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during nerve regeneration
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The activation of the epithelial-mesenchymal transition (EMT) enhances cell
plasticity and plays a pivotal role in driving critical biological processes such as
embryonic process, tissue repair, and cancer metastasis. EMT is regulated by
multiple signaling pathways, including transforming growth factor-β (TGF-β),
Wnt, and Notch signaling, and is finely orchestrated by a network of
transcriptional factors, epigenetic modifications (such as DNA methylation
and histone alterations), and non-coding RNAs. In the peripheral nervous
system, Schwann cells undergo a distinct EMT-like transformation following
nerve injury, adopting a repair phenotype known as repair Schwann cells.
These repair Schwann cells play a multifaceted role in nerve regeneration by
clearing myelin debris, secreting regeneration-promoting factors, mediating
structural reorganization, and creating a conducive microenvironment for
axonal regrowth. Therapeutic strategies targeting the regulation of the EMT-
like program of Schwann cells thus hold significant promise for the treatment
of peripheral nerve injury, particularly in cases of severe nerve injury with
incomplete recovery and poor functional restoration.
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cell plasticity, nerve regeneration

Introduction

The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial
cells lose their cellular polarity and transform into motile mesenchymal cells. During EMT,
cells switch from a tightly packed epithelial state characterized by apical-basal polarity
to a mesenchymal state that exhibits enhanced migratory and invasive capabilities. EMT
plays a critical role in various physiological and pathological contexts, including embryonic
development, wound healing, tissue regeneration, fibrosis, and cancer progression. Based
on distinct biological functions and outcomes, EMT is commonly divided to three types
named as type 1 EMT, type 2 EMT, and type 3 EMT (Figure 1).

Type 1 EMT is primarily involved in implantation, embryogenesis, and organ
development. During embryonic development, primitive epithelial cells undergo type 1
EMT to form primary mesenchyme. Subsequently, primary mesenchyme can revert to
secondary epithelia through a reverse process of EMT known as mesenchymal-epithelial
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FIGURE 1
Types of EMT. (A) Type 1 EMT is primarily associated with critical developmental processes, including implantation, embryogenesis, and organ
formation. (B) Type 2 EMT plays a central role in post-injury repair mechanisms, such as wound healing, tissue regeneration, and the pathogenesis of
organ fibrosis. This type of EMT is essential for restoring tissue integrity and function following damage. (C) Type 3 EMT is closely linked tumor cell
invasion and metastasis and participates in cancer progression.

transition (MET), ultimately generating connective tissue cells
(Chen et al., 2017). In contrast, type 2 and type 3 EMT are
associated with pathogenic processes. Type 2 EMT contributes to
wound healing, tissue regeneration, and organ fibrosis, whereas
type 3 EMT drives tumor cell invasion and metastasis (Kalluri and
Weinberg, 2009).

Peripheral nerve injury represents a significant clinical
challenge, with an annual incidence rate of 13–23 cases per 100,000
individuals in developed countries (Li et al., 2014). Injury to

Abbreviations: EMT, epithelial-mesenchymal transition; TGF-β, transforming
growth factor-β; Shh, sonic hedgehog; WT1, Wilms’ tumor 1; PRRX1, paired-
related homeobox 1; DNMTs, DNA methyltransferases; H3K27ac, histone
3 lysine 27 acetylation; H3K4me3, histone H3 lysine 4 trimethylation;
H3K27me3, histone H3 lysine 27 trimethylation; H3K9me3, histone H3
lysine 9 trimethylation; miRNA, microRNA; lncRNA, long non-coding
RNA; circRNA, circular RNA; MMP, matrix metalloproteinase; MITF,
microphthalmia-associated transcription factor.

peripheral nerves disrupts the critical signal transmission between
the central nervous system and the rest of the body, impairing neural
communication with muscles, skin, and organs, ultimately leading
to compromised autonomic, motor, and sensory functions. Unlike
injured central nerves, peripheral nerves possess a remarkable
intrinsic regenerative capacity. Schwann cells critically facilitate
the regeneration process following peripheral nerve injury.

Schwann cells are anatomically associated with peripheral
nerve roots, trunks, and terminal branches. Classified based on
their anatomical location and morphology, Schwann cells are
typically categorized asmyelinating Schwann cells, non-myelinating
Schwann cells, and terminal Schwann cells. Myelinating Schwann
cells are responsible for enveloping large-diameter neuronal axons,
forming multilayered myelin sheaths that are essential for rapid
saltatory conduction of nerve impulses. Terminal Schwann cells
surround the terminal regions of neurons and contribute to the
formation of the neuromuscular junction (Stierli et al., 2019).
Following peripheral nerve injury, mature Schwann cells undergo
significant phenotypic changes, transform into repair Schwann cells,
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FIGURE 2
Outline of a typical EMT program and the signaling pathways driving EMT. EMT is a highly dynamic process that mediates the transformation of
epithelial cells characterized by intact cellular junctions to mesenchymal cells with enhanced migratory and invasive capacities. This transition is
primarily orchestrated by a set of key transcription factors (EMT-TFs) to suppress the expressions of epithelial markers and enhance the expressions of
mesenchymal markers. Multiple signaling pathways, such as TGF-β, Wnt, Notch, Shh, receptor tyrosine kinase, and cytokine receptor signaling
pathways, collectively orchestrate the EMT process. Mature Schwann cells experience EMT-like process and switch to repair Schwann cells after
peripheral nerve injury.

and facilitates nerve regeneration (Zhang et al., 2023). Emerging
studies highlight the crucial role of the Schwann cell EMT-like
process, which appears fundamental for their conversion to a
repair phenotype and subsequent nerve regeneration (Figure 2). In
this review, we systematically elucidate the molecular mechanisms
underlying the EMT process, with particular focus on its activation
in Schwann cells following peripheral nerve injury. Furthermore, we
critically examine the pivotal role of Schwann cell EMT-like process
in facilitating functional recovery of injured nerves, highlighting its
significance in peripheral nerve repair and regeneration.

Characteristics of EMT

Cellular and molecular features of EMT

EMT is a highly dynamic activity that facilitates the
conversion of epithelial cells into mesenchymal phenotypes
(Figure 2). Epithelial cells are characterized by their well-
organized cellular architecture, maintained through an intricate

network of intercellular junctions, including tight junctions,
adherens junctions, gap junctions, and desmosomes. These cellular
junctions tightly pack epithelial cells in a polygonal or columnar
shape with distinct apical-basal polarity (Bartle et al., 2018).
Furthermore, epithelial cells are firmly anchored to the basement
membrane through hemidesmosomes and α6β4 integrins, which
significantly restrict their migratory capacity (Te Molder et al.,
2021). The molecular signature of epithelial cells is defined by
the expression of specific junctional proteins, including tight
junction proteins claudin, occluding, and ZO-1 as well as adherens
junction protein E-cadherin. These junctional proteins serve as
canonical epithelial markers and play crucial roles in maintaining
epithelial integrity and function. Other epithelial cell markers
contain epithelial cell adhesion molecules, α6β4 integrins, and
cytokeratins (Yang et al., 2020).

Mesenchymal cells exhibit distinct morphological and
functional characteristics, featuring a spindle-shaped morphology
with front-rear polarity and enhanced motility. Unlike epithelial
cells, mesenchymal cells lack the tightly organized junctional
complexes but instead possess vimentin-based intermediate
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filaments and actin stress fibers (Vallenius, 2013; Costigliola et al.,
2017). Mesenchymal cells have increased extracellular matrix
production capacity and establish connections with the extracellular
matrix via integrin-containing focal adhesions. The molecular
signature of mesenchymal cells is characterized by the expression
of specific markers, including N-cadherin, vimentin, fibronectin, β1
and β3 integrins, and matrix metalloproteinases (Yang et al., 2020).

During the EMT process, cells experience cytoskeletal and
extracellular matrix remodeling, the loss of apical-basal polarity
and the gain of back-front polarity, the acquisition of cellular
individualization, the enhancement of migratory capacity, and the
development of invasive potential through basement membrane
penetration (Dongre and Weinberg, 2019; Lambert and Weinberg,
2021). The complete transition from a fully epithelial state to
a fully mesenchymal state is a relatively rare phenomenon.
More commonly, epithelial cells undergo a partial EMT process
and proceed to an epithelial/mesenchymal intermediate state.
Epithelial cells can overcome the thermodynamic obstacles and
switch to multiple transitional states between epithelial cells and
mesenchymal cells, including a metastable intermediate state 1 with
dissolution of cellular junctions and loss of apical-basal polarity, a
thermodynamically and kinetically stable intermediate state 2, and
a metastable intermediate state 3 with presence of residual junction
puncta and acquisition of back-front polarity (Nieto et al., 2016).
Cells in these transitional states display a unique hybrid phenotype,
maintaining certain epithelial characteristics while acquiring some
mesenchymal properties. Some transitional cells express neither
E-cadherin or N-cadherin while some transitional cells co-
express both cytokeratin and vimentin (Nieto et al., 2016). The
hybrid epithelial-mesenchymal characteristics exhibited by these
transitional cells generate substantial phenotypic heterogeneity,
manifesting in varied adhesive properties and diverse migratory
and invasive capacities. Consequently, the accurate determination
of EMT status requires multidimensional evaluation that integrates
both cellular phenotypic features andmolecular characteristics.This
approach should encompass assessment of cellular morphology
and polarity, evaluation of migratory and invasive potential,
quantification of a set of epithelial andmesenchymalmarkers as well
as key EMT regulators, and the consideration of transitional states
and partial EMT characteristics (Yang et al., 2020).

Signaling pathways in EMT

The EMT process is regulated through multiple signaling
pathways, including transforming growth factor-β (TGF-β)
signaling, Wnt signaling, Notch signaling, sonic hedgehog (Shh)
signaling, and signaling pathways mediated by receptor tyrosine
kinases or cytokine receptors. Among these, TGF-β serves as a
principal EMT inducer by binding to TGF-β type I receptor, forming
and phosphorylating receptor complexes, and acitivating both
canonical TGF-β/Smad signaling and non-canonical pathways, such
as ERK1/2, JNK, p38 MAPK, PI3K/AKT, RhoA, and Cdc42/Rac
signaling molecules (Li et al., 2017). Wnt ligands initiate signaling
by binding to the frizzled receptors, forming a cell surface complex
with LRP5/6 co-receptors, which subsequently recruits and activates
Dishevelled proteins, leading to the stabilization and accumulation
of β-catenin (Angers and Moon, 2009). Delta-like and Jagged

family members bind to Notch signaling receptors, triggering
the cleavage of Notch and the subsequent release of its active
intracellular domain (Wang et al., 2015). Shh proteins bind to the
7-pass transmembrane protein patched and regulate the activity
of downstream Gli-family transcription factors (Syed et al., 2016).
Receptor tyrosine kinases and cytokine receptors, upon binding to
their corresponding ligands, activates the PI3K/AKT signaling and
JAK/STAT signaling pathways, respectively (Dongre and Weinberg,
2019). Many of these signaling molecules, such as SMAD2/3, β-
catenin, intracellular Notch, NF-κB, and STAT3, translocate into
the nucleus and turn on the expressions mesenchymal genes as
well as many transcription factors that mediates the EMT process.
These signaling pathways function cooperatively to drive EMT,
with Notch signaling emerging as a particularly prominent driver
(Derynck et al., 2014; Deshmukh et al., 2021).

Regulators of EMT

The EMT process is finely regulated by a diverse array
of transcription factors and epigenetic regulatory programs.
Transcription factors are functionally critical proteins that recognize
specific DNA sequences and directly modulate the transcription
of target genes (Lambert et al., 2018). Transcription factors
play essential roles in determining and manipulating cell fate,
driving diverse cellular processes such as cell differentiation, de-
differentiation, and trans-differentiation (Takahashi and Yamanaka,
2016). The EMT process represents a complex de-differentiation
program regulated by an intricate network of transcriptional factors,
including the Zeb family members Zeb1 and Zeb2; the Snail family
members Snail1 and Snail2; the Twist family members Twist1 and
Twist2; the Kruppel-like factor family members KLF4, KLF8, and
KLF10; the Forkhead box familymembers FOXC1, FOXC2, FOXQ1,
FOXK1, FOXG1, FOXF2, FOXN2, and FOXO3a; the SRY-related
HMG-box family members Sox4, Sox9, and Sox11; the RUNX
family members RUNX1 and RUNX2; the GATA family members
GATA4, GATA6, Wilms’ tumor 1 (WT1), Goosecoid, Six1, paired-
related homeobox 1 (PRRX1), Elk3, and Brachyury; the AP-1 family
members FOSL1, FOSL2, OVOL1, OVOL2, and TFAP2A; as well as
the E2A proteins E12 and E47 (Debnath et al., 2022). For instance,
zinc finger family transcription factors Zeb1 and Zeb2 bind to
the promoter of the E-cadherin coding gene CDH1, repress the
expression of E-cadherin, and activate all three types of EMT, that
are tissue development, fibrosis, and cancer progression (Sánchez-
Tilló et al., 2010; Debnath et al., 2022; Kinouchi et al., 2024). These
transcription factors prompt the induction of super-enhancers and
drive cellular transition in a cooperative manner (Chang et al.,
2016). Elevated expression of Zeb1 in mouse oral cancer cells
increases the endogenous levels of Zeb2, and conversely, heightened
Zeb2 expression similarly upregulates Zeb1 (Kinouchi et al.,
2024). In mouse mammary epithelial EpH4 cells, ectopically
expressed FOSL1 binds to the regulatory sequence regions of the
transcription factor-coding genes Zeb1 and Zeb2, as well as to the
EMT-inducer TGF-β, thereby elevating the expression levels of
these transcriptional activators, activating TGF-β signaling, and
functioning as a powerful driver of the EMT process (Bakiri et al.,
2015). Despite these synergistic interactions, transcription factors
involved in regulating EMT may exhibit diverse and sometimes
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opposing biological functions. In the mouse mammary gland
epithelial cell line NmuMG, TFAP2A directly interacts with the
promoter region of Zeb2 and upregulates Zeb2 expression; however,
contrary to expectations, TFAP2A functions as an EMT suppressor
and perturbs TGF-β1-induced EMT (Dimitrova et al., 2017).

The activation of the EMT process and corresponding
phenotypical transitions do not inherently depend on alterations
in DNA sequence but can be triggered by epigenetic modifications,
such as DNA methylation and histone modifications. DNA
methylation, through the transfer of a methyl group, generates 5-
methylcytosine on the C5 position and regulates gene expression
(Moore et al., 2013). DNA methylation is frequently observed in
cells undergoing the EMT process, while cellular demethylation,
achieved through the application of the DNA methylation
inhibitor 5-azacytidine or the silencing of DNA methyltransferases
(DNMTs), promotes the reversal of the EMT process (Galle et al.,
2020). Transcriptional factors, besides their genetic functions,
can also modulate gene expression at the epigenetic level. The
EMT inducer ZEB1 interacts with DNMT1, enhances the 5-
methylcytosine modification at the E-cadherin promoter, and
consequently represses E-cadherin expression (Fukagawa et al.,
2015). Histone posttranslational modifications, such as histone
methylation and acetylation, play an important role in modulating
genomic architecture and regulating numerous biological activities
associated with EMT (Millán-Zambrano et al., 2022). Epithelial
cells transition from an active state characterized by enriched
histone 3 lysine 27 acetylation (H3K27ac) and histone H3 tri-
methylated lysine 4 (H3K4me3) to a repressed state marked by
trimethylation of histone H3 lysine 27 (H3K27me3), lysine 9
(H3K9me3), and DNA methylation as EMT progresses (Hatta et al.,
2018; Segelle et al., 2022).Numerous epigenetic regulators, including
histone demethylase LSD1, histone methyltransferase PRMT5,
histone deacetylase HDAC1, and histone acetyltransferase CBP,
directly modulate the expressions of EMT-related transcription
factors and/or interact with these transcription factors to regulate
the expressions of their target genes, thereby influencing the
EMT process (Lu and Kang, 2019).

Non-coding RNAs, such as microRNAs (miRNAs), long non-
coding RNAs (lncRNAs), and circular RNAs (circRNAs), constitute
the vast majority of RNA transcripts in mammals. These non-
coding RNAs control the gene expressions without altering DNA
sequences and hence are also recognized as key players in the
epigenetic regulatory landscape (Wei et al., 2017; Panni et al., 2020).
Enforced expressions of miR-200 family members, which target and
reduce the levels of ZEB1 and ZEB2 at the post-transcriptional
level, inhibits TGF-β-induced EMT. Conversely, downregulation
of miR-200 family members suppresses E-cadherin expression,
enhances vimentin expression, and promotes the induction of
EMT (Gregory et al., 2008; Park et al., 2008). ZEB1, in turn,
binds to the promoter of miR-200 and suppresses its transcription,
creating a reciprocal regulatory relationship (Brabletz and Brabletz,
2010). Similarly, miR-34 and Snail form a double-negative feedback
loop that governs the equilibrium between the epithelial state and
the mesenchymal state (Siemens et al., 2011). LncRNA CARMN
inhibits the expression of matrix metalloproteinase 2 (MMP2), a
protease responsible for degrading the extracellular matrix, thereby
impeding the EMT process in breast cancer cells (Liao et al.,
2024). LncRNA 01016 suppresses DHX9 proteasomal degradation,

increases DHX9 expression, activates the PI3K/Akt signaling
pathway, and improves breast cancer cell migration (Sun et al.,
2023). CircRNA PTK2 enhances the stability of SETDB1 and
accelerates SETDB1-induced EMT in bladder cancer (Meng et al.,
2023). The interplay between these non-coding RNAs in regulating
EMT has also been extensively investigated. For instance, miR-200
interacts with and inhibits lncRNA HOTAIR, thereby suppressing
EMT in renal cell carcinoma (Dasgupta et al., 2018). LncRNA
KB-1732A1.1 physically interacts with miR-200 and contribute to
breast cancer cell EMT (Li et al., 2019). LncRNA IUR, on the
other hand, enhances miR-200 expression, thereby suppressing
ZEB1 expression and inhibiting pancreatic cancer cellmigration and
invasion (Sun et al., 2019). LncRNA XIST boosts ZEB1 expression
through competitively binding to miR-429, and contributes to
pancreatic cancer cell EMT (Shen et al., 2019). CircRNA circ_
0001666, via the circ_0001666/miR-1251/Sox4 axis, facilitates the
EMT process in pancreatic cancer (Zhang et al., 2021).

EMT-like process of Schwann cells during
peripheral nerve regeneration

Tissue repair and regeneration constitute a highly orchestrated,
multistage process encompassing hemostasis, inflammation, cell
proliferation, and tissue remodeling. This process relies on the
activation of intrinsic healing mechanisms and the enhancement
of endogenous regenerative capacity. Central to this regenerative
cascade is EMT, an epitome of cellular plasticity that drives cellular
reprogramming during tissue repair (Valcourt et al., 2016; Lambert
and Weinberg, 2021; Youssef and Nieto, 2024). Schwann cells
undergo an EMT-like process essential for their plasticity, enabling
a phenotypic switch from a differentiated to a repair state after
peripheral nerve injury. This process is critical for creating a
permissive microenvironment that promotes axonal regrowth and
functional recovery (Figure 3).

Schwann cell in homeostasis and
regeneration

In intact peripheral nerves, myelinating Schwann cells are
predominantly quiescent and exhibit minimal cellular turnover,
typically persisting without renewal throughout the whole life
period. Non-myelinating Schwann cells also display a low renewal
frequency, with a remarkably long turnover time of approximately
once every 72 months (Stierli et al., 2019). Following peripheral
nerve injury, Schwann cells demonstrate remarkable plasticity.
Damage to peripheral nerves disrupts the interaction between
Schwann cells and neuronal axons, eliminates inhibitory signals
from the axons, and hence enables mature Schwann cells to revert
to a dedifferentiated state (Merrell and Stanger, 2016). Damaged
axons also release some signal molecules, such as mitochondrial
alarmins and ATP, which play a crucial role in triggering the
activation of Schwann cells (Duregotti et al., 2015; Negro et al.,
2016). The distinctive combination of cell de-differentiation and
activation is a distinctive hallmark of adaptive reprogramming
and indicates that Schwann cells switch to a repair-supportive
phenotype designated as repair Schwann cells after nerve injury
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FIGURE 3
Schwann cell EMT during peripheral nerve regeneration. Following peripheral nerve injury, mature Schwann cells undergo EMT, convert into a
repair-supportive phenotype, and generates a permissive microenvironment for nerve regeneration.

(Jessen and Mirsky, 2016; Zhao et al., 2024). Lineage tracing
studies have revealed that both myelinating and non-myelinating
Schwann cells undergo a phenotypic transition into repair
Schwann cells characterized by extended cytoplasmic processes
(Gomez-Sanchez et al., 2017). These repair Schwann cells actively
participate in myelin clearance by phagocytosing and degrading
myelin sheath debris, thereby eliminating inhibitory factors that
impede axonal elongation. Furthermore, repair Schwann cells
contribute to the regenerative microenvironment by secreting a
spectrum of neurotrophic factors, surface proteins, and cytokines
that collectively promote axonal growth. This secretory profile
enables repair Schwann cells to provide essential pro-regenerative
signals from the peripheral environment, supporting neuronal
survival and facilitating nerve regeneration. Importantly, the
morphological transformation of mature Schwann cells into
an elongated bipolar configuration facilitates the organization
of aligned guidance structures known as Bungner’s bands
(Jessen and Mirsky, 2016).

Following the successful regrowth of injured axons, repair
Schwann cells undergo a series of critical morphological and
functional changes. Schwann cells establish direct contact with
regenerating neuronal axons, initiate a process of radial contraction

that significantly reduces their elongated morphology, and undergo
re-differentiation to their mature phenotype. This maturation
process culminates in the re-establishment of the characteristic
Schwann cell-axon relationship, where the re-differentiated
Schwann cells envelop the regenerated axons, restoring the normal
structural organization of the nerve fiber (Jessen and Mirsky, 2016).

EMT-like transition of Schwann cells
following peripheral nerve injury

Mature Schwann cells possess several epithelial-like
characteristics, including cellular polarity, the presence of
intercellular junctions, and the expression of epithelial cell markers
(Bunge et al., 1986). A key event in the transformation of mature
Schwann cells into repair Schwann cells is the activation of the
EMT-like process. Transcriptomic profiling of sorted and purified
Schwann cells collected from mouse distal nerve stumps at 6 days
post sciatic nerve transection reveals significant downregulation
of Cdh1, the gene encoding the epithelial marker E-cadherin,
compared to Schwann cells from intact sciatic nerves. Concurrently,
there is a marked enrichment of an EMT-related gene set and a
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Yamanaka reprogramming factor Myc gene set, indicating the
dedifferentiation of mature Schwann cells at the injured distal
nerve stumps. Further comparison of transcriptomes between
Schwann cells within the nerve bridge and those at the distal
nerve stumps demonstrates that bridge Schwann cells exhibit
greater proliferative capacity, heightened TGF-β signaling activity,
and more pronounced mesenchymal characteristics. The robust
activation of TGF-β signaling within the nerve bridge drives
Schwann cell reprogramming, enhances their organization and
sorting, and facilitates the creation of a regeneration-permissive
microenvironment (Clements et al., 2017). Similarly, RNA
sequencing of mouse distal nerve stumps at 7 days post sciatic
nerve injury reveals a reduction in Cdh1 expression alongside the
upregulation of multiple EMT-promoting genes, including Tgfb1,
Shh, Fosl1, and tenascin-C-coding gene Tnc (Arthur-Farraj et al.,
2017). Additionally, a significant number of EMT-associated
miRNAs are differentially expressed in mouse injured distal nerve
stumps, further underscoring the role of EMT-like process in
Schwann cell reprogramming and peripheral nerve regeneration
(Viader et al., 2011; Arthur-Farraj et al., 2017).

The activation of EMT-like process and the phenotypic switch
of Schwann cells are also observed in rats subjected to peripheral
nerve injury, demonstrating a high degree of conservation in the
injury response mechanisms of Schwann cells across species. In
the distal nerve stumps of rats following surgical removal of a 10-
mm sciatic nerve segment, genes encoding severalMMPs, including
Mmp7, Mmp9, and Mmp12, are significantly up-regulated. This
upregulation suggests extensive remodeling of the extracellular
matrix, whichmay facilitate the acquisition of migratory capabilities
by Schwann cells, a critical step in the nerve repair process
(Yu et al., 2016). Consistent with sequencing data from injured
mouse sciatic nerves, transcriptomic analysis of immunopanned
Schwann cells purified from rat sciatic nerves following nerve
crush reveals the upregulation of EMT enhancer Tnc as well as
significant changes in the expressions of extracellular matrix-related
genes (Brosius Lutz et al., 2022). These findings, by eliminating
confounding factors introduced by heterogeneous cell populations
in peripheral nerves, provide direct evidence of transcriptomic
changes occurring in purified Schwann cells after nerve injury
and demonstrate the alternation of EMT-associated genes. And
these observations demonstrate that the EMT-like transition in
Schwann cells is a conserved response, occurring after both
relatively mild crush injuries and more severe injuries, for instance,
nerve transition and long distance nerve defect. The activation
of Schwann cell EMT-like program parallels the wound healing
processes observed in other regenerative tissues and is biologically
advantageous, as it facilitates successful nerve regeneration by
promoting Schwann cellmigration, extracellularmatrix remodeling,
and the creation of a pro-regenerative microenvironment (Jessen
and Arthur-Farraj, 2019).

Targeting EMT-like process of Schwann
cells in the treatment of peripheral nerve
injury

It is worth noting that although the peripheral nervous system
has regeneration capacity, the self-regeneration of injured peripheral

nerves is often inadequate and unsatisfactory due to limited speed of
nerve regrowth (Avraham et al., 2021). Under some circumstances,
such as serious peripheral nerve injury with long nerve gaps and
nerve injury in aged individuals, the regeneration speed of injured
nerves may be further diminished (Yi et al., 2019). This can result
in chronic denervation of target tissues and organs, the atrophy of
limbmuscle, andultimately, failureof functional recovery.Therapeutic
strategies that enhance the EMT-like process in Schwann cells
and sustain their repair state are essential for accelerating axonal
regeneration and improving functional recovery after nerve injury.
By promoting this transition, these approaches facilitate a pro-
regenerativemicroenvironment, enhanceSchwanncellmigration,and
support the structural and functional restoration of damaged nerves.

The biological involvement of TGF-β signaling in peripheral
nerve injury and regeneration is well-established (Li et al., 2017;
Ding et al., 2024; Lee et al., 2024). In response to injury signals,
TGF-β is secreted by Schwann cells and other cell populations within
peripheral nerves, such as macrophages and fibroblasts, leading to its
elevated expression in the wound microenvironment (Ye et al., 2022).
Experimental treatment of Schwann cells with recombinant TGF-β
protein results in the downregulation of keymyelin-relatedmolecules,
suchasP0,MBP, andPMP22, and inhibits Schwanncell differentiation
and myelination processes (Guénard et al., 1995; Awatramani et al.,
2002). Morphologically, treatment with recombinant TGF-β protein
disrupts gap junction-mediated intercellular coupling, induces a
transition in Schwann cells to a flattened,multipolarmorphology, and
promotes the formation of bands of Büngner (Chandross et al., 1995;
Ribeiro-Resende et al., 2009). Functionally, TGF-β levels critically
regulate key regenerative behaviors of Schwann cells. Silencing TGF-
β1 suppresses both proliferation and apoptosis of Schwann cells,
whereas overexpression of TGF-β1 stimulates both processes (Li et al.,
2015). Complementary to these findings, exogenousTGF-β treatment
increases themRNAandproteinexpressionsofMMP2andMMP9and
largely enhances Schwann cellmigration and invasion (Muscella et al.,
2020).Thepro-migratoryeffectofTGF-βisbiologicallyconsistentwith
the biological functions ofmanyMMPs, as evidenced by direct studies
showing MMP7 and MMP9 promotes Schwann cell migration in rat
sciatic nerve injury models (Wang et al., 2019; Lu et al., 2022). These
findings collectively demonstrate that TGF-β effectively stimulates an
EMT-like process in Schwann cells across morphological, functional,
and molecular dimensions. Still, many aspects of this TGF-β-induced
reprogramming remain unresolved, such as epigenetic regulatory
mechanisms and non-coding RNA networks. Moreover, whether
TGF-β drives a full or partial EMT-like transition of Schwann cells
and the persistence of EMT-like transformation remain unexamined.
The therapeutic benefits of exogenous TGF-β in treating peripheral
nerve injury have been consistently validated in various animal
models. For instance, in a study involving dogs with a 50-mm
sciatic nerve gap, the combination of TGF-βwith autologous adipose-
derivedmesenchymal stemcells andxenogeneicacellularnervematrix
grafts yielded significantly superior repair outcomes compared to
the use of autologous adipose-derived mesenchymal stem cells and
xenogeneic acellular nerve matrix graft alone (Luo et al., 2012).
Beyond its efficacy in treating long nerve gaps, TGF-β has also
shown promise in the repair of chronically injured nerves. Studies
demonstrate that both standalone TGF-β treatment and combined
therapy with TGF-β plus forskolin effectively reactivate Schwann
cells, significantly enhancing axonal growth and promoting nerve
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repair (Sulaiman and Gordon, 2002; Sulaiman and Gordon, 2009;
Sulaiman and Dreesen, 2014; Sulaiman et al., 2018). These findings
underscore the versatility of TGF-β as a powerful therapeutic agent,
capableofaddressingsevereperipheralnerve injuriesaswell aschronic
peripheral nerve injuries by rejuvenating Schwann cell function and
creating a pro-regenerative microenvironment.

Beyond TGF-β, other members of the TGF-β superfamily
critically modulate Schwann cell behavior. Bone morphogenetic
protein 7 (BMP-7) significantly supports Schwann cell proliferation
(Kokubu et al., 2018), while activin A enhances both proliferation
rate and migration ability of Schwann cells (Li et al., 2022). In
addition to TGF-β family members, other signaling molecules
and regulatory factors play critical roles in modulating Schwann
cell phenotype and plasticity. PKCε, a calcium-independent
protein kinase, is expressed in both myelinating and non-
myelinating Schwann cells, existing in both phosphorylated and
non-phosphorylated states. Treatment with the PKCε activator
dicyclopropyl-linoleic acid does not affect Schwann cell viability
but significantly enhances the proliferation and migration of
Schwann cells. Furthermore, PKCε activation reduces the expression
of E-cadherin, raises the expressions of N-cadherin and EMT-
related transcription factor Snail, and induces the cytoskeleton
rearrangement and morphological change. These observations
collectively indicate that PKCε activation promotes EMT-like
process of Schwann cells, highlighting its role in regulating
Schwann cell plasticity and supporting nerve repair processes
(Mohamed et al., 2023). FOSL1, a transcription factor known to
drive the EMT process (Casalino et al., 2023), has been identified
as to be significantly upregulated in Schwann cells at injury sites
following peripheral nerve injury (Chen et al., 2023a). Functional
studies reveal that Schwann cells overexpressing FOSL1 via
lentiviral infection exhibit markedly enhanced migratory capacity.
Conversely, Schwann cells transfected with siRNA targeting FOSL1
show compromised proliferation rates and slower migration speeds.
In vivo experiments further demonstrate that local injection of
siRNA targeting FOSL1 at the injury site in rats subjected to
sciatic nerve crush impairs Schwann cell activity, retards axonal
regrowth, and delays the remyelination of elongated axons as
well as the recovery of nerve conductance and nerve function
(Chen et al., 2023a). Similarly, runt-related transcription factor 2
(Runx2), a transcription factor activating EMT pathway (Liu et al.,
2020), shows increased local expression in the injured peripheral
nerves (He et al., 2025). Elevated Runx2 activates the stemness
factor Sox2, drives the morphological transition of Schwann cells
from a spindle-shaped to a flat, rounded phenotype, and promotes
EMT-like process in Schwann cells (He et al., 2025). Following
peripheral nerve injury, the expression of the microphthalmia-
associated transcription factor (MITF) is upregulated through
post-transcriptional mechanisms and MITF shuffles from the
Schwann cell cytoplasm to the nucleus to execute its transcriptional
function. Mutations in MITF increase the adhesion properties
of Schwann cells, impair their migratory ability, and disturb
proper Schwann cell dedifferentiation after nerve injury. These
defects ultimately hinder axonal regrowth and impede nerve
regeneration (Daboussi et al., 2023).

Complementing EMT-associated transcription factors, the
biological functions of many EMT-related non-coding RNAs
in Schwann cells have been explored. For example, miR-34

has been shown to inhibit Schwann cell dedifferentiation and
proliferation, while miR-200 suppresses Schwann cell migration
(Viader et al., 2011; Chen et al., 2023b). These findings highlight
the complex regulatory networks involving non-coding RNAs that
fine-tune Schwann cell responses to nerve injury and reflect that
Schwann cells can be activated to expedite nerve regeneration by
modulating the expressions of these non-coding RNAs.

Given the demonstrated efficacy of EMT inducers in driving
Schwann cell reprogramming, therapeutic strategies targeting
EMT-like process are emerging as promising approaches for
nerve regeneration. These strategies may include pharmacological
activators of key signaling pathways or genetic modifications of
EMT regulators. A representative example of such an EMT-like
promoting agent is isoviolanthin, a natural compound isolated
from dendrobium officinale. Isoviolanthin enhance Schwann
cell viability and mobility via up-regulating vimentin, thereby
modulating the EMT-like process. These effects demonstrate
the potential of isoviolanthin to address impaired peripheral
nerve regeneration (Su et al., 2025). And such interventions hold
significant potential not only for treating peripheral nerve injuries
but also for addressing other neurological disorders associated with
Schwann cell plasticity.

While our current review article focuses on the EMT-like
process of Schwann cells following peripheral nerve injury and
during nerve regeneration, emerging studies demonstrate the
essential involvement of Schwann cells in cancer progression,
a process that share many common biological features with
regeneration (Gracia et al., 2025; Zhang et al., 2025). Schwann cells
may generate a specialized tumor microenvironment via a type 3
EMT-like program, and induces the invasiveness of cancer cells
(Yurteri et al., 2022). For instance, dietary palmitic acid uptake
activates intratumoural Schwann cells, switches Schwann cells to a
pro-regenerative state, and expedites metastasis in oral carcinomas
and melanoma (Pascual et al., 2021). The dual role of Schwann
cells, driven by EMT-like process, in nerve regeneration and cancer
progression underscores the critical need to balance their essential
pro-migratory function in repair against the requirement to inhibit
their pro-tumorigenic activity. Considering that EMT-mediated
migration drives both beneficial repair and detrimental pathological
processes like invasion and metastasis, when developing Schwann
cell-based regenerative therapies, their pro-tumorigenic potential
via EMT-like process must be rigorously considered. Future
research is needed to delineate the distinct molecular mechanisms,
spatiotemporal regulation, and microenvironmental cues that
differentiate physiological regeneration from pathological invasion.
Identifying these differences is fundamental for designing precise
therapeutic strategies that effectively promote tissue repair while
avoiding the inadvertent stimulation of cancer progression.

Concluding remarks

A key factor contributing to the superior regenerative capacity
of peripheral nerves compared to central nerves is the activation
of EMT-like process in Schwann cells. Following peripheral nerve
injury, Schwann cells initiate EMT-like program, switch to a plastic
repair state, and contribute to the generation of a permissive
microenvironment for axonal elongation and nerve repair. This
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article provides insight into the cellular and molecular hallmarks of
EMT, emphasizing its critical role in Schwann cell plasticity and its
contribution to successful peripheral nerve regeneration.

Notably, while the de-differentiation of mature Schwann cells
is crucial for tissue remodeling, the subsequent re-differentiation
of repair Schwann cells and their wrapping around regenerated
axons are equally vital for achieving functional recovery. Prolonged
maintenance of the EMT-like state may impede Schwann cell re-
differentiation, thereby negatively impacting nerve regeneration.
For instance, Schwann cells deficient in the EMT inducer Zeb2
exhibit sustained de-differentiation but fail to remyelinate effectively,
resulting in compromised nerve regeneration (Quintes et al., 2016;
Brinkmann and Quintes, 2017). In addition, excessive or prolonged
EMT-like process can lead to neurofibrosis (Wu et al., 2023).
Successful nerve regeneration requires precise temporal regulation
of the EMT-like process in Schwann cells. Hence, a balanced
approach is essential, ensuring robust de-differentiation during
the early phases of injury to facilitate tissue repair, followed by
timely re-differentiation in later stages to support remyelination and
functional restoration.
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