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N4-acetylcytidine (ac4C) is an evolutionarily conserved RNA modification
catalyzed by the acetyltransferase NAT10. It regulates RNA stability, translation,
and post-transcriptional processes. Meanwhile, NAT10 functions as a dual-
function enzyme exhibiting both protein acetyltransferase and RNA acetylase
activities. This review summarizes the structural and functional roles of
NAT10-mediated acetylation in physiological contexts, including cell division,
differentiation, inflammation, aging, and viral infection, as well as its emerging
roles in cancer. In malignancies, NAT10-mediated acetylation drives tumor
progression by enhancing mRNA stability, requlating cell cycle, promoting
metastasis, suppressing ferroptosis, modulating metabolism, influencing p53
activity, mediating immune escape and fostering drug resistance. Interactions
between NAT10 and non-coding RNAs further amplify its oncogenic effects.
Unresolved questions, such as microbiota-mediated ac4C regulation and
NAT10’s impact on the tumor immune microenvironment, highlight future
research directions. Targeting NAT10 and ac4C modification presents
promising therapeutic opportunities, with advanced technologies like single-cell
sequencing poised to refine epitranscriptome-based interventions.
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Introduction

Classical genetics, rooted in Mendelian laws, elucidates the molecular basis of trait
inheritance across generations by investigating gene sequence mutations, recombination
patterns, and hereditary principles (Gayon, 2016). However, the completion of genome
projects revealed limitations in explaining complex biological phenomena—such as
developmental differentiation and environmental responses—solely through DNA sequence
variations, prompting the emergence of epigenetics. Epigenetic research focuses on heritable
molecular modifications, including DNA methylation, histone modifications, non-coding
RNA regulation, and RNA modifications. These modifications influence phenotypic
expression without altering genetic sequences by modulating chromatin architecture, gene
transcription activity, and RNA metabolism processes (Li, 2021). In the field of tumor
biology, aberrant epigenetic regulation has been identified as one of the key drivers
of cancer initiation and progression (Farsetti et al, 2023). Within the multi-layered
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regulatory network of epigenetics, RNA modifications, as critical
components of post-transcriptional regulation, have attracted
substantial attention in recent years due to breakthroughs in high-
throughput sequencing technologies (Sun et al., 2023). Current
epitranscriptomic studies have identified approximately 170 types
of RNA chemical modifications, with particular emphasis on
elucidating the roles of methylation in embryonic development
and immune responses. Notably, the acetylated modification
N4-acetylcytidine (ac4C), characterized by its unique chemical
properties and broad biological effects, is rapidly emerging as
a new focal point in epitranscriptomic research (Gilbert and
Nachtergaele, 2023).

The acetylation ac4C modification is an evolutionarily
conserved RNA epigenetic modification, characterized by the
addition of an acetyl group to the N4 position of cytosine, and plays
a critical role in mRNA stability and translation (Sas-Chen et al.,
20205 Jin et al., 2020). Initially identified in the anticodon loop
of tRNA and structural domains of rRNA, this modification was
proposed to maintain ribosomal function by stabilizing RNA
tertiary structures (Boccaletto et al., 2022). With advancements
in mass spectrometry and acetylated RNA immunoprecipitation
sequencing (acRIP-seq) technologies, studies have revealed that
ac4C exhibits significant enrichment at the 5 end of mRNA
open reading frames (ORFs), suggesting its potential involvement
in the regulation of translation initiation (Arango et al., 2018).
NAT10, a eukaryotic RNA acetyltransferase, serves as the sole
known writer protein for ac4C (Ito et al., 2014). By catalyzing ac4C
modification, NAT10 modulates mRNA stability and translation
efficiency, thereby participating in biological processes such as cell
cycle checkpoint regulation, apoptosis, and DNA damage repair
(Dominissini and Rechavi, 2018). Simultaneously, NAT10 functions
as a dual-function enzyme exhibiting both protein acetyltransferase
and RNA acetylase activities. It catalyzes acetylation of lysine
residues in proteins to regulate cell cycle progression and cancer
development. In addition to its critical functions in maintaining
normal cellular activities and senescence (Wang et al., 2023; Lv et al.,
2003), NAT10 has emerged as a key contributor to the development
and advancement of multiple malignancies.

The current work provides a systematic framework for
understanding the acetylome dynamics governed by NATI10,
their
consequences. First, it elucidates the catalytic mechanism of NAT10

including mechanistic underpinnings and cellular

from a structural biology perspective and summarizes the ac4C
modification detection methods. Subsequently, it analyzes the

Abbreviations: ac4C, N4-acetylcytidine; acRIP-seq, acetylated RNA
immunoprecipitation sequencing; ORFs, Open reading frames; HCC,
Hepatocellular carcinoma; NLSs, Nuclear localization signals; GSK-3,
Glycogen synthase kinase 3p; TmcA, Cytidine acetyltransferase; snoRNA,
small nucleolar RNA; UTR, Untranslated region; OGA, O-GlcNAcase; MSCs,
Mesenchymal stem cells; SLE, Systemic lupus erythematosus; HGPS,
Hutchinson-Gilford progeria syndrome; AD, Alzheimer's disease; EV71,
Enterovirus 71; FNTB, Farnesyltransferase subunit beta; Ribo-seq, Ribosome
profiling sequencing; MITF, Microphthalmia-associated Transcription Factor;
MN, Micronuclei; SASP, Senescence-associated Secretory Phenotype; UPR,
Unfolded protein response; EMT, Epithelial-mesenchymal transition; KRT8,
Keratin 8; Khib, 2-hydroxyisobutyrylation; PUFAs, Polyunsaturated fatty
acids; GPX4, Glutathione peroxidase 4; FSP1, Ferroptosis suppressor protein
1; HPLC-MS/MS, High-performance liquid chromatography-tandem mass
spectrometry.
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dual roles of NAT10-mediated ac4C modifications in tRNA/rRNA
structural maintenance and mRNA metabolic regulation. Further, it
explores the physiological functions of NAT10-mediated acetylation
in embryonic development and tissue homeostasis. Next, it
summarizes the involvement of NATI10-mediated acetylation
in non-cancerous diseases. Ultimately, it focuses on its cancer-
associated regulatory networks, providing novel insights for
developing epitranscriptome-targeted therapies. Given the close
association between dynamic ac4C modifications and tumor
heterogeneity, future studies should integrate single-cell sequencing
with chemical probe technologies to construct spatiotemporally
resolved ac4C modification maps. This strategy establishes
innovative frameworks for molecularly-targeted diagnostics and
therapeutic interventions in next-generation personalized oncology.

Structure and cellular localization of
NAT10

NAT10 remains the only identified enzyme (writer) responsible
for ac4C modification, while its corresponding deacetylases
(erasers) and recognition proteins (readers) within the regulatory
network are yet to be fully elucidated (Jiang et al., 2023). The NAT10
gene is positioned on chromosome 11 and covers approximately
45 kb in length (Yang et al., 2021a). The NAT10 protein, classified as
a histone acetyltransferase within the GCN5-related N-terminal
acetyltransferase family, consists of 1,025 amino acids and has
a molecular weight of around 116kDa (Xie et al, 2023a).
Structurally, this protein features three primary domains as shown
in Figures 1A,B: an acetyltransferase domain (GNAT), a tRNA-
binding domain (tRNA binding), and an RNA-release domain
(RNA helicase) (Sleiman and Dragon, 2019; Thomas et al., 2019).
Acetyl-CoA acts as the essential donor of acetyl groups during
ac4C modification, while ATP/GTP hydrolysis supplies the energy
required for this enzymatic process (Ikeuchi et al., 2008).

During embryonic organogenesis, NAT10 exhibits a multi-tissue
co-expression pattern, with its active regions localized to critical
developmental sites including the lymphatic system, hepatic/renal
primordia, and the central nervous system (particularly the
cerebellar cortex and axonal microenvironment) (Wang et al., 2023).
Under normal physiological conditions, NAT10 is predominantly
nuclear-localized (Tan et al., 2018). However, during malignant
transformation, it undergoes subcellular translocation and mediates
pro-tumorigenic effects by activating nucleocytoplasmic transport
pathways. In hepatocellular carcinoma (HCC), the intact nuclear
localization signals (NLSs) of NAT10 span residues 68-75 and
989-1018. Mutations in these dual NLS fragments result in
complete nucleolar exclusion and redistribution of NAT10 to the
cytoplasm and plasma membrane. Cytoplasmic NAT10 co-localizes
with a-tubulin, while membrane-associated NAT10 interacts with
integrins, collectively promoting HCC migration and invasion
(Tan et al, 2018). Mutations within nuclear localization signals
(NLS) may disrupt NAT10’s compartmentalization in hepatoma
cells; however, the mutation probability of NAT10’s NLS in HCC
remains unexplored. Future investigations should leverage high-
throughput sequencing profiling to delineate specific mutational
patterns within NAT10’s NLS domains in HCC. Such insights
could guide targeted therapeutic strategies designed to modulate
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FIGURE 1

NAT10: Structural characteristics and molecular roles. (A) Linear representation of the NAT10 protein. (B) Three-dimensional structure of NAT10
obtained from AlphaFold (ID: AF-Q9HOAO-F1), with protein domains visually distinguished using PyMOL. (C) Functional overview of NAT10 in tRNA,

these mutational patterns, reprogram NAT10 distribution, and
thereby inhibit cancer progression.Similarly, in colorectal cancer,
aberrant subcellular localization of NAT10 is observed, driven
primarily by inhibition of glycogen synthase kinase 3p (GSK-3p).
This redistribution alters cytoskeletal dynamics, enhancing cancer
cell motility (Zhang et al., 2014).

Summary of ac4C site detection
methods and future directions

Detection of ac4C sites in RNA involves several methods,
each with its unique advantages and challenges. AcRIP-seq utilizes
ac4C-specific antibodies to enrich modified RNA fragments
for sequencing, providing broad coverage but at a resolution
of 100-200 bp. RedaC:T, a chemical reduction method, offers
single-nucleotide resolution by inducing C>T mismatches during
reverse transcription. A recent study (Georgeson and Schwartz,
2024) in Molecular Cell reassessed RedaC:T data and concluded
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that previously reported ac4C sites in human mRNA were
not reproducible, attributing them to technical biases. However,
this method represents only one approach for detecting ac4C
modifications. Multiple studies (Arango et al., 2018; Jiang et al.,
2024; Sun et al., 2025) have demonstrated that acRIP-seq using anti-
ac4C-specific antibodies identifies thousands of ac4C modification
sites in mammalian mRNAs. Meanwhile, this protocol involves
NaCNBH; treatment of RNA. Arango et al. (2022) modified the
chemical reagents used in ac4C-seq by substituting NaBH, for
NaCNBH;. This alternative approach detected a similar magnitude
of ac4C sites as acRIP-seq, reaffirming the existence of multiple ac4C
modification sites in human mRNA. Additionally, computational
prediction tools like PACES employ machine learning to predict
ac4C sites based on sequence features, offering a rapid screen but
requiring experimental validation (Zhao et al., 2019).

To achieve more precise ac4C site detection, integrating
orthogonal experimental approaches is crucial. Improved chemical
reduction protocols with higher specificity and reduced oft-
target effects could enhance the reliability of sequencing-based
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methods. CRISPR-based technologies that allow programmable
editing of ac4C sites could provide tools for functional validation.
Additionally, enhanced computational models incorporating
more comprehensive sequence and structural features may
improve prediction accuracy. Ultimately, a multi-faceted approach
combining experimental and computational strategies will likely
lead to the most robust ac4C site detection and functional
characterization.

Acetylation modification ac4C in
diverse RNA species

Gene expression is tightly regulated, progressing from
with  RNA
modifications serving as a potent post-transcriptional regulatory
mechanism (Gilbert et al., 2016). Among these, ac4C, a highly
conserved post-transcriptional modification involving cytosine

nucleotide sequences to functional proteins,

acetylation at the N4 position, has emerged as a critical player (Sas-
Chen etal., 2020; Yu et al., 2025). Initially thought to be restricted to
rRNA and tRNA, ac4C was shown to facilitate rRNA processing via
NAT10-mediated acetylation (Ito et al., 2014) and enhance tRNA
tertiary structure folding and codon recognition during protein
synthesis. Recent advances, however, have revealed its presence in
mRNA, expanding its functional repertoire across RNA species
(Arango et al,, 2018). Below, we summarize the roles of ac4C in
these three RNA types (Figure 1C).

tRNA: Current research identifies bacterial TmcA and yeast
Kre33 as homologs of NAT10, all belonging to the conserved
RNA acetyltransferase family. The ac4C modification was first
identified at the wobble position of tRNAM® in Escherichia coli.
Cytidine acetyltransferase (TmcA) facilitates the formation of ac4C
through the action of acetyl-CoA and ATP. This process is essential
for ensuring accurate translation by preventing errors in reading
isoleucine codons during protein synthesis and for maintaining the
stability of the tRNAY tertiary structure (Ikeuchi et al., 2008). In
yeast, the acetyltransferase Kre33, interacting with the conserved
adaptor Tanl, was shown to catalyze ac4C modification at the C12
position of tRNA and tRNAS®, ensuring translational accuracy
(Sharma et al, 2015). Mechanistically, NAT10 facilitates ac4C
deposition by binding to the D-arm of tRNA" and tRNAS®, while
the THUMP domain of THUMPDI recruits NAT10 to enhance
catalytic efficiency. These ac4C-modified sites in tRNA enhance
translational fidelity and sustain organismal thermotolerance,
underscoring their essential role in maintaining proteome integrity
under stress conditions (Thalalla et al., 2021; Orita et al., 2019).

rRNA: Specific nucleotide modifications in rRNA influence
translational accuracy or regulate ribosome biogenesis. For instance,
NAT10 mediates ac4C deposition at nucleotide 1842 of mammalian
18S rRNA, a modification critical for ribosome maturation (Ito et al.,
2014). In Schizomyces sp. And human colorectal cancer HCT116
cells, 18S rRNA harbors two ac4C sites: one located in helix 34
and another in helix 45, both of which contribute to maintaining
translational fidelity (Sharma et al., 2015; Bortolin-Cavaillé et al.,
2022). Genetic knockout of NAT10 leads to substantial accumulation
of the 30S precursor of 18S rRNA, resulting in growth retardation in
human cells. Furthermore, NAT10 interacts with U3 small nucleolar
RNA (snoRNA) and acetylates upstream binding factors to activate
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rRNA transcription, thereby coupling ribosomal RNA synthesis
with acetylation-dependent quality control (Kong et al., 2011).
mRNA: Historically, ac4C research focused on tRNA and rRNA,
but recent advances have shifted toward its regulatory roles in
mRNA. Bioinformatics analyses of ac4C-enriched peaks reveal a
striking enrichment of cytidine residues at wobble positions in
mRNA transcripts (Arango et al.,, 2022). Notably, mRNAs with high
ac4C content exhibit extended half-lives, highlighting the role of
this modification in stabilizing transcripts. Moreover, ac4C in the
5'untranslated region (UTR) directly impacts translation dynamics.
For example, ac4C deposition within the Kozak sequence of the
5'-UTR competitively inhibits translation initiation (Arango et al.,
2022). These findings underscore ac4C as a dual-functional
modification, balancing mRNA stability and translational efficiency.

The role of NAT10-mediated
acetylation in normal cells

Cellular growth and development encompass tightly regulated
processes of proliferation and differentiation. The ac4C RNA
acetylation catalyzed by NAT10 promotes the stable expression of
genes essential for cell division and differentiation, thus facilitating
cellular growth. Furthermore, acetylated tubulins catalyzed by
NATI10 not only provide structural support but also facilitate
spindle assembly, ensuring accurate chromosome segregation
during mitosis and meiosis. This part delineates the functional
significance of NAT10-mediated RNA and protein acetylation
in normal cellular growth and development, focusing on three
key aspects: mitotic processes, meiotic division, and osteoblast
differentiation (Figure 2).

NAT10-mediated acetylation
promotes mitosis

Mitosis, a crucial stage of the eukaryotic cell cycle, depends
on the precise spatiotemporal control of dynamic microtubule
networks. Spindle microtubules, serving as molecular tracks
for chromosome segregation, exhibit assembly dynamics strictly
controlled by o/p-tubulin heterodimers (Lera-Ramirez et al., 2022;
Meunier and Vernos, 2012). Emerging evidence suggests that
ac4C may target tubulin mRNAs, potentially influencing spindle
assembly and chromosome traction. Genetic ablation or mutation
of NAT10 has been shown to induce chromosomal misalignment
and segregation errors, leading to multinucleated giant cell
formation and mitotic catastrophe (Oh et al., 2017). Complementary
studies reveal that NAT10 predominantly localizes to nucleoli
during interphase and accumulates at the midbody during late
mitosis. Notably, loss of NAT10 function disrupts nucleolar
assembly mechanisms and impairs cytokinesis, accompanied
by significant reduction in tubulin acetylation levels. During
mitotic progression, NAT10 interacts with and co-localizes to
kinetochores through E.g.,5 binding. Acetylation of E.g.,5 by
NAT10 modulates mitotic cell fate decisions. NAT10 depletion
diminishes E.g.,5 loading at kinetochores and compromises
their poleward movement, ultimately resulting in monopolar
and asymmetric spindle formation (Zheng et al. 2022a). These

frontiersin.org


https://doi.org/10.3389/fcell.2025.1623276
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Qin et al.

10.3389/fcell.2025.1623276

Mitosis

9O

=

.,-

Normal mitosis Mitotic Catastrophe
Osteoblast Differentiation
ac4C
FVM\
AAA

Gremlin 1 mRNA

ac4C

gt

AAA

Stem cells

FIGURE 2

Pre-osteoblast
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molecular aberrations may induce cell cycle arrest at G2/M phase
or cause temporally delayed mitotic progression through spindle
dysfunction, collectively contributing to proliferative defects at the
cellular level (Shen et al., 2009).

NAT10-mediated acetylation
promotes meiosis

The meiotic division of mammalian oocytes represents a
specialized asymmetric process dependent on microtubule-driven
chromosome segregation (Cianfrocco et al, 2015). In mouse
oocytes, genetic ablation of the kinesin motor protein KIFC1
disrupts NAT10-mediated tubulin acetylation, resulting in failure of
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first polar body extrusion (Shan et al., 2022). Concurrently, KIF15
exhibits stage-specific expression during oocyte maturation and
colocalizes with microtubules. Functional analyses demonstrate that
KIF15 depletion does not alter spindle morphology but induces
chromosomal misalignment. Mechanistically, proteomic and co-
immunoprecipitation analyses revealed that KIF15 recruits HDACES,
NAT10, and SIRT2 to sustain acetylated tubulin levels, thereby
modulating microtubule stability (Zou et al., 2022). Centrosomes,
as core regulators of animal cell division, orchestrate spindle
microtubule networks to ensure faithful chromosome segregation
(Brito et al., 2012). Their numerical integrity, governed by cell
cycle kinases, is essential for genomic stability. Recent research
has revealed that acetylation of CCDC84 at Lys31 is a dynamic
modification regulated collaboratively by the deacetylase SIRT1 and
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the acetyltransferase NAT10. Fluctuations in CCDC84 acetylation
across the cell cycle influence centrosome duplication licensing,
thereby impacting meiotic fidelity (Wang et al, 2019). The
epitranscriptomic role of ac4C modification emerges as critical
during oocyte maturation. Transcriptomic profiling of NAT10-
depleted oocytes identified O-GlcNAcase (OGA) as a key ac4C-
modified target. NAT10 likely stabilizes OGA by inhibiting
its proteasomal degradation, a mechanism essential for oocyte
maturation (Lin et al., 2022). RNA pull-down assays conducted in
HEK293T cells identified TBL3 as a potential ac4C-binding protein
involved in the ac4C modification-dependent regulation of oocyte
maturation (Xiang et al., 2021).

Emerging evidence highlights the regulatory significance
of ac4C acetylation in mammalian spermatogenesis. Studies
have identified dynamic ac4C modifications in mouse testicular
mRNAs, with spatiotemporal patterns correlating with key
stages of germ cell differentiation. Genetic ablation of NAT10 in
germ cells severely suppresses meiotic initiation, causing defects
in homologous chromosome pairing, meiotic recombination,
and DNA double-strand break repair (Chen et al, 2022).
Furthermore, NAT10 depletion reduces global ac4C mRNA levels,
generating translationally inactive transcripts that impair meiotic
progression and culminate in spermatogenic arrest (Slaidina and
Lehmann, 2014).

NAT10-mediated acetylation drives
osteoblast differentiation

Mesenchymal stem cells (MSCs) have the ability to differentiate
into multiple lineages and possess significant tissue repair potential
(Han et al., 2022). In mice, amniotic fluid-derived MSCs promote
corneal cryoinjury repair by activating the ETV4/JUN/CCND2
signaling axis, where ac4C modification enhances mRNA stability
of key factors (Fei et al., 2021). In human MSCs, NAT10 increases
ac4C levels on Gremlin 1 mRNA, accelerating its degradation
to positively regulate osteogenic differentiation (Zhu et al,
2021). In a similar manner, NAT10 promotes osteogenesis in
human periodontal ligament stem cells by regulating the VEGFA-
PI3K/AKT pathway and ac4C epitranscriptional modifications
(Cui et al, 2023). Bone marrow MSCs further demonstrate
that NAT10-mediated ac4C deposition on RUNX2 mRNA
enhances osteoblast differentiation (Yang et al., 2021b). Altered
expression of NAT10 could play a role in the development of
osteoporosis, underscoring its potential as a therapeutic target for
bone-related diseases.

The role of NAT10-mediated
acetylation in non-neoplastic diseases

Acetylation modifications influence inflammatory factor
release, telomerase activity, and viral infection efficiency. Thus,
we summarize the specific roles of NAT10-mediated acetylation
modifications in inflammatory diseases, aging-related diseases, and
viral infections.
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NAT10-mediated acetylation regulates
inflammatory response

Sepsis, a severe condition triggered by pathogenic infections, is
a major cause of mortality in intensive care units. Recent research
has highlighted the role of pyroptosis in the progression of sepsis
(Kaukonen et al,, 2014). Zhang et al., 2022a). Demonstrated that
specific overexpression of NAT10 in neutrophils significantly
suppresses pyroptosis, thereby improving survival rates and
alleviating lung injury in septic mice. Mechanistically, reduced
NAT10 expression accelerates ULK1 mRNA degradation, leading to
upregulated expression of the pro-pyroptotic NLRP3 inflammasome
in neutrophils, providing a potential therapeutic target for
sepsis. The study analyzing differences in urine composition
between interstitial cystitis patients and healthy subjects via mass
spectrometry found significantly elevated ac4C modification levels
in the urine of interstitial cystitis patients. Furthermore, it revealed
a significant negative correlation between ac4C modification levels
and the expression of uromodulin, a key protein in urinary tract
resistance to bacterial infection (Parsons et al., 2014). Systemic lupus
erythematosus (SLE) is a long-term autoimmune disorder marked
by the dysregulated activation of the immune system, leading to
attacks on the body’s own tissues, causing widespread inflammation
and damage to multiple organ systems. Guo et al. (2020). Analyzed
11 RNA modification levels in CD4" T cells of SLE patients
and observed a significant reduction in ac4C modification on
mRNAs. Using acRIP-seq, they mapped transcriptome-wide ac4C
modification profiles in SLE CD4* T cells, uncovering molecular
mechanisms by which ac4C regulates the stability of key target
mRNAs (e.g., USP18, GPX1, and RGL1) and protein synthesis
initiation to participate in disease pathogenesis.

NAT10-mediated acetylation
promotes aging

(HGPS) is a
rare, untreatable disorder characterized by accelerated aging.

Hutchinson-Gilford progeria syndrome
Understanding the disrupted biological mechanisms in HGPS could
pave the way for the development of new therapeutic approaches.
The study investigated the pathogenic role of NAT10-mediated
acetylation of tubulin in HGPS (Larrieu et al., 2018). It revealed
that upregulated NAT10 acetylates tubulin, enhancing its stability
and increasing its binding affinity for TNPO1, blocking nuclear
entry and molecular transport, ultimately inducing transcriptional
silencing in HGPS cells. Remodelin, a NAT10-targeted inhibitor,
reduces tubulin acetylation to release TNPO1. The released TNPO1
transports cargo protein Nupl53 into the nucleus, which binds
to LaminsA at nuclear pores to form the nuclear pore complex
basket structure. Finally, TNPO1 delivers hnRNPA1 into the
nucleus to restore transcriptional activity and correct HGPS cellular
phenotypes, offering potential therapeutic strategies for HGPS
and normal aging-related disorders. Alzheimer’s disease (AD)
is a neurodegenerative condition marked by the accumulation
of amyloid plaques in the brain. This study investigated the
relationship between ac4C modifications and AD, along with the
mechanisms through which ac4C contributes to the progression
of the disease (Ma et al., 2022a). Analyses using acRIP-seq and
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RNA-seq on AD mice and their wild-type counterparts identified
notable differences in the abundance of ac4C modifications in
IncRNAs, offering a basis for further investigation into the regulatory
processes involved (Ma et al., 2022a).

NAT10-mediated acetylation
modulates viral infection and
replication

Multiple studies indicate that ac4C modifications enhance viral
replication capacity and pathogenicity by increasing viral RNA
protein synthesis rates and nucleic acid structural stability (Furuse,
2021; Courtney, 2021). In a transcriptome study, NAT10 was found
to directly interact with multiple influenza virus components,
including Polymerase Basic Protein 1 (PB1), Nucleoprotein
(NP), Neuraminidase (NA), and Matrix Protein 1 (M1) proteins.
Knockdown of NAT10 negatively regulates viral growth, suggesting
its potential pro-viral role (Watanabe et al, 2014). The HIV-
1 Tat protein, a viral-encoded trans-activator, is crucial for the
regulation of viral transcription. Proteomic studies have shown a
significant interaction between NAT10 and Tat (Jean et al,, 2017).
NAT10 protein suppresses Tat-mediated HIV-1 transcription,
indicating its involvement in maintaining HIV-1 latency. Thus,
NAT10 represents a potential pharmacological target for further
investigation in “shock and kill” HIV-1 cure strategies. Hao et al.
(2022). Elucidated the biological significance of ac4C modifications
in enterovirus 71 (EV71) replication. They demonstrated that
NAT10 mediates ac4C modifications in the 5'UTR of the EV71
genome, and inhibition of NAT10 activity significantly suppresses
EV71 replication. EV71 strains with markedly reduced ac4C
acetylation exhibit attenuated pathogenicity in mouse models.
Mechanistically, ac4C modifications enhance viral RNA translation
efficiency by specifically recruiting PCBP2 protein to the internal
ribosome entry site regulatory element. These findings establish
critical molecular targets for developing antiviral drugs based on
RNA epigenetic regulation.

The role of NAT10-mediated
acetylation in tumors

Cancer represents a major threat to human health, and its
development is closely linked to ac4C modifications (Ouyang et al.,
2024; Zhang et al, 2024). NAT10 specifically catalyzes ac4C
epigenetic modifications on oncogenic RNAs and acetylation
on proteins in tumor tissues, driving malignant progression.
Regulating RNA modifications has become a potential therapeutic
approach for cancer, with NAT10-mediated ac4C modulation
identified as a promising target for cancer treatment. However,
the molecular mechanisms of NAT10 in tumorigenesis remain
incompletely elucidated, and its functional characterization remains
a frontier area. We have therefore conducted a retrospective
analysis of NAT10s role in cancer, systematically integrating its
cancer regulatory network to reveal its translational potential
as a novel therapeutic target (Figure3) (Tablel). We will
comprehensively elaborate on NAT10’s tumor-related functions
from nine perspectives: improving mRNA stability, regulating
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cell cycle, promoting tumor metastasis, suppressing ferroptosis,
interfering with metabolic pathways, modulating p53 activity,
mediating immune escape, conferring drug resistance, and
non-coding RNA-mediated regulation of NAT10.

Improving mRNA stability

The occurrence of tumors is governed by the RNA homeostasis
regulatory network, involving transcript stability, RNA-protein
interactions, and translation fidelity (Liu et al., 2022a; Lin et al,,
2024). NAT10 mediates ac4C modification of mRNA to delay
degradation while regulating codon decoding accuracy to enhance
translational efficiency. This dual regulatory mechanism leads
NAT10 to exhibit critical oncogenic phenotypes across various
cancer types (Figure 4).
identified  the
farnesyltransferase subunit beta gene (FNTB) as a target gene

In  osteosarcoma, acRIP-seq analysis
undergoing ac4C acetylation. In osteosarcoma cells, treatment
with the acetyltransferase inhibitor Remodelin led to a decrease
in FNTB mRNA stability and protein translation efficiency
(Zhang et al., 2023a). AcRIP-seq analysis revealed BCL-XL as a
downstream target of NAT10 in multiple myeloma. Further mRNA
stability assays showed that NAT10 stabilizes BCL-XL mRNA
and enhances protein translation, thereby preventing apoptosis
(Zhang et al, 2022b). Similarly, in multiple myeloma, acRIP-
seq combined with ribosome profiling sequencing (Ribo-seq)
confirmed CEP170 as a critical downstream target of NATIO.
Overexpression of CEP170 was found to promote cell proliferation
and chromosomal instability in multiple myeloma (Wei et al., 2022).
In pancreatic cancer, RNA-seq screening identified the receptor
tyrosine kinase AXL as a downstream target of NAT10. AcRIP-
qPCR and mRNA stability assays confirmed that NAT10 boosts
AXL mRNA stability in an ac4C-dependent manner, resulting in
elevated AXL expression, which in turn promotes the proliferation
and metastasis of pancreatic cancer cells (Zong et al, 2023).
In bladder cancer, NAT10 knockdown specifically attenuated
mRNA ac4C modification, impairing translation efficiency of
BCLIL/SOX4/AKT1 and accelerating degradation of BCL9L/SOX4
transcripts (Wang et al, 2022a). Studies in cervical cancer
also demonstrated that NAT10 enhances HNRNPULI mRNA
stability through ac4C modification, thereby promoting cancer
cell proliferation, invasion, and migration (Long et al, 2023).
Current evidence confirms that NATI10 dynamically regulates
cancer-associated transcriptome homeostasis via ac4C acetylation
to drive malignant tumor phenotypes. This raises critical questions:
whether there exists an ac4C deacetylase that reverse-regulates
this modification network, and whether NAT10 exerts tumor-
suppressive functions through maintaining mRNA structural
homeostasis of proto-oncogenes. These inquiries provide novel
perspectives for deciphering the bidirectional molecular switch
functionality of NAT10.

Regulating cell cycle
The cell cycle consists of a series of highly regulated processes

that ensure the accurate replication of genomic DNA and the
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formation of two daughter cells (Nurse, 2000). The accuracy and
integrity of DNA replication, as well as the faithful segregation of
sister chromatids, are rigorously quality-controlled through distinct
cell cycle checkpoints (Bertoli et al., 2013). Genetic alterations
or dysregulation of cell cycle regulators, along with disrupted
signaling at cell cycle checkpoints, can lead to improper cell cycle
re-entry and aberrant cell division, which constitute hallmark
features of cancer (Malumbres and Barbacid, 2009; Matthews et al.,
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2022). Consequently, cell cycle regulation represents a rational
therapeutic target for anticancer strategies (Da Costa et al., 2023).
Studies have shown that reduced NAT10 expression impedes the
recruitment of key nucleolar assembly factors, causes defective
cleavage furrow ingression, and significantly diminishes tubulin
acetylation. These phenotypic changes result in a higher frequency
of G2/M phase arrest and extended mitotic exit duration, indicating
that NAT10, as an epigenetic regulator, is essential for cell division.
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TABLE 1 NAT10-mediated mechanisms across cancer types.

10.3389/fcell.2025.1623276

Cancer Expression Mechanisms Downstream gene
or pathway
Melanoma Up Cell cycle S phase arrest MITF Oh et al. (2017)
Multiple myeloma Up Improving mRNA stability BCL-XL. CEP170. PI3K- Wei et al. (2022), Zhang et al.
AKT pathway (2022b)
Osteosarcoma Up Improving mRNA stability FNTB Zhang et al. (2023a)
Acute myeloid leukemia Up Inducing cell apoptosis UPR pathway Zi et al. (2020)
Squamous cell carcinoma of Up Cell cycle S/G2 phase arrest - Tao et al. (2021)
the head and neck
Up Improving mRNA stability NOTCH3 Liao et al. (2023)
Up Activating EMT IncRNA Yu et al. (2023)
Esophagus cancer CTC-490G23.2
Up Improving mRNA translation EGFR Wei et al. (2023)
efficiency
Up Suppressing ferroptosis GCLC, SLC7A11 Dalhat et al. (2023)
Breast cancer
Up Enhancing drug resistance PARP1, MORC2 Qi et al. (2022)
Up Activating EMT COL5A1 Zhang et al. (2021)
Gastric cancer Up Inducing glycolysis SEPT9 Yang et al. (2023a)
HIF-1 pathway
Up Improving mRNA stability Mdm2/p53 pathway Deng et al. (2023)
Pancreatic cancer Up Improving mRNA stability AXL Zong et al. (2023)
Up Improving mRNA stability Mutant p53 Lietal. (2017)
Hepatocellular carcinoma
Up Enhancing drug resistance HSP90AA1L Pan et al. (2023)
Up Affecting DNA replication SASP pathway Cao et al. (2020)
Up Suppressing ferroptosis FSP1 Zheng et al. (2022b)
Colorectal cancer
Up Promoting tumor metastasis KIF23, Wnt/p-catenin pathway Jin et al. (2022)
Down Improving mRNA stability P53 Liu et al. (2016)
Bladder cancer Up Improving mRNA stability BCL9L, SOX4, AKT1 Wang et al. (2022a)
Up Affecting DNA replication CDCé6 Ma et al. (2022b)
Prostatic cancer
Up Activating EMT KRT8 Li et al. (2024)
Cervical cancer Up Improving mRNA stability HNRNPUL1 Long et al. (2023)

It achieves this by preserving the structural continuity between
the nucleolus and midbody, as well as ensuring the mechanical
stability of microtubules (Shen et al., 2009). Live-cell imaging in
another study demonstrated that NAT10 knockdown significantly
prolongs mitotic duration and induces chromosome misalignment,
indicating its role in safeguarding chromosomal segregation fidelity
through epitranscriptomic regulation (Zheng et al., 2022a). These
findings emphasize the vital role of NAT10 in cell cycle regulation,
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highlighting the importance of further investigation to understand
its regulatory functions in cancer.

In melanoma, NAT10 silencing induces S-phase cell cycle
arrest by downregulating Microphthalmia-associated Transcription
Factor (MITF) expression, significantly suppressing tumor
cell proliferation in both in vitro and in vivo experimental
systems (Oh et al,, 2017). In colorectal cancer, NAT10 facilitates
the formation of micronuclei (MN) during DNA replication.
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Mechanisms of NAT10 and ac4C in enhancing mRNA stability in cancer.

NAT10-positive MN triggers the Senescence-associated Secretory
Phenotype (SASP) pathway through its interaction with cGAS.
Clinical translational studies revealed that NAT10 expression levels
exhibit significantly positive correlations with MN generation
frequency and SASP pathway activity in colorectal cancer cohorts,
with coordinated elevation of these parameters in tumors exhibiting
poor differentiation, advanced TNM stages, and high metastatic
potential. Mechanistically, NAT10 promotes malignant progression
by playing dual roles in micronuclei formation and SASP activation,
highlighting its potential as a novel prognostic biomarker and
therapeutic target (Cao et al, 2020). In prostate cancer, NAT10
was found to interact with DNA replication complexes and directly
bind to cell cycle protein CDC6, participating in DNA replication
processes (Ma et al., 2022b). In acute myeloid leukemia, inhibiting
NAT10 promotes apoptosis by triggering endoplasmic reticulum
stress, which activates the unfolded protein response (UPR) pathway
and subsequently initiates the canonical apoptotic pathways
(Zi et al,, 2020). Studies in lung cancer (Wang et al., 2022b) and
head and neck squamous cell carcinoma (Tao et al., 2021) similarly
demonstrated that NAT10 knockdown significantly prolongs cell
cycle arrest in G1 or S/G2 phases.

Promoting tumor metastasis

Metastasis is the most dangerous characteristic of malignant
tumors, responsible for around 90% of cancer-related deaths due
to the spread of cancer cells rather than the primary tumors
themselves (GANESH and Massagué, 2021). Despite advances
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in molecular biology, scientific blind spots persist in metastasis
research due to spatiotemporal heterogeneity, the complexity of
microenvironmental interactions, and the plasticity of molecular
regulatory networks (Fares et al., 2020). The epithelial-mesenchymal
transition (EMT), a key driver of tumor metastasis, enhances tumor
cell invasiveness, circulatory survival, and distant colonization
through epigenetic reprogramming, establishing it as a major
focus in anti-metastatic therapy (Yang et al, 2020; Dongre
and Weinberg, 2019). EMT is a transdifferentiation process
through which transformed epithelial cells acquire invasive,
stress-resistant, and disseminative capabilities (Hanahan and
Weinberg, 2011; Gu et al., 2024). Recent studies reveal that NAT10
acts as a molecular switch for EMT progression in multiple
malignancies via its unique ac4C RNA modification mechanism,
while also influencing chemotherapy resistance, offering novel
perspectives for precision oncology.

In prostate cancer, NAT10 promotes metastasis by acetylating
Keratin 8 (KRT8) mRNA to enhance its stability, downregulating E-
cadherin and upregulating N-cadherin protein expression, thereby
activating EMT (Li et al, 2024). In gastric cancer, NAT10
directly interacts with the 3'UTR of COL5A1 mRNA, modulating
its ac4C modification. This modification extends the half-life
of COL5A1 mRNA, leading to increased expression of EMT
markers Vimentin and MMP2, which promotes metastasis in
gastric cancer (Zhang et al, 2021). In colon cancer, NAT10
stabilizes KIF23 mRNA by binding to its 3'UTR and enhancing
ac4C modification. Increased levels of KIF23 protein activate
the Wnt/B-catenin pathway, leading to the nuclear translocation
of B-catenin and promoting tumor progression and metastasis.
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Post-translational modifications expand proteomic complexity
(Jin et al., 2022). In esophageal cancer, NAT10 is identified as a
substrate of 2-hydroxyisobutyrylation (Khib). Khib modification
enhances NAT10’s binding affinity with deubiquitinase USP39,
significantly prolonging NAT10 protein half-life. Downstream,
NAT10 increases NOTCH3 mRNA stability via ac4C acetylation
to promote esophageal cancer metastasis (Liao et al, 2023). A
study in esophageal squamous cell carcinoma showed that NAT10-
mediated ac4C modification induces overexpression of IncRNA
CTC-490G23.2 in primary tumors, with even higher levels in
metastatic tissues. Mechanistically, IncRNA CTC-490G23.2 serves
as a scaffold to facilitate the binding of CD44 pre-mRNA with
PTBPI1, promoting oncogenic splicing from CD44s to CD44v
isoforms. The CD44v isoforms interact with Vimentin, stabilizing its
protein and enhancing metastasis (Yu et al., 2023). NAT10 similarly
facilitates metastasis in cervical cancer (Chen et al. 2024a) and
hepatocellular carcinoma (Ma et al., 2016) through regulation of key
EMT-related proteins.

Current studies confirm a significant association between
EMT and tumor therapy resistance (De Craene and Berx, 2013).
Pharmacological evaluations in breast cancer (Wu et al., 2018) and
hepatocellular carcinoma (Zhang et al., 2019) models demonstrate
that NAT10 silencing effectively counteracts doxorubicin-induced
EMT, thereby reversing drug-resistant phenotypes in tumor
cells. Consequently, combining NAT10-targeted inhibition with
chemotherapeutic agents produces synergistic antitumor effects,
reducing metastatic lesions, attenuating chemotherapy resistance,
suppressing proliferative activity of metastases, and expanding
indications for RO resection surgery.

Suppressing ferroptosis

Ferroptosis is a form of regulated cell death induced by
disturbances in iron metabolism, characterized by the accumulation
of lipid peroxidation products that lead to the disruption of
membrane structures. Its molecular mechanisms and pathological
significance have recently emerged as a hotspot in oncology
research (Ru et al., 2024). Unlike traditional cell death pathways
like apoptosis and necroptosis, ferroptosis is characterized
by distinct morphological and biochemical characteristics
(Jiang et al, 2021; Dixon et al., 2024). For instance, apoptosis
is characterized by chromatin condensation, nuclear pore
complex disintegration, and double-membrane vesicle formation,
whereas ferroptosis specifically manifests mitochondrial matrix
densification, asymmetric phospholipid distribution in the outer
membrane, and cristae remodeling defects (Stockwell et al,
2017). This death pathway molecularly couples with oxidative
damage of polyunsaturated fatty acids (PUFAs) in membrane
phospholipid bilayers, regulated by the glutathione peroxidase 4
(GPX4) system, iron homeostasis, and lipid peroxidation repair
mechanisms. Mechanistically, ferroptosis initiation is governed
by three key pathways: 1) inactivation of the glutathione-
GPX4 antioxidant axis leading to impaired lipid peroxide
clearance; 2) free iron accumulation due to iron-sulfur cluster
biosynthesis defects; 3) lipoxygenase (LOX)-mediated membrane
phospholipid peroxidation (Friedmann et al., 2019; Lei et al., 2024).
Notably, epigenetic regulation significantly modulates ferroptosis
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susceptibility. Research has shown that DNA methylation, histone
acetylation, and non-coding RNAs modulate tumor cell responses
to ferroptosis inducers by regulating key genes such as FSP1, ACSL4,
and SLC7A11 (Lee and Roh, 2023).

Recent studies reveal that NAT10-catalyzed ac4C epigenetic
modification regulates tumor ferroptosis (Figure 5). Ferroptosis
suppressor protein 1 (FSP1), a critical negative regulator, establishes
a multi-layered protective mechanism: 1) suppressing lipid
peroxidation radical amplification; 2) maintaining dynamic stability
of membrane phospholipid bilayers; 3) synergizing with glutathione
metabolic networks to balance intracellular redox homeostasis
(Li et al., 2023). In colon cancer (Zheng et al., 2022b), NAT10
modulates the FSP1 expression axis via ac4C modification, driving
a ferroptosis-suppressive microenvironment characterized by
reduced ROS, Fe?*, Malondialdehyde (MDA), mitochondrial matrix
condensation, and cristae reduction, indicating that acetylated
ac4C modification of FSP1 mRNA correlates with ferroptosis
inhibition. In breast cancer (Dalhat et al., 2023), NAT10 knockout
significantly downregulates ferroptosis-essential genes (SLC7All,
GCLC, MAPILC3A, and SLC39A8). Mechanistically, reduced
ac4C levels shorten GCLC and SLC7A11 mRNA half-lives,
decreasing cystine uptake and glutathione (GSH) levels while
elevating ROS, lipid peroxidation, and oxidized phospholipids,
thereby promoting ferroptosis. Current research focuses on ac4C
modification of ferroptosis-related genes. Future studies could
explore how NAT10 influences tumor ferroptosis through fatty acid
metabolism regulation and whether NAT10 reverses drug resistance
via ferroptosis pathways.

Interfering with metabolic pathways

A core hallmark of malignant tumors is their uncontrolled
proliferative capacity, which fundamentally differs from normal
cellular biological behavior (Zhao et al., 2021). Recent investigations
employing comparative genomics, metabolomics, and epigenetics
have systematically unveiled dysregulated metabolic networks in
cancer cells. Metabolic reprogramming was established as a central
cancer hallmark in the updated “Hallmarks of Cancer” proposed by
Hanahan and Weinberg in 2011 (Counihan et al., 2018; You et al.,
2023). Tumor metabolic reprogramming, marked by the Warburg
effect and enhanced anabolic processes, plays a key role in tumor
initiation, metastasis, drug resistance, and the upkeep of cancer stem
cells (Park et al., 2020). Many well-known oncogenes and tumor
suppressor genes contribute to maintaining this altered metabolic
state in cancers (Li et al, 2020). Epigenetic modifications and
metabolic changes are closely intertwined and regulate each other
in cancer progression (Sun et al., 2022).

The tumor hypoxic microenvironment, a pathological hallmark
of malignant progression, drives glycolytic metabolic remodeling
through the HIF-1a molecular hub (Lee et al., 2020). This suggests
that cancer cells predominantly depend on glycolysis rather than
mitochondrial oxidative phosphorylation to support vital biological
processes (Greene et al., 2022). HIF-1a, a key regulator of the cellular
response to hypoxia, accumulates in low oxygen environments and
triggers the expression of hypoxia-adaptive genes like hexokinase,
lactate dehydrogenase, and pyruvate dehydrogenase kinase, which
in turn enhances glycolysis (Keith et al, 2011). As a result,
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Summary of NAT10 and ac4C in modulating ferroptosis and metabolic mechanisms.

excessive activation of the HIF-1 signaling pathway leads to
glycolytic dependence. In gastric cancer, NAT10 stimulates the HIF-
1 pathway and alters glucose metabolism through ac4C modification
of SEPT9 mRNA. In glycolysis process, HIFs binding to DNA
causes transcription activation of NAT10. The NAT10/SEPT9/HIF-1
positive feedback loop further enhances HIF-1 pathway activation,
reinforcing the reliance on glycolysis (Yang et al., 2023a) (Figure 5).

Lipid metabolism, which includes lipid synthesis, breakdown,
and utilization, is frequently reprogrammed in cancer to support
the elevated energy needs and rapid proliferation of malignant cells.
This metabolic remodeling represents a cancer hallmark, enabling
tumor cells to sustain their proliferative capacity, evade apoptosis,
and adapt to the tumor microenvironment (Vogel et al., 2024;
Wang et al., 2020). Studies demonstrate that NAT10-mediated ac4C
modification is associated with fatty acid metabolism (Figure 5).
Mechanistic investigations reveal that fatty acid metabolism-
related genes (ELOVL6/ACSL1/ACSL3/ACSL4/ACADSB/ACAT1)
are regulated through NAT10-dependent ac4C epitranscriptomic
modifications, which stabilize their mRNA. Genes involved in
fatty acid metabolism modulate serum levels of high-density
lipoprotein (HDL), low-density lipoprotein (LDL), and very low-
density lipoprotein (VLDL), thereby influencing systemic metabolic
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homeostasis. Genetic intervention confirms that NAT10 depletion
induces compensatory reductions in total lipid pools, triglycerides,
and cholesterol levels (Dalhat et al., 2022). Further research using
untargeted metabolomics analysis through high-performance liquid
chromatography-tandem mass spectrometry (HPLC-MS/MS) in
Remodelin-treated cancer cells shows changes in mitochondrial
fatty acid metabolism and lipid accumulation (Dalhat et al., 2021).

Modulating p53 activity

The tumor suppressor gene p53, as one of the most frequently
mutated genes in cancer, plays a central role in tumorigenesis
and progression due to its dysfunction (Hassin and Oren, 2023).
Wild-type p53 suppresses cancer cell formation through multiple
mechanisms, including regulation of the cell cycle, DNA repair,
and apoptosis. Mutations or inactivation of p53 are critical factors
driving the initiation and progression of numerous cancers, making
the restoration of p53 function a key research direction in cancer
therapy (Bykov et al., 2018). Mdm2, a core regulatory hub for
p53, is closely associated with p53 protein expression. Mdm2
specifically recognizes the transcriptional activation domain of
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p53 and forms a complex with it, initiating an E3 ubiquitin
ligase-dependent ubiquitination cascade that directs p53 to
the 26S proteasome degradation pathway (Prives, 1998). This
regulation is part of a negative feedback mechanism: when p53
is activated (e.g., under DNA damage or other stress conditions),
it promotes Mdm2 expression by activating transcriptional
responses. In turn, the expressed Mdm?2 suppresses p53 activity
by facilitating its degradation, thereby maintaining intracellular p53
homeostasis (Liu et al., 2024).

indicate that NATI10
expression to influence tumor progression. In gastric cancer,

Numerous studies regulates p53
NAT10 catalyzes ac4C modification of Mdm?2 transcripts, driving
imbalance in the Mdm2/p53 regulatory axis by maintaining
mRNA

gastric carcinogenesis. Additionally, Helicobacter pylori infection

epitranscriptomic  homeostasis, thereby promoting
upregulates NAT10 expression, leading to Mdm2 overexpression
and subsequent p53 degradation. Further research demonstrates
that targeting NAT10 with Remodelin exhibits anticancer activity
in gastric cancer and enhances the antitumor efficacy of Mdm?2
inhibitors in p53 wild-type gastric cancer (Deng et al., 2023). In
hepatocellular carcinoma, NAT10 enhances the stability of mutant
P53, increasing its expression and promoting cancer progression
(Lietal., 2017). However, other studies reveal that NAT10 catalyzes
site-specific post-translational modification of p53 at the K120
site, bypassing Mdm2-mediated ubiquitination degradation to
stabilize p53. Furthermore, NAT10 activates E3 ligase-dependent
ubiquitin-proteasome degradation of Mdm2, reducing Mdm?2
expression to suppress cell proliferation (Liu et al., 2016). These
conflicting findings may arise from the following factors: First,
the mutational status of p53 (wild-type vs. mutant) in different
tumor cells directly determines the functional direction of NAT10.
Second, cell type-specific post-transcriptional regulatory networks
(e.g., differential microRNA expression profiles) may alter the
interaction patterns between NAT10 and its targets. Additionally,
existing studies predominantly rely on in vitro cell models, lacking
consideration of tumor microenvironmental influences (e.g.,
immune cell infiltration, hypoxic conditions). For instance, in 3D
culture or patient-derived xenograft models, NAT10-mediated
regulation of the p53-Mdm2 axis may exhibit more complex
spatiotemporal dynamics.

Mediating immune escape

The tumor immune microenvironment (TME) is a complex
and dynamic ecosystem within tumor tissues, consisting of various
immune cells, cytokines, and regulatory networks, and plays a
crucial role in controlling tumor development and progression
(Kubli et al., 2021). Key abnormalities in the TME include an
overabundance of immunosuppressive cells such as regulatory
T cells and tumor-associated macrophages, altered expression
of immune checkpoint proteins like PD-1/PD-L1, and disrupted
secretion of pro-inflammatory cytokines. Together, these factors
contribute to immune escape and support tumor malignancy
(Hanahan et al, 2025). Recent progress in immunotherapy,
especially immune checkpoint inhibitors (ICIs) and adoptive cell
therapies, has transformed the treatment of cancers. However,
clinical outcomes indicate that only 20%-30% of patients experience
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long-lasting remission, highlighting the urgent need to better
understand the molecular mechanisms regulating the tumor
immune microenvironment (TME) to enhance therapeutic
effectiveness (Kennedy and Salama, 2020). Epigenomic features
in both immune cells and cancer cells may serve as predictive
biomarkers for immunotherapy outcomes (Hogg et al, 2020;
Yangetal., 2023b). At the same time, potential epigenetic biomarkers
may offer a foundation for patient stratification and personalized
treatment approaches, optimizing therapeutic outcomes while
reducing side effects (Villanueva et al., 2020).

In-depth analyses utilizing The Cancer Genome Atlas (TCGA)
and Genotype-Tissue Expression (GTEx) data demonstrated
notable positive correlations between NAT10 expression and
components of immune infiltration (B cells, CD8" T cells, CD4" T
cells, neutrophils, macrophages, dendritic cells, endothelial cells,
and fibroblasts) in hepatocellular carcinoma (Yang et al., 2021a).
Another study in hepatocellular carcinoma developed an ac4C
Score model, demonstrating that high-score tumors exhibited
advanced staging, higher p53 mutation rates, elevated tumor
stemness, increased immune scores, and heightened regulatory T
cell infiltration, suggesting the ac4C Score as a novel prognostic
indicator for anti-PD1 immunotherapy response (Liu et al,
2022b). In pancreatic cancer, a molecular subtyping system
with prognostic value was constructed by integrating NAT10-
regulated gene expression profiles through bioinformatics analysis
of TCGA pancreatic cancer cohorts. Results indicated that the
subtype with the poorest prognosis showed extensive immune
cell infiltration and activated interferon-y(IFN-y) signaling
pathways, implying potential heightened responsiveness to immune
checkpoint inhibitors compared to other subtypes (Xu et al., 2023).
In colorectal cancer, a novel prognostic prediction model was
established using multi-omics data integration of acetylation-
associated differential genes. This risk scoring system exhibited
significant positive correlations with dynamic immune cell
infiltration levels, microsatellite instability (MSI) phenotypes, tumor
mutational burden (TMB), and sensitivity to immune checkpoint
inhibitor therapy (Zhang et al., 2023b). Although the specific role of
NAT10 in immunotherapy remains unclear, investigating whether
NAT10 targeting could enhance immunotherapy sensitivity and
elucidating mechanisms by which NAT10 regulates immunity via
ac4C modifications holds critical significance.

Conferring drug resistance

In cancer treatment, the evolution of acquired drug resistance
mechanisms constitutes a major clinical challenge, directly driving
relapse and distant metastasis events (Jin et al., 2023). Recent
studies indicate that aberrant epitranscriptomic modifications can
remodel the tumor microenvironment through multidimensional
regulatory networks, endowing cancer cells with the ability to evade
therapeutic pressure (Lu et al, 2020; Mabe et al, 2024). As a
result, targeting RNA modification regulators offers a promising
approach to overcome therapeutic resistance and improve treatment
effectiveness (Chen et al., 2024b).

In breast cancer, NAT10 overexpression mediates acetylation
modifications of PARP1 to regulate its protein homeostasis. This
post-translational modification event triggers remodeling of the
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DNA damage response pathway, facilitating efficient recruitment
of repair complexes at yH2AX-marked sites, ultimately inducing
adaptive resistance to platinum-based chemotherapy by maintaining
survival advantages in cancer stem cells (Qi et al., 2022). In another
breast cancer study, NAT10 promotes DNA damage-induced
G2 checkpoint activation via acetylation of MORC2 at lysine
767. This epigenetic regulatory mechanism drives cross-resistance
to genotoxic agents (gemcitabine/cisplatin) and radiotherapy.
Preclinical models confirmed that chemical inhibition or depletion
of NATI10 induces replication stress response defects, forcing
cells to bypass checkpoint barriers and restoring chemosensitivity
through synthetic lethality effects (Liu et al., 2020). In bladder
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cancer, cisplatin activates NF-kB signaling, which increases NAT10
transcription, resulting in enhanced mRNA stability through ac4C
modification and improved DNA damage repair, thus promoting
chemoresistance. When NAT10 is inhibited pharmacologically with
Remodelin alongside cisplatin, the efficacy of chemotherapy is
significantly enhanced (Xie et al., 2023b).

NAT10 not only enhances resistance to chemotherapy and
radiotherapy but also holds significance in targeted therapies.
In hepatocellular carcinoma, NAT10 activates the endoplasmic
reticulum stress axis while concurrently upregulating ac4C
modification levels of HSP90AA1 mRNA, thereby increasing
HSP90AAL protein expression. This dual regulatory mechanism
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promotes invadopodia formation linked to the EMT process
in hepatocellular carcinoma cells and induces resistance to
the tyrosine kinase inhibitor Lenvatinib (Pan et al, 2023). In
esophageal cancer, NAT10-mediated ac4C modification of tRNA
boosts the translational efficiency of Epidermal Growth Factor
Receptor (EGFR) mRNA. The combined depletion of NAT10
and treatment with the EGFR small-molecule inhibitor gefitinib
synergistically inhibits esophageal cancer progression both in vitro
and in vivo (Wei et al., 2023).

Non-coding RNA-mediated regulation
of NAT10

During malignant tumor progression, non-coding RNAs
(ncRNAs) drive coordinated regulation of proteome expression
by forming competing endogenous RNA (ceRNA) networks
(Xiong and Zhang, 2023; Schmitt and Chang, 2016). The
hierarchical diversity of this epigenetic regulatory layer has been
identified as a core driver of tumor heterogeneity. The diversity of
ncRNAs, including microRNAs (miRNAs), long non-coding RNAs
(IncRNAs), and circular RNAs (circRNAs), constitutes intricate
regulatory networks. For example, IncRNAs can competitively bind
miRNAs to relieve their inhibitory effects on target mRNAs, while
circRNAs stabilize interactions with miRNAs or RNA-binding
proteins through their closed circular structures (Hansen et al.,
2011). Simultaneously, ncRNA networks act as master regulators of
cellular epigenetic features by modulating critical processes such as
histone modifications and DNA methylation, thereby influencing
multiple oncogenic pathways (Roy et al., 2023; Chen et al., 2020).
Multiple studies suggest that ncRNAs can interact with NAT10,
further impacting cancer development.

In gastric cancer, the IncRNA DARS-ASI acts as a ceRNA by
binding to miR-330-3p, which in turn regulates NAT10 expression
and promotes cancer progression (Du et al., 2022). In colon cancer,
miR-6716-5p interacts with the 3’ UTR of NAT10 mRNA, resulting
in decreased NAT10 protein levels and affecting the progression
of the disease (Liu et al., 2019). In pancreatic cancer research,
IncRNA LINC00623 has been shown to bind NAT10 mRNA and
recruit the deubiquitinase USP39, preventing its degradation via the
ubiquitin-proteasome pathway and consequently elevating NAT10
expression levels (Feng et al., 2022). Although current research
predominantly focuses on ncRNA-mediated regulation of NAT10,
the functional impact of ac4C modification on ncRNAs themselves
remains to be thoroughly explored. As an emerging RNA epigenetic
mark, ac4C may influence RNA stability, subcellular localization,
and protein-binding capacity by altering RNA secondary structures.
In mRNAs, NAT10-mediated ac4C modification has been shown
to enhance translational efficiency and prolong half-life, suggesting
that NAT10 may exert similar mechanisms in ncRNAs. For
instance, ac4C modification of IncRNAs could modulate their
binding efficiency to chromatin-modifying complexes or regulate
miRNA sponge effects through specific spatial conformations.
Furthermore, ac4C modification near circularization sites of
circRNAs may influence back-splicing efficiency, thereby regulating
their biogenesis and functionality. Therefore, future investigations
into the role of ac4C modification in ncRNAs represent a critical
frontier in epigenetic research.
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Discussion

As an RNA modification, ac4C not only plays critical roles
in normal cellular activities but also contributes to disease
pathogenesis through diverse mechanisms. The review summarizes
nine aspects through which NAT10-mediated acetylation influences
cancer progression (Figure6). However, several questions
warrant further investigation, such as the impact of microbiota
metabolism on ac4C epigenetic modification, the specific effects of
NAT10 on the tumor immune microenvironment, and whether
deacetylases exist to counteract NAT10-driven oncogenesis.
Additionally, it is imperative to conduct more detailed investigations
into the specific molecular pathways altered by NAT10. For
instance, modifying its oncogenic effects through site-specific
mutations that alter RNA-binding capacity, rather than globally
reducing NAT10 expression, could minimize adverse effects
in therapeutic applications. Therefore, future research should
prioritize translating foundational insights on NAT10 into clinical

applications.
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