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Background: Lung adenocarcinoma (LUAD) is one of themost common cancers
worldwide and a major cause of cancer-related deaths. The advancement of
immunotherapy has expanded the treatment options for LUAD. However, the
clinical outcomes of LUAD patients have not been as anticipated, potentially due
to immune escape mechanisms.

Methods: An integrative machine learning approach, comprising ten methods,
was applied to construct an immune escape-related signature (IRS) using
the TCGA, GSE72094, GSE68571, GSE68467, GSE50081, GSE42127, GSE37745,
GSE31210 and GSE30129 datasets. The relationship between IRS and the tumor
immune microenvironment was analyzed through multiple techniques. In vivo
experiments were performed to investigate the biological roles of the key gene.

Results: The model developed by Lasso was regarded as the optional IRS, which
served as an independent risk factor and had a good performance in predicting
the clinical outcomeof LUADpatients. Low IRS-based risk score indicated higher
level of NK cells, CD8+ T cells, and immune activation-related functions. The C-
index of IRS was higher than that of many developed signatures for LUAD and
clinical stage. Low risk score indicated had a lower tumor escape score, lower
TIDE score, higher TMB score and higher CTLA4&PD1 immunophenoscore,
suggesting a better immunotherapy response. Knockdown of PVRL1 suppressed
tumor cell proliferation and colony formation by regulating PD-L1 expression.

Conclusion: Our study developed a novel IRS for LUAD patients, which served
as an indicator for predicting the prognosis and immunotherapy response.
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immune escape, machine learning, lung adenocarcinoma, prognostic signature,
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1 Introduction

Lung cancer is one of the most common cancers in the
United States and a major cause of cancer-related deaths, with
an estimated 234,580 new cases and 125,070 deaths each year
(Siegel et al., 2024). Lung adenocarcinoma (LUAD) is the most
common subtype of lung cancer, accounting for approximately
40% of all lung cancer cases (Song et al., 2021; Xu and Lu,
2024). For early-stage LUAD cases, surgical resection remains
the primary treatment method However, there is usually have
no obvious clinical symptoms in the early stages of LUAD cases,
which leads to a significant proportion of LUAD cases being
diagnosed at an advanced stage, thus missing the best opportunity
for surgical intervention. Although there are multiple treatment
options available for advanced lung cancer cases, including
chemotherapy and targeted therapy, their clinical outcomes
remain unsatisfactory, with a 5-year overall survival rate of
only 4% for patients with metastatic lung cancer (Lahiri et al.,
2023). However, in recent years, immunotherapy has provided
more possibilities for extending the lives of patients with
inoperable lung cancer. Nowadays, several immunotherapy
drugs have been approved for first-line treatment of non-
small cell lung cancer, including nivolumab and pembrolizumab
(Provencio et al., 2023; Gandhi et al., 2018). However, a significant
number of patients do not respond to immunotherapy throughout
the treatment period. Currently, reliable biomarkers for predicting
prognosis and immunotherapy sensitivity are limited, and further
research is needed.

The efficacy of immunotherapy for LUAD remains limited,
mainly due to the tumor heterogeneity and immunosuppressive
microenvironment within the tumor (Passaro et al., 2022; Li et al.,
2024). The lungs have an immunosuppressive tendency that
can weaken T-cell-mediated antigen responses (Tanoue et al.,
2023). To maintain normal physiological homeostasis, the
immunosuppressive effect of the lungs is maintained by other
resident immune cells, including dendritic cells (DCs) and
regulatory T cells (Tregs) (Mengistu et al., 2024). However,
in advanced lung adenocarcinoma, this immunosuppressive
environment facilitates tumor immune escape, allowing cancer
cells to evade host immune clearance. Intrinsic tumor immune
escape refers to the strategies used by tumor cells to avoid host
immune detection and destruction, thereby promoting their
survival, proliferation, and resistance to immunotherapy. In
advanced tumor patients, monocytes highly express CD48, a
molecule that acts on natural killer (NK) cells, causing them
to become rapidly and transiently activated before becoming
exhausted and eventually dying (Wu et al., 2013). Tumor-associated
macrophages are key regulatory cells in the immune response of lung
adenocarcinoma, promoting tumor immune escape by secreting
inhibitory programmed death ligand 1 (PD-L1) to suppress T-cell
activation and function (Singhal et al., 2019). Therefore, exploring
immune escape-related genes in the immune microenvironment
of LUAD and establishing relevant models to predict the efficacy
of immunotherapy is of great significance for the development of
immunotherapy.

In the current study, machine learning was performed
to construct and verify an immune evasion related genes-
based signature (IRS) for LUAD using TCGA, GSE72094,

GSE68571, GSE68467, GSE50081, GSE42127, GSE37745,
GSE31210 and GSE30129. The role of IRS in predicting
the immunotherapy response of cancer patients were
also explored.

2 Materials and methods

2.1 Datasets and gene sets

We obtained bulk RNA-seq data from the TCGA database
for LUAD cases (n = 503) and normal lung cases (n = 59). The
predictive value of IRS was further assessed using eight GEO
datasets: GSE72094 (n = 398), GSE68571 (n = 86), GSE68465 (n
= 442), GSE50081 (n = 127), GSE42127 (n = 173), GSE37745
(n = 106), GSE31210 (n = 226), and GSE30129 (n = 86).
Additionally, two immunotherapy datasets—IMvigor210 (n = 298)
and GSE91061 (n = 98)—were utilized to evaluate the ability
of IRS to predict immunotherapy benefits. The immune evasion
related genes (IRGs) identified in prior studies are presented in
Supplementary Table S1 (Lawson et al., 2020; Wen et al., 2025). The
detail for the data preprocessing and normalization procedures were
provided in the Supplementary Material.

2.2 Integrative machine learning based IRS

The “limma” package was employed to detect differentially
expressed genes (DEGs) in LUAD among IRGs, using |LogFC|
≥ 1.5 as the threshold. Potential prognostic biomarkers were
identified through univariate Cox regression analysis. To establish
a robust prognostic IRS, these biomarkers were subjected to an
integrative machine learning analysis, which included methods
such as Lasso, RSF, Ridge, CoxBoost, stepwise Cox, Enet, plsRcox,
GBM, SuperPC and survival-SVM. Within the leave-one-out
cross-validation framework applied to the TCGA dataset, the
candidate genes for the prognostic model and their corresponding
coefficients were determined. Subsequently, Harrell’s concordance
index (C-index) for all prognostic models was calculated using
the TCGA dataset and eight GEO datasets. Similar machine
learning methodologies have been described in prior studies
(Liu et al., 2022a; Liu et al., 2022b; Zhang et al., 2022). Detailed
parameter tuning information for the R scripts used in this
study can be found on the Github repository (https://github.
com/Zaoqu-Liu/IRLS). The detailed parameter of each machine
learning method was shown in Supplementary Material. The
prognostic IRS with the highest average C-index was selected
as the optimal model. Using the “surv_cutpoint” function
from the R package “survminer,” the optimal cutoff value
was identified, allowing us to classify LUAD cases into low
and high risk score groups across all datasets. Univariate and
multivariate Cox regression analyses were conducted to identify
risk factors associated with LUAD prognosis. The C-index curves of
clinical characteristics and 100 previously developed prognostic
signatures for LUAD (Supplementary Table S2) were computed
using the “rms” package. Finally, a predictive nomogram was
constructed using the R package “nomogramEx,” integrating both
the IRS and clinical characteristics.
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2.3 Immunotherapy analyses and gene set
enrichment analyses

Seven algorithms, including CIBERSORT, MCPcounter,
QUANTISEQ, XCELL, CIBERSORT-ABS, TIMER, and EPIC, were
used to investigate the correlation between IRS and immune cells
with R package “immunedeconv” (Li et al., 2020). The immune
and ESTIMATE scores for tumor cases were computed using the
R package “estimate” (Yoshihara et al., 2013). After obtaining the
cancer-related hallmark gene set from the Molecular Signatures
Database, we performed single-sample Gene Set Enrichment
Analysis (ssGSEA), which was also used to assess the scores of
immune cells, immune-related functions, and tumor escape and
surveillance in LUAD patients. The IC50 values of drugs for LUAD
patients were calculated using the R package “oncoPredict” and
data from the Genomics of Drug Sensitivity in Cancer database
(https://www.cancerrxgene.org/). Several tools were employed to
evaluate the role of IRS in predicting immunotherapy benefits.
The Tumor Immune Dysfunction and Exclusion (TIDE) and
tumor mutation burden (TMB) score for LUAD patients were
retrieved from the TIDE platform (http://tide.dfci.harvard.edu).
The Immunophenoscore (IPS) for LUAD patients was downloaded
from the Cancer Immunome Atlas (TCIA, https://tcia.at/home).

2.4 Cell lines and knockdown of PVRL1

Normal lung cell line (HBE) and LUAD cell lines were obtained
fromShanghai Institute of Biochemistry andCell Biology (Shanghai,
China). ATCC recommended medium and fetal bovine serum
(FBS; Gibco) and 1% penicillin-streptomycin (Sigma-Aldrich, St.
Louis, United States) were used to calculated these cells, which
were maintained in circumstances containing 5% CO2 and 95%
saturated humidity at 37°C. Lipofectamine 3000 transfection reagent
(Invitrogen) was used for the transfection of A549 and H1299
with NCAPG shRNA lentivirus (PVRL1-sh) and shRNA lentivirus
vector (sh-NC) from GeneChem (Shanghai, China) based on the
manufacturer’s instructions.

2.5 RT-qPCR and Western blotting

RNA was extracted from cells using TRIzol (Takara Bio)
and subsequently reverse-transcribed into cDNA with an oligo
(dT) primer. RT-qPCR was performed using SYBR Premix Ex
Taq (Takara Bio) on the ABI 7900HT detection system (Thermo
Fisher Scientific Inc.), with gene expression levels normalized to
the internal control GAPDH. Proteins were extracted from cell
lines using lysis buffer (Beyotime), and their concentrations were
determined using a bicinchoninic acid (BCA) kit (Beyotime). The
proteins were denatured by boiling in loading buffer (Beyotime)
for 3 min before being separated via SDS-PAGE and transferred
onto a PVDF membrane (Thermo Fisher Scientific, United States).
The membrane was blocked with 5% BSA to minimize non-
specific binding. Primary antibodies were incubated overnight at
4°C, followed by secondary antibodies for 1 h at room temperature.
Protein bands were visualized using enhanced chemiluminescence
(ECL) and the ABC system, and their intensities were quantified

with ImageJ software (National Institutes of Health, United States),
using GAPDH as the loading control.

2.6 Proliferation, colony formation, and
wound scratch assay

To assess cell proliferation, LUAD cell lines were seeded in
96-well plates at a density of 3,000 cells per well (in triplicate).
Cell Counting Kit-8 (Beyotime) was added to the wells at 4,
24, 48, 72, and 96 h. The proliferation index was determined by
calculating the ratio of the OD value at each specified time point
followed themethod in the previous study (Yang et al., 2025;Qiu et al.,
2024), LUAD cells were plated in 6-well plates at a density of 500
cells per well in colony formation assay. The following day, the
cells were treated with bortezomib in culture medium for 2 weeks.
Afterward, the cells were washed twice with PBS, fixed with 4%
paraformaldehyde for 30 min, and stained with 0.1% crystal violet
for 15 min. Following this, the cells were rinsed twice with PBS and
imaged using a digital camera.

The wound scratch assay was conducted to evaluate the
migratory ability of LUAD cells. Images of the scratched monolayer
were captured at 0 h and 48 h using a digital camera system
(Olympus Corporation, Tokyo, Japan).

2.7 Statistical analysis

Correlation analysis between two continuous variables was
performed using Pearson’s rank correlation methods. Differences
between continuous variables were assessed using either the
Wilcoxon rank-sum test or the Student’s t-test, as appropriate.
The two-sided log-rank test was applied to evaluate differences in
Kaplan-Meier survival curves across groups. All statistical analyses
were conducted using R software (version 4.2.1).

3 Results

3.1 Identification of potential prognostic
biomarkers for LUAD patients

Compared with normal tissues, a total of 7,906 genes were
differently expressed in LUAD tissues (Supplementary Figure S1A).
Supplementary Figure S1B showed the overlap between IEGs and
DEGs, identifying 60 genes were differently expressed IEGs.
As shown in Supplementary Figure S1C, additional univariate Cox
analysis revealed that 10 genes were significantly linked to the
overall survival rate of LUAD (p < 0.05). These genes included
TRAF2, STAT1, SMG7, PVRL1, NPLOC4, HDAC1, FADD, CEP55,
BOLA3, and AHSA1.

3.2 Integrative machine learning
algorithms developed a stable IRS

The 10 potential prognostic biomarkers were subjected to an
integrative machine learning process involving the 10 methods
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mentioned earlier to construct a stable IRS. As a result, a total of
101 prognostic models were generated and the average C-index
values of each model was shown in Figure 1A. The prognostic
model developed using Lasso exhibited the highest average C-
index of 0.8 and was thus selected as the optimal prognostic IRS.
This optimal IRS was established based on 5 IEGs, and the risk
score for LUAD cases were calculated using the formula: risk
score = 0.0010×CEP55exp + 0.0050×TFAF2exp + 0.1231×PVRL1exp

+ 0.0476×FADDexp + 0.0053×AHSA1exp + 0.0003×STAT1exp. LUAD
patients were categorized into high and low IRS score groups
using the optimal cutoff value. As shown in Figures 1B–J, LUAD
patients with high risk score demonstrated poorer overall survival
(OS) rates across multiple datasets, including TCGA, GSE72094,
GSE68571, GSE68467, GSE50081, GSE42127, GSE37745, GSE31210
and GSE30129 (all p < 0.05). The corresponding 1-, 3-, and 5-
year AUC values were as follows: 0.860, 0.821, and 0.795 in the
TCGA cohort; 0.876, 0.794, and 0.866 in the GSE72094 cohort;
0.853, 0.815, and 0.823 in the GSE68571 cohort; 0.821, 0.761,
and 0.740 in the GSE68465 cohort; 0.891, 0.814, and 0.769 in the
GSE50081 cohort; 0.942, 0.793, and 0.814 in the GSE42127 cohort;
0.778, 0.776, and 0.755 in the GSE37745 cohort; 0.848, 0.794, and
0.835 in the GSE31210 cohort; and 0.880, 0.816, and 0.798 in the
GSE30219 cohort (Figures 1B–J).

3.3 IRS showed good performance in
predicting the prognosis of LUAD patients

Figures 2A,B showed the result of univariate and multivariate
cox regression analysis in all theGEO andTCGA cohorts, indicating
IRS as an independent risk factor for the overall survival of LUAD
patients (all p < 0.05). Compared to age, gender, and clinical
stage, the C-index of the IRS was found to be higher across
all GEO and TCGA cohort (Figure 2C). Numerous prognostic
signatures have been developed for LUAD. To evaluate the predictive
performance of our IRS relative to other signatures, we gathered
100 prognostic signatures randomly and computed their respective
C-index (Supplementary Table S2). As illustrated in Figure 2D, the
C-index of our IRS was superior to these signatures within the
TCGA cohort. For predicting the clinical outcomes of LUAD, we
subsequently constructed a nomogram incorporating clinical stage,
IRS, gender, and age (Figure 3A). There was a strong agreement
between the predicted curve and the ideal curve (Figure 3B).
The AUC of the nomogram was greater than that of IRS, age,
gender, and clinical stage individually (Figure 3C). Additionally,
the DCA curve indicated that the nomogram provided better
predictive utility compared to risk score, tumor grade, and clinical
stage (Figure 3D).

3.4 The tumor microenvironment
difference in patients with different risk
score

Figure 4A showed the correlation between risk score and the
abundance of immune cells (p < 0.05). As shown in Figures 4B–D,

the findings indicated that the IRS-based risk score was negatively
correlated with the levels of NK cells and CD8+ T cell, and positively
correlated with immunosuppressive cells macrophage M2 (all p
< 0.05). Based on the data of ssGSEA analysis, there is a higher
presence of mast cells, CD8+ T cells, B cells, DCs, and TILs in
LUAD patients with low risk score (Figure 4E, all p < 0.05).
Additionally, patients with low risk score demonstrated elevated
immune checkpoint score, APC-co-stimulation score, T cell co-
stimulation scores and cytolytic activity scores (Figure 4F, all p
< 0.05). We also observed that low score group had significantly
higher immune score and ESTIMATE score (Figure 4G, p < 0.001).
The tumor immune landscape can be categorized into six subtypes:
wound healing (C1), IFN-g dominant (C2), inflammatory (C3),
lymphocyte-depleted (C4), immunologically quiet (C5), and TGF-
b dominant (C6) (Thorsson et al., 2018). As shown in Figure 4H,
Our data showed that low risk score group were predominantly
associated with the C3 subtype, while high IRS score group were
more frequently linked to the C1 and C2 subtype (p = 0.001).

3.5 IRS acted as an indicator for predicting
immunotherapy response

Higher expression of HLA-related genes suggests a broader
range of antigen presentation, which increases the probability
of presenting more immunogenic antigens and enhances the
likelihood of benefiting from immunotherapy (Lin and Yan, 2021).
LUAD patients with low risk score exhibited higher expression
levels of HLA-related genes and immune checkpoint molecules
(Figures 5A,B, p < 0.05). A high TMB and IPS score is associated
with a better response to immunotherapy (Liu et al., 2019;
Charoentong et al., 2017). A lower TIDE score implies reduced
immune escape and a better response to immunotherapy (Fu J. et al.,
2020). In our study, low risk score group showed higher TMB
score (Figure 5C) and elevated PD1&CTLA4 immunophenoscore
(Figure 5D). They also exhibited lower TIDE scores, reduced
immune escape scores, decreased immune surveillance score and
intra-tumor heterogeneity score (Figures 5E–H) (all p < 0.05).
These findings suggest that LUAD patients with low risk score
may derive greater benefits from immunotherapy. We further
evaluated the predictive value of IRS in immunotherapy using
two immunotherapy-related datasets. As show in Figure 5I, the
risk score was significantly higher in non-responders compared
to responders in the GSE91061 cohort (p < 0.05). Moreover, a
high risk score indicated a poorer overall survival rates and lower
response rate (Figure 5I). Similar results were observed in the
IMvigor210 cohort (Figure 5J).

Targeted therapy and chemotherapy remain critical treatments
for LUAD. To assess the performance of IRS in predicting drug
sensitivity in LUAD, we analyzed the IC50 values of several
chemotherapeutic agents and targeted therapies. The data revealed
that high risk score group had lower IC50 values for Osimertinib,
Nilotinib, Gefitinib, Erlotinib, Crizotinib, 5-Fluorouracil, Cisplatin,
Docetaxel, Gemcitabine, andOxaliplatin (Figures 6A,B, all p < 0.05).
This suggests that high risk score may exhibit greater sensitivity to
chemotherapy and targeted therapy in LUAD.
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FIGURE 1
Machine learning developed an immune escape-related signature. (A) The C-index of 101 kinds prognostic models in all the datasets. The survival curve
of different risk score groups and their corresponding ROC curve in TCGA cohort (B) and 8 GEO cohort (C–J).
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FIGURE 2
The predicting performance of IRS in the prognosis of LUAD patients. (A,B) Univariate and multivariate Cox regression analyses identified IRS-based risk
score as a risk factor for the prognosis of LUAD patients. (C) The C-index was used to compare the predictive value of IRS, age, gender, and clinical
stage for LUAD prognosis in the TCGA and 8 GEO cohort. (D) The C-index was also utilized to compare the prognostic performance of IRS with 100
other established signatures for LUAD patients.
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FIGURE 3
Construction of a predictive nomogram. (A) A nomogram was established using IRS, age, gender, and clinical stage as variables. (B,C) Calibration plots
and ROC curves were used to assess the performance of the nomogram in predicting the clinical outcomes of LUAD patients. (D) A DCA curve
illustrated the strong clinical applicability potential of the nomogram.

3.6 Cancer related hallmarks difference in
patients with different risk score

To understand why LUAD patients with different risk
score exhibited significant differences in clinical outcomes, we
conducted a functional enrichment analysis. The results indicated
that low risk score group indicated reduced activity of gene
sets related to NOTCH signaling, PI3K-AKT-mTOR signaling,
angiogenesis, oxidative phosphorylation, DNA repair, mTORC1
signaling, E2F target, hypoxia, glycolysis, and EMT signaling
(Figure 7, all p < 0.05).

3.7 Biological functions of the selected
gene

To further validate the role of IRS, we focused on PVRL1,
which had the most significant contribution to IRS, for additional
investigation. We subsequently examined the expression levels of
PVRL1 in LUAD cell lines and found that PVRL1 was highly
expressed in the majority of these cell lines (Figure 8A). In
subsequent experiments, the results from the CCK-8 assay indicated
that silencing PVRL1 significantly suppressed the proliferation of
A549 and H1299 cells (Figures 8B,C, p < 0.05). Additionally, the
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FIGURE 4
The tumor microenvironment landscape in different risk score group. (A) Seven algorithms-based correlation between risk score and the abundance of
immune cell. (B–D) High risk score indicated higher the abundance of NK cells, CD8+ T cells and lower level of macrophage M2. (E,F) The level of
immune cells and immune-related functions in different risk score groups. (G) The immune score and ESTIMAE score in different risk score groups. (H)
The immune landscape in different IRS score groups.∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001.

reduction in PVRL1 expression markedly inhibited cell migration
(Supplementary Figures S2A,B, p < 0.05) and colony formation
ability in both A549 and H1299 cells (Figures 8D,E, p < 0.05).

We further probed into the underlying molecular mechanisms of
PVRL1 in LUAD. Upon knocking down PVRL1, a decrease in PD-
L1 expression was observed (Figures 8F,G). These results suggest
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FIGURE 5
IRS acted as an indicator for immunotherapy response in LUAD. The level of HLA-related genes (A) and immune checkpoints (B) in different risk score
group. Comparison of TMB score (C), CTLA4&PD1 immunophenoscore (D), TIDE score (E), immune escape score (F), immune surveillance score (G)
and ITH score (H) across different risk score groups. (I,J) Analysis of the overall response rate and immunotherapy response rate in different risk score
groups within the GSE91061 and IMvigor210 cohorts.∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001.

that PVRL1might facilitate the progression of LUAD bymodulating
PD-L1 expression.

4 Discussion

This study established an integrated machine learning
framework comprising 10 different methods to construct a stable
IRS for LUAD. This IRS demonstrated robust and consistent
performance in forecasting the clinical outcomes of LUAD
patients and functioned as an independent risk factor. Actually,
previous studies have developed many prognostic signatures for
LUAD. Li et al. developed an eight-gene prognostic signature
for LUAD (Li et al., 2018). Another lysosomes-related gene

signature acted as a prognostic marker for LUAD (Song et al.,
2023). Glycolysis-related signature was correlated with survival
LUAD (Zhang et al., 2019). Mo et al. developed a hypoxia-
associated prognostic signature for LUAD (Mo et al., 2020).
The C-index of our IRS was higher than these prognostic
signatures, suggesting a better performance of IRS in predicting
prognosis. The LRS were developed with the leave-one-out cross-
validation method, which has some limitations. First of all, the
computing cost is very high, will further restricting its clinical
application. It is highly sensitive to outliers, which may cause
performance fluctuations. Moreover, due to the randomness of
data partitioning, the evaluation results of this method may be
affected by the way the dataset is divided, leading to unstable
evaluation results.
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FIGURE 6
The IC50 value of drugs in different risk score group. Comparison of the IC50 value of targeted therapy (A) and immunotherapy (B) drugs across
different risk score group.

FIGURE 7
Comparison of the cancer related hallmarks difference across different risk score group.

The prognostic IRS was developed using 6 IEGs, including
CEP55, TRAF2, PVRL1, FADD, AHSA1, and STAT1. These IEGs
also played a vital role in the development and prognosis of cancer.
CEP55 was suggested as a diagnostic and prognostic biomarker
for LUAD patients (Fu L. et al., 2020). Moreover, CEP55 promoted
tumorigenesis and indicated the poor prognosis in endometrial
cancer (Zhang et al., 2023). Oncogenic KEAP1 mutations activate
TRAF2-NFκB signaling to prevent apoptosis in lung cancer cells
(Deen et al., 2024). Another study found that TRAF2 favor
cancer progression by promoting M2-polarized tumor-associated
macrophage infiltration in renal cell carcinoma (Xu et al., 2023).
Overexpression of FADD acted as a prognostic biomarker and cell
proliferation in lung cancer (Chen et al., 2021; Bhojani et al., 2005).
Hepatocellular carcinoma cells increase the expression of PVRL1,

which suppresses cytotoxic T-cell activity through TIGIT, thereby
promoting tumor resistance to PD1 inhibitors (Chiu et al., 2020). In
our study, we found that PVRL1 favor tumor progression in LUAD.

Immunotherapy provides increased opportunities for extending
the lives of lung cancer patients with inoperable tumors (Ruiz-
Cordero and Devine, 2020). To investigate the relationship between
IRS and immunotherapy response in LUAD, we utilized several
evaluation metrics. Higher Tumor Mutational Burden score and
intra-tumor heterogeneity score was associated with improved
responsiveness to immunotherapy (Liu et al., 2019; Wang et al.,
2022). The Immunophenotype score served as a more accurate
predictor for the effectiveness of anti-CTLA4 and anti-PD1 antibody
treatments, where a higher IPS suggested enhanced therapeutic
outcomes (Charoentong et al., 2017). Additionally, a lower TIDE
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FIGURE 8
Validation of the potential function of PVRL1 in LUAD by in vitro assays. (A) Comparison of PVRL1 expressions in normal and LUAD cell lines.
Knockdown of PVRL1 obviously inhibited the proliferation (B,C) and colony formation (D,E) of A549 and H1299 cells. (F,G) Knockdown of PVRL1
obviously inhibited the PD-L1 expression.∗∗∗p < 0.001.

score implied reduced chances of immune evasion and better
efficacy of immunotherapy (Fu J. et al., 2020). Our findings revealed
that LUAD patients with low risk score were linked to decreased
immune escape score, reduced TIDE score, elevated TMB score, and
higher PD1 and CTLA4 immunophenotype score. Consequently,
IRS could potentially serve as an indicator, suggesting that LUAD
patients with low risk score might derive greater benefits from
immunotherapy.The results of our study showed that LUADpatients
with low risk score had a higher level of CD8+ T cells, NK cells, DCs
and mast cells, as well as lower level of macrophage M2. CD8+ T
cells are thought to induce cancer cell death mainly via perforin and
granzyme (van der Leun et al., 2020). NK cells play indispensable
roles in innate immune responses against tumor progression

(Tang et al., 2023). DCs are a diverse group of specialized antigen-
presenting cells with key roles in the initiation and regulation of
innate and adaptive immune responses (Wculek et al., 2020). While
M2 macrophages could promote tumor growth and invasion and
inhibit the immune responses (Li et al., 2023). Thus, due to the
higher level of these immune activation and tumor-killing related
immune cells in LUAD patients with low risk score, they had a
favorable immunotherapy benefits and prognosis.

To clarify why the clinical outcome of LUAD patients with
different risk score was significantly different, we then performed
functional enrichment analysis. We found that low risk score
group indicated a lower sore of gene sets correlated with Notch
signaling, hypoxia and angiogenesis. Notch signaling was a
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determinant of response to immune checkpoint blockade in LUAD
(Roper et al., 2021). Hypoxia was considered as a primary trigger of
angiogenesis and tumor hypoxia was correlated with a poor clinical
outcome of LUAD (Goudar and Vlahovic, 2008). Angiogenesis
the significantly correlated with the progression and metastasis of
lung cancer (Cantelmo et al., 2020).Thus, LUADwith high risk score
may be more active in the cancer-related hallmarks, resulting a poor
prognosis.

Some limitations could be found in our study. All data
were obtained from public databases at RNA level, prospective
studies should be conducted to further verify the accuracy of IRS.
The function and mechanism of PVRL1 in LUAD was further
investigated through in vivo experiments. It would be better to
incorporate classification metrics that account for class imbalance
(such as F1-macro average, MCC, or balanced accuracy) rather
than relying solely on continuous scores in the evaluation of
immunotherapy response.

5 Conclusion

Our study developed a novel IRS for LUAD patients,
which served as an indicator for predicting the prognosis and
immunotherapy response.
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