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Cancer research and the
mainstream of biology

Toivo Maimets*

Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia

John Cairns, a British molecular biologist, has pointed out that biology and
cancer research have always developed together, and cancer theories have
followed “whatever branch of biology happens at the time to be fashionable
and exciting”. Indeed, following the long historical development of biological
thought confirms this observation. However, tumour theories have never been
merely a “fellow runner” to more modern biology theories. Cancer is an
exceptionally large medical and economic problem, and the practical results of
cancer research are carefully followed and critically analysed by the community.
If the expected results do not arrive and the scientific data do not fit into the
old theory, then the theory must be corrected. In other words, tumour theories
not only derive from the prevailing biological worldview, but they also influence
and, if necessary, actively change it. That is exactly what we are witnessing
today–the ruling reductionist Somatic Mutations Theory (SMT) does not explain
many new experimental findings and extensive research over the last 50 years
has not brought major breakthroughs in cancer treatment. This century brings
back the attention to developmental biology (embryology) in connection with
the epigenetic revolution in biology, and the causes of tumours are searched for
in the disorders of differentiation of cells/tissues and communication between
them in the organism.
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Introduction

John Cairns, a British molecular biologist, has pointed out in his book “Cancer, Science,
and Society” that biology and cancer research have always developed together. “Invariably, at
each stage,” Cairns wrotemore than 40 years ago, “the characteristics of cancer cell have been
ascribed to some defect in whatever branch of biology happens at the time to be fashionable
and exciting; today, it is molecular genetics” (Cairns, 1978).

Indeed, following the historical development of biological thought confirms this
observation.Thefirst knowndescriptions of tumours come from the so-called Edwin Smith’s
papyrus, from about 3,000 years BC, where it is recognized that tumour is a deadly disease
that has no cure. Hippocrates (ca 460-370 BC) derived the name “cancer” (καρκινος) and
until the birth of cell theory, tumours were treated according to humoral theory and treated
accordingly with diet, grafting and laxatives. In the XIX century, tumours were explained by
cell biology and embryology, in the XX century initially by viral tumour theory, and later by
mutations in the DNA (SMT, somatic mutation theory).

However, tumour theories have never been merely a “fellow runner” to more modern
biology theories. As cancer is an exceptionally large medical and economic problem and
as such very burdensome for society, cancer research outcomes are closely monitored. And
if the expected results do not arrive and the ever-changing scientific data do not fit into
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the old theory, then the theory must inevitably be corrected. For
example, Hippocrates claimed that an excess of one of the four
body fluids (humors), black pile, is the cause of tumors, and this
position was also carried over to Claudius Galen’s (130-200)medical
teaching. However, regulating the balance of the four body fluids
with diet, laxatives, or bloodletting did not produce significant
results in terms of tumour treatment, and this called into question
the validity of the theory of humors. Several other theories had
the same fate (for example, Stahl-Hoffman and Hunter’s lymph
theory in the 18th century or Zacutus Lusitani’s and Nicholas
Tulp’s theory of cancer as an infectious disease in the 17th-18th
centuries) (American Cancer Society 2024). In other words, tumour
theories not only derive from the prevailing biological worldview,
but they also influence and, if necessary, actively change it. That
is exactly what we are witnessing today. This century brings back
the attention to developmental biology (embryology) in connection
with the epigenetic revolution in biology, and the causes of tumours
are searched for in the disorders of differentiation of cells/tissues and
communication between them.

Genetics and embryology
(developmental biology)

A large amount of literature on the biology of tumours begins
with statements like “cancer is a genetic disease” or “cancer is a
disease of genes.” According to this view, cancer begins with genetic
changes - “somaticmutations” that create new tumour properties for
cells. Eventually, thanks to suchmutations, the cells acquiremobility,
invasiveness, and the ability to create metastases. Hence, cancer is a
genetic problem. This is a brief summary of the common theory of
tumours - somatic mutations theory (SMT).

This has not always been the case. Such a view was formed only
by the middle of the last century, together with Modern Synthesis
(MS), reductionism in biology and the idea of “selfish genes” that
use organisms as means to travel from generation to generation
and describe the “construction plan” or “blueprint” of the whole
organism. The genetic theory of tumours postulated genes that
are activated by mutations and lead to the promotion of tumour
formation (oncogenes) and others, whose inactivation contributes
to tumour formation (tumour suppressor genes).

In the 19th century, the causes of tumours were seen elsewhere -
the tumours came either from less differentiated cells that had been
delayed in development (“embryonic remnants”) or from cells that
had been dedifferentiated for some reason (Stanger andWahl, 2024).

“Oncogenesis is blocked ontogenesis,” wrote Julius Cohnheim
in 1875. Tumours are produced not from normal adult cells,
but from “embryonic” remnants - cells that are “left behind” in
their development in the adult body (“embryonale anlage” or
“verirrte Keime”) (Cohnheim, 1875).The change in the surrounding
environment causes otherwise silent embryonic cells to become
malignantly proliferating. They do not differentiate normally but
remain similar to embryonic tissue. In conclusion, tumours are not
a genetic problem, but a problem of developmental biology.

Francesco Durante, a surgeon and pathologist, summarizes
the picture of the emergence of tumours in 1874 as follows
(Triolo, 1965; Stanger and Wahl, 2024):

Elements which have retained their …embryonal
characteristics in the adult organism, or that have regained
them through some chemico-physiologic deviation,
represent …the generative elements of every tumor variety
and specifically those of a malignant nature. Such elements
may remain enclosed within matured tissues for many years,
giving no indication of their presence, until an irritation—a
simple stimulus suffices—rekindles their vital cellular
activities.

Durante describes here two possible embryonic intermediate
stages through which the tumour is formed. Firstly, it may be a cell
that has stopped in the differentiation process before the end, and
secondly, it may be a cell that has regained embryonic traits. As we
will see below, both options are also under active discussion in 21st
century biology.

At the same time, British developmental biologist John Beard
pointed out the similarities between early embryonic development
and tumour malignancy (Burleigh, 2008). Trophoblast cells, which
are the first product of cell differentiation in the development of
human embryo (produced in an embryo of about 4-5 days of age),
are very similar to invasive tumours: these cells penetrate the uterine
wall, multiply very actively, provide themselves with blood vessels,
and suppress the immune system of the mother’s body so that fetal
growth is possible. It is these properties that are also associated with
metastatic processes in the body. Beard suggested that the aggressive
tumours come from displaced trophoblast cells.

Modern studies also show the link between stem cells and
tumour cells. Transplantation of normal stem cells from the genital
wall into mouse testes results in malignant tumours - teratomas
(Mintz and Illmensee, 1975). Teratomas contain cells from different
developmental lines in different phases of differentiation. However,
if these same cells of the genital wall were taken from genetically
sterile mice (who do not have gamete stem cells), there will be
no teratomas. Moreover, when teratoma cells are injected into
normal blastocysts, teratogenesis is suppressed. These tests showed
that a normal (germarium) stem cell can produce a tumour in
an appropriate environment and, on the other hand, a normal
environment is able to suppress tumour production processes
(Stevens, 1964; Stevens, 1981). Such works confirm Durante’s
hypothesis that tumours can be formed from stem cells if there is
a suitable environment.

The idea that tumours arise due to changes (mutations) in cell
chromatin came up in 1902 by the embryologist and zoologist
Theodor Boveri (Boveri, 1914). This was direct consequence
of Boveri-Sutton’s chromosome theory, according to which
chromosomes are carriers of genetic material. Earlier, David
von Hansemann had described aneuploidy of chromosomes
in tumour cells (additional chromosomes, missing and faulty
chromosomes) in 1890 and Boveri concluded that these effects
were the cause of the tumours. Later, upon learning the structure of
DNA, this position was clarified for the role of DNA mutations
in tumour formation. Von Hansemann himself considered
chromosome changes to be the result, rather than the cause of
tumours rather (Seyfried et al., 2014). Boveri also postulated the
presence of cell cycle control points (Hemmungseinrichtungen),
tumour suppressor genes (teilungshemmende Chromosomen) and
oncogenes (teilungsfoerdernde Chromosomen). He speculated that
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the tumours were caused by radiation, physical/chemical damage, or
pathogenic microorganisms. The theory of chemical carcinogenesis
was much older - already in 1775, Percival Pott observed that there
are many scrotal tumours among chimney sweepers.

By the beginning of the XX century, it was clear that there
are two equally important “meta-themes” in biology: how different
characteristics of the organism are created during the course of
individual development (this was a subject of embryology, later
developmental biology), and how characteristics are passed on to
subsequent generations (genetics). In 1910, Thomas Hunt Morgan
rephrased the traditional contradiction between preformism and
epigenesis, calling it a contradiction between “particulate theory
of development” and “theory of physicochemical reaction”. He
writes: “Whichever view we adopt will depend first upon which
conception seems more likely to open up further lines of profitable
investigation …” (Morgan, 1910). Although Morgan had begun
as an embryologist, he noted that genetic research on fruit flies
allowed him to ask important questions about genetics, but there
were no comparable methods for studying embryology at that time.
Although it was clear from the very beginning that all heredity only
materializes through the processes of individual development, they
are inseparable and affect (and shape) each other.

In the 20th century, major changes took place in biology theory,
and with the advent of Modern Synthesis, genetics became the
fundamental - and meantime the exclusive–component of it. The
central axis of biological thought was around DNA and, above
all, its mutations. The starting point of biological theories was
reductionism, genetic determinism, and the assumption that there
is a linear causative bond between the genotype and the phenotype
(“one gene - one protein - one trait”). This was reinforced by the
experiments of Osvald Avery, Colin MacLeod and Maclyn McCarty
in 1944, according to which it was the DNA molecule that allowed
the transfer of Streptococcus pneumoniae virulence to non-virulent
strains (regrettably, later this experiment led to the erroneous
conclusion that all traits of organisms are only transferable by DNA
molecules).The subsequent discovery of theDNA structure (Watson
and Crick, 1953) and the genetic code (Nirenberg and Matthaei,
1961) fixed themain directions of biological thought for the decades
to come. SMT became the central theory of cancer formation.

Oncogene concept

MichelMorange has thoroughly described themain discoveries,
which led to the so-called “oncogene revolution” in the 1980s
(Table 1; Morange, 1997). According to this paradigm, tumours
arise due to an increase in the expression or structural changes
of a small number of genes - oncogenes. Such oncogenes are
activated by a number of different mechanisms: direct mutation;
increased transcriptional activity due to the entry (insertion) of
retroviral sequences into the vicinity of the oncogene in the
genome; gene transfer in the genome (translocation) places them
under the influence of highly active promoters; the entry of the
oncogene into the retroviral sequence, together with which its
highly active expression occurs. Oncogenes are also activated by
multiplication (amplification) of its DNA sequences. In summary,
cancer occurs due to changes in various oncogenes and is therefore
their cooperative effect. Oncogenes encode various proteins that

TABLE 1 The most important discoveries underlying the concept of
oncogenes (modif.Morange, 1997).

Year Discovery

1911 Detection of the first cancer-causing virus (P. Rous)

1961 Gene regulation models (F. Jacob and J. Monod)

1969 Provirus model (R.J. Huebner and G.J. Todaro)

1976 The first cellular oncogene was found to be homologous to
retroviral oncogenes (D. Stehelin, H. Varmus, M. Bishop)

1979–1980 Intercellular transfer of the transformed phenotype with a single
gene (G. Cooper, R. Weinberg)

1982 Transformation was shown to occur as a result of a single point
mutation of the cellular oncogene (Ras) (R. Weinberg)

1983–1984 Oncogene products are cell growth factors or growth factor
receptors

1986 Identification of the first anti-oncogenes (tumour suppressors)

are involved in the control of cell proliferation: growth factors that
control cell division; receptor proteins of these factors; proteins
of signal pathways that transmit extracellular signals to the cell
nucleus; nuclear transcription factors responsible for the expression
of genes in rapidly reproducing cells. Later, tumour suppressors or
anti-oncogenes were added, which could be inactivated by various
mechanisms, and such inactivation contributed to the formation of
tumours. For example, the gene p53 (and the corresponding protein)
has been mutated in more than half of human tumours.

The concept of oncogenes replaced the position that prevailed
just before that time, according to which the tumours were of
viral origin. Indeed, when President Richard Nixon asked the U.S.
Congress to announce the National Cancer Act in 1971, it was
subtitled “Virus Cancer Program.” The aim of the programme was
neither more nor less than to eradicate the tumours in the next
10 years $1.5 billion was earmarked for this, the National Cancer
Institute was established, and a number of the best scientists of that
time joined the program. However, the task turned out to be much
more complicated. 50 years later, President Biden (February 2022)
announced the “CancerMoonshot” program, whichwas designed to
reduce cancer deaths twice over the next 25 years (Ledford, 2022).

However, progress is not negligible - while in 1971 only half
of the cancer patients lived for at least 5 years, in 50 years it had
increased to two-thirds. For a number of cancers - lung, prostate,
stomach, etc. there is a significant reduction in age-adjusted tumour
mortality. However, for example for pancreatic and liver tumours,
the trend is rather the opposite (American Cancer Society, 2019).

By 1978, it was clear that the absolute majority of human
tumours were not virus-related, and it was necessary to find a
new bearing axis in cancer biology. The basis for the emerging
concept of oncogenes was expressed already in 1974 by Howard
Temin: mutations in cell genes lead to the development of tumours
(Temin, 1974). This was accompanied by discoveries that the
oncogenic transformation of cells and the formation of tumours
were accompanied by many chromosomal rearrangements (see
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FIGURE 1
Canonical model of colorectal tumour formation by SMT (Fearon and Vogelstein, 1990). Genes whose mutations/activation lead from one stage to the
next have been identified. Allegedly, 50%-85% of colorectal tumours behave according to this model.

e.g. Cairns, 1981) and George Todaro clearly formulated the idea
(although it had been suggested earlier) that the tumours were
caused by abnormal production of molecules such as ligands of
cell growth factor receptors in cells (e.g. Todaro and De Larco,
1978). The first oncogene was described in 1976 (Src found in
birds’ Rous sarcoma viruses) and was immediately proposed as a
regulator of cell growth and development (Stehelin et al., 1976).
The idea that the formation of cancer is a multi-step process that
occurs with mutations in some genes came from the fact that the
probability of the occurrence of cancer increases exponentially over
the years, and from the slope curve it was found that the number
of relevant elementary events could be from 5 to 8. Bert Vogelstein
developed a model of canonical colon tumour formation from
normal intestinal epithelial cell tometastatic tumour, where changes
in certain oncogenes and/or tumour suppressor genes could be
demonstrated at each stage (Fearon and Vogelstein, 1990; Figure 1).
True, it soon became clear thatmany colon tumours, however, do not
follow this model, and as RobertWeinberg has expressed years later:

“…each tumor seemed to represent a unique experiment of
nature, acquiring a unique set of mutant genes and in an
unpredictable chronological order.” (Weinberg, 2014).

Central to the development of the oncogene concept were
Robert Weinberg’s transfection experiments. The growth of normal
cells (for example, in the Petri dish) is characterized by the so-
called “contact inhibition” - the cells divide as long as they come
into contact with neighbouring cells and then the division stops. As
a result, a single-cell layer is formed on the dish. However, when
different oncogenes were introduced into the cells, such contact
inhibition disappeared and the “growth cups” developed - such
cells were called (oncogenically) transformed. Weinberg’s work thus
made it possible to find and characterize mutations that lead to the
formation of active oncogenes and showed that the transformation
of cells requires themodification of several genes (Land et al., 1983a;
Land et al., 1983b; Ruley, 1983). True, there was constant debate
about the extent to which such a transformation still reflects the
actual oncogenesis process.

In 1982, Weinberg and colleagues found that it was enough
to transfer a single mutated gene (from bladder carcinoma cells)
to produce cell transformation. It was a gene called Ras, which
had already been found in retroviruses. The real surprise, however,

was that the tumour-causing Ras differed from normal by just one
nucleotide. In 2014 Weinberg writes (Weinberg, 2014):

“For a brief moment in 1982, there was the illusion that
cancer was as simple as it possibly could be—a normal cell
differed from its neoplastic counterpart by one base out of
three billion!”

However, he goes on to write:

“From the point of view of the reductionist hoping that
a small number of molecular events might explain cancer,
things went downhill from there for the next 30 years.

…

So, perhaps ironically, we have come full circle, beginning
in a period when vast amounts of cancer research data
yielded little insight into underlying mechanisms to a period
(1980–2000) when a flurry ofmolecular and genetic research
gave hope that cancer really could be understood through
simple and logical reductionist thinking, and finally to our
current dilemma. Once again, we cannot really assimilate
and interpret most of the data that we accumulate.”

The role of mutations in the formation
of tumours - “drivers” and
“passengers”

After it became clear that mutations play a role in tumour
production processes, and in parallel with rapid developments in
nucleic acid sequencing technologies (determination of nucleotide
sequences of DNA and RNA), great attention was paid to the search
for different mutations in very different tumours. A great deal
of work was done here by the consortium The Cancer Genome
Atlas (TCGA), led by the National Cancer Institute (NCI) and the
National Institute of Human Genome (NHGI), which started in
2006. In total, tumour and corresponding normal tissuematerial was
sequenced from 20 thousand patients and 33 different tumour types.
A number of other tumour-related data were also collected.

It became increasingly clear that tumours do not arise due
to mutations in a limited number of genes (5-8 as suggested
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earlier), but more and more potential oncogenes were added during
sequencing. This made it difficult to understand, which of them
were causally related to the development of cancer and which were
not. It also became clear that mutations also accumulate in normal
tissues as they age. They establish cell clones that may or may not
become tumours (Wijewardhane et al., 2020). Now the question
arose, which of these mutations are actually causally related to
tumours, and how would we know that?

Themutations in the tumourswere divided into two types - some
are “drivers” (driver mutations) that cause tumours, while others
are called “passengers” (passenger mutations) with no causative
relationship to tumours. However, it turned out that such a division
is not at all easy (Pradeu et al., 2023). What does causality mean?
Some mutations may not directly cause the tumour phenotype,
but may, for example, hinder the mitosis process and thereby
increase the frequency of mutations in the cell. Are they supposed
to be drivers? Therefore, the definition of drivers and passengers
is not clear.

Functional data are used to distinguish between the two
mutation types. For example, mutant genes are inserted into mice
or cell lines. But the results obtained so far are often contradictory
because the effects depend on the specific cell types and also onwhat
other mutations exist in these cells - so the function of the gene
depends on the genome and the cellular context.

Another way is to analyse many tumours of the same type, and
if a mutation occurs in most of them, it could be concluded that it
is a driver. The problem is that the molecular pattern of tumours in
patients with the same diagnosis can be very different (Kumar et al.,
2021) and different mutations are found in different parts of the
same tumour mass. For example, different mutations were found
in different areas of the same lung tumour, so it had to be stated
that “…a biopsy taken from R3 might suggest treatment with an
inhibitor of the …PI3K/mTOR signalling axis, and combination
therapy. Conversely, a single biopsy from another region would
suggest treatment with a BRAF inhibitor …” (de Bruin et al., 2014).

The likelihood of any mutation in the tissue depends on many
of the factors involved: the size of the gene, the position effect, the
openness or fragility of the chromatin region, etc.Therefore, it is also
difficult to define false positive and negative signals (Lawrence et al.,
2013). Certain gene regions (hotspots) have been found that are
more oftenmutable and thus give false positive responses (Hess et al.,
2019) and deviations from the average rate of mutations in certain
genome regions has been described (Monroe et al., 2022).

Pradeu, together with his co-authors, stresses that the concept
of drivers/co-drivers itself is also changing and currently conflating
two meanings (Pradeu et al., 2023). When originally “driver”
signified a mutation that gave the cells a certain selective advantage
or growth fitness (drivers drive clonal expansion (Maley et al.,
2004)), it now includes mutations in any gene that plays some
functional role in tumour (drivers drive the disease). These two
approaches overlap only partially. For example, some mutations
create a growth advantage, not a tumour process (Wijewardhane
et al., 2020). Cell clones with mutations are also formed in non-
tumour tissues during aging (Kakiuchi and Ogawa, 2021). Some
mutations that give cells a growth advantage are enriched in tumour
cells, while others are instead enriched in non-cancer tissues. This
is the case, for example, with the genes p53 and NOTCH1 in the
esophagus, where it is also thought that the NOTCH1 mutations

might in fact protect against tumours (Martincorena et al., 2018).
Some mutations produce a tumour phenotype but are more neutral
to the growth advantage or even inhibit cell growth, such as SRSF2
mutations in haematopoietic cells (Bapat et al., 2018).

All in all, it should be noted that instead of some (5-8)
oncogenes, hundreds of mutated genes have been found in tumours
and it is very difficult to define which ones are causally related to
the formation of tumours. It usually depends on the context - the
effect of the activity of other genes, the environment and other cells
in the tissue. The same mutation can be both driver, neutral and
harmful. For example, mutations in the KRAS gene (Kirsten’s rat
sarcoma) are the predominant driver of pancreatic duct tumours
(PDAC), but a specific context is needed for cell transformation:
chronic inflammation (Guerra et al., 2007) or specific acinar cells
in which telomerase is activated (Neuhöfer et al., 2021).

Moreover, whether themutation is a driver, neutral or damaging
may depend on the heterogeneity within the tumour and the way
the tumour has been previously treated (Swanton and Govindan,
2016). For example, in lung adenocarcinomas, the EGFR mutation
T90M becomes a driver only if the tumour cells have been
previously selected by treatment with EGFR inhibitors. Also,
whether a particular mutation is the cause (driver) of the tumour
or a related phenomenon (passenger) may depend on the cellular
(tissue) context (Haigis et al., 2019).

Pradeu et al. observe:

“Overall, this shows that the concept of driver
mutation is relative, not absolute, and it is important to
disentangle its contribution either to clonal expansion
and/or to oncogenic processes (partially overlapping
processes)” (Pradeu et al., 2023).

There are even more problems with the connection of
mutations and causation of tumours. There are tumours, where no
mutations have found, such as teratocarcinomas and ependymomas
(Martincorena and Campbell, 2015; Versteeg, 2014). Tumour cells
with DNA mutations can be differentiated into completely normal
developing cells, with the mutation remaining (McClellan et al.,
2015). Also in normal tissues, mutations that are characteristic
of cancer tissues and/or driver mutations (Martincorena and
Campbell, 2015) are often found, with some mutations found
in normal cells even giving protection against cancer (Zhu
et al., 2019; Colom et al., 2021).

Cells have high phenotypic plasticity: one genotype can give very
different phenotypes, therefore the classic Darwinian “mutation-
selection” does not fully explain the development of tumours. Also,
the mutations found may not have been selected, but instead have
arisen from gene drift (Sottoriva et al., 2015).

There is an increasing accumulation of data according to
which the behaviour of a gene as an oncogene or as a tumour
suppressor gene depends on the context (see Monti et al., 2022
for many examples). For example, extracellular signals determine
whether oncogenes direct skin cells to cancer or in the opposite
direction (McNeal et al., 2021). The claudins can be both
tumour-promoting and tumour suppressors, depending on the
microenvironment (Li, 2021).

c-myc, one of the most canonical oncogenes, can actually cause
differentiation and apoptosis in human embryonic cells (Sumi et al.,
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2007; Amati and Land, 1994).The activity of c-myc as an oncogene or
suppressor for the production of tumours may depend, for example,
on the density of cells (Lee et al., 1995) or the status of E2F1
signalling pathway (Cucina et al., 2006).

Monti et al. has also proposed a model of the various attractor
states originally presented byConradWaddington in the phenotypic
state-space landscape. Depending on internal and external
limitations, different states of the Gene Regulatory Networks
(GRNs) are created, which may give completely different effects
from the point of view of tumour development (Monti et al., 2022).

De Magalhães recently found that of the 17,371 human genes
encountered in at least one scientific article in the PubMed database,
15,233 (87.7%) are associated with at least one article on cancer.
The number of genes mentioned in at least 100 articles was 4,186
and only three of them (SLC26A5, PRPH2 and CRYZ) were not
included in any cancer-related articles. So, he has put the title of
his commentary: “Every gene can (and probably will) be associated
with cancer” (de Magalhães, 2022). If almost any gene is associated
with tumours in some way, then the concept of few “driver genes”
does not seem to be relevant.

As has been said, tumour tissues usually contain a large number
of DNA mutations, whereas mutations in cells of the same tissue
can be different, and the spectrum of mutations also changes over
time, starting from early stages to metastases. Up to 20,000 different
point mutations have been found in breast tumours (Yost et al.,
2012), in melanoma up to 333,000 (Berger et al., 2012). Already in
1920, David von Hansemann asked about the aneuploidies found
in tumours, whether the mutations in tumours are the cause or
consequence (Hardy et al., 2005).

Monti et al. (2022) summarize the role of mutations in cancer
formation as follows:

“To sum up, we may confidently conclude that mutations
are associated with tumors, even if they might be irrelevant
as a primary cause (Boland and Ricciardiello, 1999),
and hence ‘‘are not likely to play a dominant part in
cancer’’ (Hua et al., 1997).

Nucleus or cytoplasm

British geneticist Cyril Dean Darlington was one of the first
to challenge the nuclear origin of tumours (Darlington, 1948).
He was convinced that the causes of the tumours were derived
from cytoplasmic elements - plasmagenes, which have later been
considered to be, for example, mitochondria (Seyfried et al., 2014).

Several experiments with cell nucleus/cytoplasm transfer
indicate the possible cytoplasmic nature of the causes of tumour
formation. When the cytoplasm of normal cells is brought together
with the nuclei of tumour cells, the tumour phenotype is suppressed
(see Seyfried et al., 2014 for references). In vivo experiments have
also shown that the tumorigenicity of many tumours decreased
when their nucleus got into contact with the cytoplasm of normal
cells - although tumour-associated mutations were still present in
these nuclei. The transfer of tumour cells into the mouse embryo
resulted in cells with a normal phenotype (which had still retained
DNA mutations from tumours) (Li et al., 2003; Hochedlinger et al.,

2004). Inverse experiments combining the cytoplasm of tumour
cells and the nuclei of normal cells led to a tumorigenic phenotype
(Israel et al., 1988; Petros et al., 2005). These results echo the views
of C. D. Darlington.

Cell differentiation, plasticity and
tumours

All human cell types (about 250 in total) and different tissues are
derived from a single cell - a fertilized egg. Embryonic development
includes both quantitative changes (increase in the number of
cells due to proliferation) and qualitative changes (different cell
types are formed as a result of differentiation). Differentiated cells
have a characteristic morphology and expression pattern of genes
and proteins.

Cancer cells are characterised by a dedifferentiated or low-
differentiated state. It has been known for decades that the less
differentiated the tumour cells, the more aggressive the tumour
is. There are two ways to develop a low-differentiated phenotype:
the dedifferentiation of already differentiated cells, or the failure to
complete the initial differentiation (Figure 2). (See also Francesco
Durante’s views in 1874, above). For example, adenomas (benign
tumours) in the intestine are formed either from Lgr5+ stem cells
which are located in crypts, or from the already differentiated cells
of the villi.

Different mechanisms participate in the respective
differentiation retardation or dedifferentiation processes (Schwitalla 
et al., 2013). The gradients of morphogens and their disorders,
inflammatory processes, as well as mechanical stresses and the
microenvironment of tumours (TME) may play a role.

There are several additional data on the link between
differentiation status and cancer development. In acute
promyelocytic leukaemia (APL), which has a chromosome
translocation resulting in the fusion gene of the retinoic acid
receptor alpha (RARα), retinoic acid produces differentiation of
leukaemia cells and achieves excellent clinical results (Degos et al.,
1995). In pancreatic tumours, damage to the PTF1A gene is an
important stage of tumorigenesis - it is an important gene for the
differentiation of pancreatic acinar cells (Krah et al., 2015). Gene
IDH mutations produce cholangiocarcinomas (a biliary tumour)
due to disruption of hepatocyte differentiation (Saha et al., 2014).

In 2008, we demonstrated a direct link between tumour
suppressor gene activity and cell differentiation (Maimets et al.,
2008). The protein product level of the gene p53 is quite low in
normal cells, because it binds to the protein Mdm2, which is the E3
ligase of the ubiqitin pathway, and therefore leads to the degradation
of the protein p53 in the proteasome. Low-molecular compound
nutlin binds to the structure of Mdm2 at the same site that binds
to the p53 protein, so there is no degradation of p53 and the
level of the latter in the cell increases. In embryonic human stem
cells, such an increase in the level of protein p53 leads to rapid
differentiation of the cells, which is associated with a stop in the
cell cycle (Maimets et al., 2008). These results show the link between
oncogenesis and differentiation and also support the perspective of
tumour differentiation therapy.

Several studies have investigated the possibility of reversing
cancer process through induction of cancer cell differentiation.
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FIGURE 2
Loss and gain of cell developmental potential. According to concept of tumour as a problem of development, a tumour cell has an undifferentiated or
low-differentiated status. In the course of differentiation from zygote to terminally differentiated cells, the process can stop and result in tumours - the
less differentiated, the more aggressive. The same result can also be achieved through dedifferentiation of cells. ES cell - embryonic stem cell.

Pioneering research showed that teratocarcinoma cells injected into
normal blastocysts were transformed into normal embryonic cells,
developing into normal tissues and organs (Mintz and Illmensee,
1975). Differentiation therapy has yielded significant results in
the treatment of acute promyelocytic leukemia (APL), where the
combination of all-trans retinoic acid (ATRA) and arsenic trioxide
(ATO) achieved a treatment efficacy of over 95% (Lo-Coco et al.,
2013). Although differentiation therapy has been shown to be
effective in APL, the application of such therapy in solid tumors is
more challenging (Shin and Cho, 2023).

The concept of cancer stem cells (CSC) also points to the
problem of insufficient differentiation in tumours. CSC is a cell that
usually forms a small part of the tumour, but has the ability to
renew, differentiate and create tumour tissue, being resistant to both
chemotherapy and radiation therapy.

Tissue organization field theory -
TOFT

Following Kuhn (1962), the accumulation of anomalies in SMT,
such as non-mutational tumors and context-dependent oncogene
effects, signals a crisis necessitating a paradigm shift toward
theories emphasizing tissue-level and developmental processes.
Carlos Sonnenschein and Ana Soto counterbalance the theory of
SMT with a theory that goes a step further in cell differentiation
and communication disorders and assumes that cancer is a disease
not of cells but of tissues. It is true that tissues are made up of cells,
but at every biological level of organization (genes, cells, tissues,
organs, organisms…) there are not only properties derived from the
previous level, but also so-called emergent properties. Emergence
refers to the appearance of overall behaviour in a complex system

of many parts that cannot be predicted or understood by focusing
just on what those parts themselves are like (Ball, 2023). Organisms
include several levels of organisation, which differ from each other in
the degree of constraints and openness. DNA is themost constrained
and least open level of organisation (see Noble and Noble, 2023).

Sixty years ago, David Smithers warned against excessive
reductionism stressing in many writings that cancer is a
disorder of organisation of the human body, rather than a
defect of cells (Smithers, 1962):

“Cancer is no more a disease of cells than a traffic jam is a
disease of cars. A lifetime of study of the internal-combustion
engine would not help anyone to understand our traffic
problems. The causes of congestion can be many. A traffic
jam is due to a failure of the normal relationship between
driven cars and their environment and can occur whether
they themselves are running normally or not.”

Regrettably, the next decades of cancer research went to an
even lower level of organization, looking for causes and solutions
in the DNA sequence. Philip Ball emphasizes in his recent book
“How Life Works”:

“…the way (perhaps the only way) to get deterministic
outcomes from noisy components is to rely on causal
emergence: most of the causal phenomena, be it the state of
cell or brain or the behavior of an organism, must arise at
higher levels” (Ball, 2023).

A comparison of SMT and TOFT theories is shown in
Table 2 (Sonnenschein and Soto, 2020). As the biggest difference
between SMT and TOFT, the authors point out that if the centre
of the SMT is the “independent cell,” then TOFT is the story
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TABLE 2 Comparison between the SMT and TOFT (Sonnenschein and Soto, 2020).

SMT TOFT

Premise 1:
What is the default state of cells in multicellular
organisms?

Proliferative quiescence.
Cells require stimulation by external (“growth factors”)
and/or intrinsic (“oncogenes”) factors

Proliferation with variation and motility. Regulation of
constitutive cell proliferation and of motility is
exclusively exerted by external and/or intrinsic
inhibitors of these functions.

Premise 2:
How does the process of carcinogenesis take place?

Changes in the DNA of the founder cell makes this cell
unable to control its proliferation. As a consequence, a
neoplasm will be formed.

Carcinogenesis is “development gone awry”. Chronic
abnormal interactions between mesenchyme/stroma
and parenchyma of a given morphogenetic field are
responsive for the appearance of a neoplasm.

Level of biological organization at which
carcinogenesis takes place

Cellular Tissue

Target disrupted by the carcinogenic insult DNA Morphogenetic field

Role of DNA mutations Causal Irrelevant, epiphenomenon

Consequence of the insult 1. Uncontrolled cell proliferation.
2. Formation of a clonal neoplasm in which all cells are
mutated in the same gene(s) affecting the control of
cell proliferation.
3. Additional mutations are invoked by most
researchers to explain metastasis.

1. Altered tissue structure involving hyperplasia,
metaplasia, dysplasia, and carcinoma.
2. Formation of polyclonal neoplasms.
3. The constraints imposed by the tissue to its cells are
impaired. As a result, cells express their default state
(i.e. proliferate and migrate) thus causing tumour
growth, invasion, and metastases.

Weaknesses and strengths of theories of carcinogenesis 1. Failure in explaining “foreign-body” carcinogenesis
due to a lack of induced DNA mutations by physical or
inert materials.
2. Failure in explaining the
normalisation/”maturation” of cancer tissues when
they undergo “spontaneous regression”.
3. In principle, no objection in explaining germline
cancers by DNA mutations that may alter the control
of cell proliferation.

1. Explains “foreign-body” carcinogenesis as an
unspecific tissue disruption of a morphogenetic field.
2. “Spontaneous cancer regression” is compatible with
the TOFT. Tissue recombinants show that cancer cells
(even those carrying alleged “oncogenic” mutations)
are “normalized” when placed in homotypic “normal”
tissues.
3. The TOFT explains germline cancers through a
morphogenetic field effect because the mutation is
present in all cells in the affected organism.

Corollary Irreversibility. “Once a cancer cell, always a cancer cell.” Reversibility. Due to spontaneous and induced
normalisation, cancer is not destiny.

of “development that went wrong.” It can also be seen from this
sentence that it is actually an extension of the theory of “cancer as
a developmental biological problem,” but its usefulness lies in the
clear identification of several critical points, especially intercellular
communication. In SMT, the “default” state of cells in an organism
is arrested cell cycle that requires the action of oncogenes to initiate
tumour processes, whereas in TOFT, the main state of cells is
continuous proliferation and mobility, and only the surrounding
cells keep it under control. Whereas these controlling cells can be
very different tissue components (so-called morphogenetic field).
So, the question now is not what triggers cell proliferation and
mobility, but, on the contrary, what are the mechanisms inside the
tissue that act as a brake on proliferation and mobility in the normal
state and whose damage causes tumour formation.

Coda

Now the question may arise, whether genes have anything to do
with the development of tumours at all? Of course they do, but like

all other biological processes, genes are just a resource that cells use
to achieve one or another result. This is a complex resource because
DNA sequences are far from unambiguous (in the terms of “one
gene - one protein - one phenotypic trait”). A single gene produces a
wide variety of products (RNA and protein molecules) that are used
by the cell in different combinations. And gene networks work in a
redundant way - if for some reason one genetic pathway does not
work, it is often possible to achieve the same goal by using other
gene combinations. The causes of tumours cannot be reduced to
the level of DNA alone, as they are a disease of cells and tissues
that contain new emergent causes, which do not appear at lower
levels of biological organization. It is now time to think, how the
cells get access to genetic information they contain according to
their emergent needs? What are the actions of the cells/tissues
- or even whole organisms - to selectively use the potential
of their DNA?

Biological science has always depended on existingmethods and
models. If there was no microscope, no questions could be asked
about the cells and themicroscopic world. In the biology of tumours,
there is a clear need today for newmethods to ask questions at higher
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levels of biological organization than DNA and cells. The organoid
method is one of the examples - three-dimensional cell cultures that
can be cultivated in vitro. They simulate tissue properties (structure,
function, interactions and spatial positioning with other cells and
extracellular matrices) and have been increasingly used in research
on various diseases in recent years (Fang et al., 2023). Biobanks
of organoids, models of co-cultivation of organoids and immune
cells, and organoids-on-chip methods will bring new developments
to the study of tumour biology in the near future. There will
certainly be new opportunities for combining organoid technology
with real-time imaging (real-time imaging technology) and three-
dimensional bioprinting techniques (3D bioprinting technology).
Such new approaches will allow to reduce the restrictions arising
from long-running reductionism, both on the theory of tumours and
on practical solutions.

Considering the current trends in biology, two directions can
be foreseen in which cancer research will develop more and
more actively in the future. First, with new methods and ideas
in developmental biology, the concept of tumour as a disease
of development is becoming very important, and so does the
study of epigenetics. At the same time, attention should be drawn
to the fact that the term “epigenetics” is used in two senses.
For molecular biologists, epigenetics is “a process that affects
the expression of specific genes and is passed on to daughter
cells, but not involve changes in DNA sequence” (Lodish et al.,
2016). However, Conrad Hal Waddigton (1905-1975) originally
defined epigenetics as “the branch of biology that studies those
causal interactions between genes and their products that create
a phenotype”. Waddington’s epigenetics describes the divergence
between an organism’s genotype and phenotype that occurs during
development (Waddington, 1942). David Haig has pointed out that
for Waddington, epigenesis was similar to the discipline that we
today call the biology of individual development (Haig, 2004), and it
is this type of epigenetics that seems to offer new ideas and solutions
in further cancer research.

It also becomes important to direct attention to higher levels
of the organism rather than to the cell (or gene). After all, tumour
formation is not directly destructive to the tumour cell itself. On
the contrary, the tumour cell becomes immortal and can exist
indefinitely under suitable conditions - like a cervical tumour cell
line HeLa, which has been propagated in laboratories around the
world since 1951. As a result of a tumour, the whole organism
dies (and then, of course, its cells as well), therefore the tumour
must be seen as a disease of higher level of organization. Complex
wholes are inherently more than the sum of their parts, because the
properties of each individual part depend on the context of that part
within the whole in which it operates. Denis Walsh has reminded
that since the Modern Synthesis our understanding of evolution
has focused only on the genes and populations. The organism has
been completely overshadowed in the landscape of evolutionary
thinking. This is because MS treats organisms only as objects and
not as agents. Organisms, Walsh asserts, require a special theory, an
“agent theory,” as opposed to the “object theory” currently prevalent
(Walsh, 2015; Walsh, 2018).

However, if we start from cancer as an organizational disease,
then all its levels become important, from genes to the econiche,

and no level is privileged (Noble and Noble, 2023). If a complex
system has properties or functions that its individual parts do not
have, then these are emergent properties that appear only when
the individual parts relate to the whole. It is also clear from here,
why only studies at the DNA (or cellular) level are not sufficient to
understand tumours.

In this context of organicism it is appropriate to remind (and
agree with) Smithers (1962) and Ball (2023) (cited above). Cancer
is a disorder of organisation of the human body, rather than a
defect of cells.

Cancer research is constantly developing along the mainstream
of biology, while at the same time changing it. As new experimental
technologies emerge and new data accumulate, it can revitalise old
ideas and give them new meanings.
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