and focused on the action of the PRRX2 regulon. The PRRX2 
score was effective in differentiating patient prognosis, and high 
scores were significantly associated with advanced clinical stages, 
vascular/lymphatic infiltration, and PNI. A high PRRX2 score 
presented increased Treg and NK cell infiltration. Moreover, 
immunotherapy prognosis and response could also be significantly 
predicted by the PRRX2 score. High PRRX2-score patients may 
benefit from combination therapy with targeted agents, such 
as AZD8055 and NU7441, or ADC drugs, such as PIK3CA, 
MUC1, and MET.

However, there are some limitations to our study. First, this study 
lacks in vivo experimental validation, such as mouse experiments. 
Additionally, subsequent studies will need to validate the function 
of the PRRX2 score in large clinical cohorts. 

5 Conclusion

In conclusion, our study identified MMP2+myCAF as a 
significant CAF subpopulation of PNI+ cells. In the MMP2+myCAF 
subpopulation, PRRX2 was a typical regulator that can promote PNI 
through the TGF-β signaling pathway. In the future, the integration 
of single-cell multi-omics may elucidate how PRRX2+CAF 
cooperates with other microenvironmental components to promote 
PNI and provide a theoretical basis for precision therapy.
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