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Diabetic foot ulcers (DFUs) are a serious complication of diabetes, characterized
by delayed wound healing, recurrent infection, and risk of amputation.
Mitochondrial dysfunction has emerged as a central pathological mechanism
underlying impaired wound healing. Persistent hyperglycemia triggers a cascade
of mitochondrial abnormalities like disrupted calcium homeostasis, excessive
ROS production, impaired autophagy, increased apoptosis, and imbalanced
mitochondrial dynamics. These alterations hinder ATP production, damage
repair cells and delays tissue regeneration. This review comprehensively explores
the mechanism of action of oxidative stress, mitochondrial apoptosis, autophagy
dysfunction, calcium imbalance and ferroptosis on DFU pathogenesis. It
also highlights promising mitochondrial targeted therapies. As mitochondria
regulates key cellular processes, targeting mitochondrial dysfunction
represents a novel and promising strategy. Future research should focus
on integrated approaches to restore mitochondrial homeostasis in diabetic
wound healing.
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1 Introduction

Diabetes mellitus is a serious and chronic metabolic disease, characterized primarily
by hyperglycemia. Its global incidence continues to rise, posing significant public health
challenges. Among the numerous complications associated with diabetes, diabetic foot
ulcers (DFUs) is one of the most severe and prevalent issue, affecting approximately
18.6 million individuals worldwide annually (Armstrong et al., 2023). The pathogenesis
of DFUs is multifactorial, involving a complex interplay of pathological factors that
ultimately result in cellular dysfunction and impaired wound healing. A critical aspect of
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diabetic ulcers is the altered wound microenvironment, particularly
abnormalities in the extracellular matrix, which directly impair
wound repair mechanisms (Santarella et al., 2020; Chang and
Nguyen, 2021). These alterations manifest through disturbances in
the immune microenvironment (Zhao et al., 2023; Mohsin et al.,
2024), imbalances in cytokines (Zubair and Ahmad, 2019),
growth factors (Yan et al, 2018; Zhang et al, 2023b), and
dysregulated protease activity (McCarty et al., 2012; Gao et al., 2015;
Chen et al., 2023b). Collectively, these factors disrupt the normal
cellular functions, making wound healing exceedingly challenging.
In addition, prolonged hyperglycemia contributes to serious
neurological and vascular complications, diminishing sensory
acuity and increasing vulnerability to skin injuries. Even minor
lesions may serve as entry points for pathogenic microorganisms,
gradually developing into chronic, hard-to-heal ulcers within the
glucose-rich microenvironment of diabetic patients (Uberoi et al.,
2024; Yang et al., 2024). Such ulcers significantly reduce patients’
quality of life, escalating healthcare costs, and can lead to
severe outcomes such as infections, amputations (Schwarz et al.,
2013), and even death (Senneville et al., 2024). Therefore, early
diagnosis, timely intervention, and exploration of innovative
treatment options are essential to improve outcome for patients with
diabetic ulcers (McDermott et al., 2023).

Mitochondria, a primary site of cellular energy production
and metabolism, play a pivotal role in maintaining cellular
homeostasis (Spinelli and Haigis, 2018). Glucose undergoes
glycolysis in the cytoplasm, generating pyruvate, which is converted
to acetyl coenzyme A and enters the mitochondrial matrix to
fuel oxidative phosphorylation. This process produces essential
molecules like nicotinamide adenine dinucleotide (NADH) and
flavin adenine dinucleotide (FADH,), which drives the electron
transport chain, culminating in ATP generation (Walsh et al., 2018).
Beyond energy metabolism, mitochondria are integral to diverse
cellular processes, including intracellular calcium homeostasis
(Cartes-Saavedra et al, 2025), reactive oxygen species (ROS)
production (Zorov et al., 2014; Rizwan et al., 2020), regulation
of intracellular protein folding (Shin et al, 2021), apoptosis,
immune response modulation (Zecchini et al.,, 2023; Trinchese et al.,
2024), mitochondrial quality control (Al Ojaimi et al., 2022), and
mitophagy (Lorentzen et al., 2025).

Despite advances in conventional treatments, diabetic wounds
often exhibit suboptimal healing. Targeting mitochondrial biological
functions present a promising therapeutic approach. By improving
cellular energy metabolism, reducing oxidative stress, promoting
angiogenesis, inhibiting apoptosis, and modulating immune
responses, mitochondrial-targeted interventions can accelerate
tissue repair and wound healing (Lin M. et al,, 2023; Qi et al,
2024). Consequently, improving mitochondrial function represents
an urgent and promising strategy for the treatment of
diabetic wounds.

Recent studies increasingly highlight the critical role
of mitochondria in the pathogenesis and progression of
diabetic ulcers (Jiang et al, 2023). This review summarizes
the current status of mitochondrial function in diabetic ulcer
healing and explores potential therapeutic approaches, providing
a foundation for the development of improved clinical treatment
strategies.
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1.1 Effects of mitochondrial oxidative stress
on diabetic wound healing

Under normal physiological conditions, wound healing consists
of four successive stages: hemostasis, inflammation, proliferation,
and remodeling (Lindley et al, 2016). However, in diabetic
patients, this process is often disrupted by cellular dysfunction
(Liu C. et al., 2023) and prolonged inflammation (Xia et al., 2023)
that prevents progression to subsequent healing stages (Yang et al.,
2023; Xiong et al, 2025). A prolonged hyperglycemic state in
diabetic patients significantly increases the production of ROS
(Yaribeygi et al., 2019b; Wan et al., 2022), including superoxide
anion, hydrogen peroxide and hydroxyl radicals (Staveness et al.,
2016). Under normal physiological conditions, ROS act as essential
signaling molecules, regulates pathogen defense, autophagy and
cell proliferation (Carrasco et al., 2015; Sahin et al, 2019;
Li W. et al., 2024; Zhao et al., 2024).

However, in diabetic patients, the overproduction of ROS
triggers oxidative stress, causing damage to cell membranes,
proteins, and DNA, thereby impairing wound healing (Deng et al.,
2021; Hong et al.,, 2023). Additionally, mitochondrial antioxidant
defense systems - such as manganese superoxide dismutase
(MnSOD), glutathione peroxidase (GPX), and glutathione reductase
- exhibit diminished activity in diabetic patients (Oyewole and
Birch-Machin, 2015; Li F. et al., 2024). This imbalance between
ROS production and antioxidant capacity exacerbates tissue
injury, disrupts cellular redox homeostasis, and further impairs
healing (Yaribeygi et al., 2019a; Zhu et al., 2024). Notably, reduced
peroxidase III expression in diabetic wounds is associated with
mitochondrial membrane potential (A¥m), a key factor in
triggering apoptotic signaling (Wolf et al.,, 2010; Wang X. et al,,
2020; Wang et al,, 2022). Consequently, mitochondrial dysfunction
and ROS are recognized not only as markers but also as drivers of
impaired healing in diabetic wounds (Wang X. et al., 2020).

High levels of ROS also damages extracellular matrix (ECM)
proteins, leading to non-enzymatic glycosylation due to excess
glucose (Du et al, 2020; Sabbatinelli et al., 2022). This process
generates intermediates that result in the formation of advanced
glycation end-products (AGEs), which interacts with their
corresponding receptors (RAGE), further accelerating glycosylation
(Zheng et al.,, 2022) and exacerbating vascular and neural toxicity,
while impairing the functions of macrophages (Geng et al., 2023),
fibroblasts, and vascular endothelial cells (Mao et al., 2022) - all
of which are critical for wound healing (Li et al., 2022b; Fu et al.,
2023). Moreover, diabetic patients also exhibit reduced antioxidant
enzyme activity in the ECM, making their wounds highly sensitive
to oxidative stress, particularly during the tissue remodeling phase
(Kunkemoeller and Kyriakides, 2017; Elbatreek et al., 2019). The
activation of the AGE-RAGE signaling pathway is a key component
in driving the vicious cycle of oxidative stress (Shi et al., 2013). The
binding of AGE-RAGE activates NADPH oxidase (NOX), leading
to the generation of large amounts of cytoplasmic ROS (Chen et al.,
2018), and NOX-derived ROS contributes to mitochondrial
dysfunction, secondary ROS generation, mtDNA damage, and
impaired antioxidant defenses. Continuous activation of the AGE-
RAGE pathway leads to the accumulation of ROS, which impedes
the healing of diabetic wounds (Piperi et al., 2015; Bai et al., 2022;
Zhang et al., 2025) (Figure 1).
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FIGURE 1
Hyperglycemia-affected cell with high ROS production triggers mitochondrial dysfunction, exacerbates oxidative stress, promotes the formation of

AGEs, and further activates signalling pathways, such as NF-xB and PKC, which ultimately leads to delayed wound healing. Hyperglycemia induces the
accumulation of AGEs, leading to increased levels of ROS, which in turn downregulates mitochondrial autophagy proteins such as PINK1/Parkin. As the
autophagosome cannot fuse with the lysosome properly, mitochondrial degradation is blocked, which ultimately leads to non-healing wound in
diabetes mellitus. Damaged mitochondria are not effectively cleared, which further exacerbates oxidative stress and disrupts cellular metabolism.

In addition, oxidative signals activates multiple signaling  thereby improving ROS and promoting wound-healing in diabetic
pathways, such as protein kinase C (PKC), nuclear factor-xB rat models (Yuzefovych et al., 2012).
(NF-xB), mitogen-activated protein kinase (MAPK), and c-Jun Furthermore, Rizwan etal. found that excess ROS in
N-terminal kinase/stress-activated protein kinase (JNK/SAPK)  hyperglycemic environments damages mtDNA in keratinocytes
(Choudhury et al, 2015, Qin et al, 2019; Meng W. et al,  (Rizwan et al., 2020), triggering inflammation and apoptosis via the
2025). Activating these signaling pathways regulates matrix =~ cGAS-STING-IRF3 pathway. Targeting mtDNA protection offers
metalloproteinase expression, and combined with high levels of  a great potential strategy for diabetic wound healing. Chronic
redox reactions, disrupts ECM remodeling, delays wound healing, = hyperglycemia also suppresses vascular regeneration, prolongs
and promotes inflammation and apoptosis (Kowluru et al.,, 2016;  epithelial migration, exacerbates inflammatory cell infiltration, and
Zhu et al, 2022). It is worth noting that damage-associated  hinders granulation tissue formation, all of which contribute to
molecular patterns (DAMPs) (e.g., mtDNA, ATP) released by  poor wound healing (Peplow and Baxter, 2012; Luo et al,, 2023).
mitochondrial dysfunction can trigger sterile inflammation through ~ Prolonged exposure of the body to high glucose levels activates
TLRs, NLRP3 inflammasomes, and cGAS-STING pathways, hypoxia-induced pathways, further perpetuating inflammation
hindering diabetic wound healing (Grazioli and Pugin, 2018). and tissue damage (Gerber and Rutter, 2017; Huang et al., 2024).
Improving mitochondrial function by suppressing mtDNA  However, Shi etal. revealed that bone marrow mesenchymal
leakage and promoting ATP production reduce inflammatory  stem cells (BMSCs) under hypoxic conditions secretes TGF-
responses and accelerate wound healing (He et al, 2024;  B1, promotes autophagy, reduces inflammation, and enhancing
Mao et al., 2025). epidermal cell proliferation and migration through the HIF-

A prolonged hyperglycemic state significantly increases electron ~ 1a/TGF-B1/SMAD signaling pathway. This accelerated wound
leakage in complexes I and III of the electron transport chain  healing in diabetic ulcers (Shi et al., 2022). These findings suggest
(ETC), generating large amounts of superoxide anions (O,”) that hypoxia, despite its detrimental role in diabetic wounds, may
(Kowluru et al, 2016; Huo et al, 2023). These anions get  have context-dependent therapeutic potential warranting further
converted into hydroxyl radicals (OH) and hydrogen peroxide  investigation.
(H,0,), which damage the mitochondrial structures, reducing ATP ROS exhibit a dual role in wound healing; while moderate ROS
production, decreasing A¥m, and induces mitochondrial DNA  levels stimulate early inflammatory responses, recruit immune cells
(mtDNA) mutations (Yuzefovych et al, 2012; Li et al., 2022a;  and promote angiogenesis and epithelial migration (Sies and Jones,
Shen et al,, 2023). Studies have shown that introducing the 8-  2020), excessive ROS induces oxidative stress, damages cellular
oxo guanine DNA glycosylase 1 gene into mitochondria using  structures (Li M. et al, 2024), and activates pro-inflammatory
adenoviral vector technology effectively mitigates mtDNA damage,  pathways, such as NF-«B, impeding healing (Ji et al., 2024).
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Novel approaches, like the glucose-responsive hydrogel GHM3,
show promise. GHM3 reduces glucose levels in the wound
microenvironment, scavenges ROS, improving inflammation and
accelerating wound healing (Qi et al., 2023).

In summary, mitochondrial dysfunction and oxidative stress
play crucial roles in the pathophysiology of diabetic wound healing.
Strategies to inhibit ROS overproduction, maintain mitochondrial
function, and enhance antioxidant defenses are essential for
improving wound healing in diabetic patients.

1.2 Effects of mitophagy on diabetic
wound healing

Mitophagy is a self-regulatory mechanism that maintains
cellular homeostasis by selectively removing damaged or
dysfunctional mitochondria (Jiang et al., 2023). It plays a crucial
role in regulating cellular metabolism and stress responses. In
diabetic patients, the hyperglycemic microenvironment and the
subsequent accumulation of AGEs impair cellular mitophagy, delay
wound healing and disrupts cellular metabolism (Han et al., 2017;
Wu et al, 2024). Studies have shown that mitophagy - related
proteins, such as PINKI1, Parkin, Beclinl and LC3-II/LC3-I are
significantly downregulated during the wound infection stage,
exacerbating mitochondrial dysfunction as the condition progresses
(Xiang et al., 2022; Deng et al., 2024).

Angiogenesis is critical for wound healing during the
proliferation phase, and mitophagy promotes vascular endothelial
cell survival and proliferation, facilitating the formation of new
blood vessels (Zhu et al, 2018; Fan et al, 2023). Laughlin
etal. demonstrated that enhancing the level of mitophagy
in keratinocytes counteracted the negative effects of AGEs,
promoting differentiation, proliferation, and epithelialization in
diabetic ulcers (Laughlin et al., 2020). However, in diabetic patients,
oxidative stress and hyperglycemia inhibits mitophagy, impairs
angiogenesis and hinders wound repair. Collectively, mitophagy
dysfunction emerges as a key factor contributing to impaired wound
healing in diabetes.

Mitophagy reduces ROS accumulation by efficiently removing
damaged mitochondria, thus lowering oxidative stress and
maintaining normal cellular metabolism-crucial for wound
healing (Tan et al, 2022; Zhao et al, 2022). Interestingly, ROS
also play a dual role in mitophagy: excessive oxidative stress
impairs mitophagy, while low levels activate mitophagy as a
protective response (Liu J. et al., 2023).

The PINKI/Parkin pathway is a fundamental regulatory
mechanism in mitophagy (Figure 1) (Wang H. et al, 2024). In
healthy cells, PTEN-induced kinase 1 (PINK1) is imported into the
mitochondria via the translocase complexes (TOM and TIM) and
is rapidly degraded (Eldeeb et al., 2024). However, under oxidative
stress, mitochondrial depolarisation prevents PINK1 degradation,
enabling it to recruit Parkin to label damaged mitochondria for
autophagic clearance (Shu et al., 2021). The damaged mitochondria
are degraded by lysosomal enzymes into essential biomolecules such
as amino acids and lipids, which are reused for cell regeneration and
tissue repair (Zhang et al., 2022). In diabetic wounds, impaired
mitophagy reduces the metabolic recycling capacity. Further
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research is needed to elucidate its exact role in delayed diabetic
wound healing (Figure 1).

Mitophagy reduces the release of apoptotic factors, thereby
preserving tissue integrity and cellular function. Studies show
that mitophagy related proteins, including PINK1, Parkin, LC3-
I and Beclinl, are downregulated in vascular endothelial cells
under hyperglycemic conditions (Xi et al., 2021; Xiang et al,
2022), resulting in mitochondrial damage, increased apoptosis, and
reduced endothelial cell activity and migration (Figure 1). Su et al.
demonstrated that denatured collagen enhances autophagy and
inhibits fibroblast apoptosis, facilitating wound repair (Su et al.,
2022). In fibroblasts, denatured collagen reduces the activation of
the apoptotic marker, caspase-3 and increases the expression of
autophagic markers like Beclin-1 and LC3, highlighting its potential
in promoting diabetic wound healing.

Chen etal. further confirmed the critical role of mitophagy
in diabetic wound healing (Chen et al., 2015), showing that high
glucose levels inhibit autophagy in endothelial progenitor cells
(EPCs), increasing apoptosis and impairing its function. It is well
known that mechanistic target of rapamycin (mTOR) plays an
important role in the regulation of autophagy. Inhibiting mTOR
signaling pathway activity reverses AGEs-induced autophagy
impairment in endothelial progenitor cells (EPCs), thereby
accelerating wound healing in diabetes (Jin et al, 2018). These
findings underscore the importance of regulating mitochondrial
mitophagy to reduce mitochondrial damage, inhibit apoptosis, and
improve diabetic wound healing.

The imbalance between autophagy and apoptosis is a major
contributor to delayed healing in diabetic wounds (Ko et al., 2020).
Regulating autophagy pathways and addressing mitochondrial
dysfunction could significantly enhance therapeutic strategies.
Future research should focus on elucidating the precise mechanisms
of autophagy inhibition in diabetic wounds, identifying novel targets
and developing treatments to restore cellular homeostasis and
accelerate wound healing.

1.3 Mitochondrial fission and fusion in
diabetic wound healing

Mitochondrial quality control is a dynamic process through
which mitochondria regulate their morphology, size, number, and
function to maintain cellular homeostasis, respond to oxidative
stress, and regulate energy metabolism (Jiang et al, 2022).
Mitochondrial fission and fusion - the two key dynamics of
mitochondrial quality control - enable mitochondria to adapt to
cellular demands, ensuring the proper balance required for cellular
function and environmental adaptation (Liu B.H. et al., 2024).
Disruption of this balance is implicated in various pathological
conditions, including diabetic wound healing (Zheng et al., 2021).

Mitochondrial quality control processes are precisely regulated
by a specific set of regulatory proteins. During mitochondrial fission,
the primary regulatory proteins include dynamin-related protein
1 (Drpl) and its receptor proteins - mitochondrial fission protein
1 (Fis1), mitochondrial fission factor (MFF) and MiD49/MiD51
(Konig et al., 2021). Drpl, a GTPase, is recruited to the outer
mitochondrial membrane where it forms oligomeric structures with
these receptor proteins (Gao and Hu, 2021), thus playing a central
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diabetic wounds.

Imbalance of mitochondrial fission and fusion in delayed diabetic wound healing. In a hyperglycaemic environment, mitochondrial fission is increased,
while mitochondrial fusion is decreased. This leads to mitochondrial fragmentation, energy deficit (decreased ATP) and ROS production. Since diabetic
wounds have a high energy demand, inadequate ATP supply and imbalance in mitochondrial quality control lead to prolonged non-healing of
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role in mitochondrial constriction and division. This process ensures
proper mitochondrial distribution during cell division and the
removal of damaged mitochondria (Kleele et al., 2021).

In diabetic patients, chronic hyperglycemia and impaired insulin
signaling increases cellular energy demand (Tseng et al., 2024).
To compensate, mitochondrial fission proteins are upregulated,
while mitochondrial fusion proteins are downregulated. However,
excessive activation of Drpl leads to overactive mitochondrial
fission, producing dysfunctional mitochondria that produces large
amounts of ROS (Hao et al., 2019). This exacerbates intracellular
oxidative stress, creating a vicious cycle of mitochondrial damage
and cellular dysfunction (Ruegsegger et al, 2018) (Figure 2).
Zhang etal. demonstrated that high glucose conditions lead
to rapid mitochondrial fragmentation and increased expression
of fission-related proteins, such as Drpl and Fisl, disrupting
mitochondrial morphology and exacerbating ROS production
(Zhang et al, 2023a). Shi etal. showed that inhibiting the
ROCK1/Drpl mediated mitochondrial fission pathway reduced
mitochondrial ROS (mtROS) production, restored blood flow,
promoted capillary formation, and accelerated wound healing in
diabetic mice (Shi et al., 2018).

Conversely, mitochondrial fusion involves the progressive
merging of two or more mitochondria into a continuous network,
including both inner and outer mitochondrial membranes.
This process is mediated primarily by mitochondrial fusion
proteins such as optic atrophy 1 (OPAl), mitofusinl (Mfnl)
and mitofusin2 (Mfn2) (Hu et al, 2021). Mfnl and Mfn2
mediates the fusion of outer mitochondrial membrane by forming
homodimers or heterodimers (e.g., Mfnl-Mfnl, Mfn2-Mfn2,
or Mfnl-Mfn2), while OPA1 mediates inner membrane fusion
(Gordaliza-Alaguero et al., 2024). Mitochondrial fusion enhances
bioenergetic capacity, supports mitochondrial genome intergrity,
and enables cells to respond more effectively to injury and stress
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(Tabara et al., 2024). Lu etal. found that mesenchymal stem
cells extracellular vesicles (MSC-EVs) promote mitochondrial
fusion, reduce ROS and mtDNA release, and inhibit ferroptosis in
endothelial cells, thus improving angiogenesis and wound healing
in diabetic mice (Lu et al., 2024).

In diabetic patients, the balance between mitochondrial fission
and fusion is often disrupted, as evidenced with increased fission and
decreased fusion observed under hyperglycemic stress (Tatmatsu-
Rocha et al., 2018). This imbalance contributes to mitochondrial
fragmentation, functional impairment, and oxidative stress, all
of which exacerbate endothelial cell dysfunction, apoptosis,
and impaired wound healing (Sun et al, 2016). Zheng etal.
reported that high-glucose induced dysregulation of mitochondrial
dynamics disrupts vascular endothelial function, with upregulated
fission proteins (Drpl and Fisl) and downregulated fusion
proteins (Mfnl, Mfn2, and OPA1), contributing to mitochondrial
dysfunction and increased oxidative stress (Zheng et al.,, 2021)
(Figure 2).

Mitochondrial fusion is particularly crucial for repairing
damaged mitochondria and maintaining energy metabolism
(Quintana-Cabrera et al., 2021; Guo et al., 2023). Disruption
of fusion proteins impairs ATP production, directly affecting
energy intensive processes such as cell migration, proliferation,
and tissue regeneration, which are essential for wound healing
(Amini et al,, 2018; Sun et al, 2022). Wang etal. showed that
overexpression of NDUFB5 promotes mitochondrial fusion, restores
mitochondrial oxidative phosphorylation, and accelerates diabetic
wound healing by improving mitochondrial function and reducing
ROS production (Wang T. et al., 2024). Similarly, Chen et al. found
that the SIPR2 antagonists modulate the RhoA/ROCKI1/Drpl
signaling pathway, reversing high glucose-induced mitochondrial
fission, improving endothelial cell migration, and inhibiting
apoptosis (Chen et al., 2019).
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FIGURE 3

Role of mitochondrial apoptosis in non-healing diabetic wounds. Activation of the AGEs/RAGE axis induces overproduction of ROS, leading to
upregulation of Bax and downregulation of Bcl-2. The subsequent opening of the mitochondrial membrane permeability transition pore (mPTP)
triggers a decrease in AYm, which leads to the release of Cyt C and activation of the caspase cascade reaction, ultimately inducing apoptosis of
fibroblasts, exacerbating tissue repair disorders and delaying healing of diabetic wounds. Hyperglycemia triggers mitochondrial calcium (Ca?*) overload
through MCU channels. Excess Ca®* triggers ROS accumulation, disrupts mitochondrial membrane potential (A¥m), and causes Cyt C release,
activates caspase cascade reaction, which ultimately induces apoptosis and leads to delayed diabetic wound healing.

Therefore, dysregulation of mitochondrial dynamics plays an
essential pathological role in diabetic wound healing (Dai et al.,
2022). An in-depth research is needed to elucidate the molecular
mechanisms governing mitochondrial fission and fusion in diabetic
wounds. Understanding these pathways can pave the way for
new treatments that address mitochondrial dysfunction, providing
innovative therapeutic avenues for managing diabetes-related
complications.

1.4 Mitochondrial apoptosis in diabetic
wound healing

Apoptosis, a genetically controlled, process of programmed
cell death, plays a critical role in tissue homeostasis by rapidly
removing excess or damaged cells. This process involves two
major pathways: the mitochondria-mediated intrinsic pathway
and the death receptor-mediated extrinsic pathway (Son and Lee,
2021). Among these, the mitochondria-mediated pathway is the
predominant intrinsic apoptotic mechanism (Brenner and Mak,
2009). In DFUgs, the activation of mitochondrial apoptosis disrupts
physiological processes such as cell proliferation, angiogenesis, and
reconstruction of extracellular matrix (Nagarjuna Reddy et al,
2022). The
keratinocytes, and vascular endothelial cells, delays wound

apoptosis of key cells, including fibroblasts,
healing and hampers tissue regeneration (Kim and Park, 2019;
Liang et al., 2019; Liu H. et al., 2024), highlighting the critical role

of apoptotic mechanisms in wound healing.
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Mitochondrial apoptosis is initiated by multiple pro-apoptotic
signals, including oxidative stress triggered by hyperglycemia,
sustained inflammation, DNA damage, and severe hypoxia
(Kaina, 2003; Chen et al, 2024). These pro-apoptotic signals
act synergistically through BH3 domain - containing proteins,
such as Bim and Bid, which activates key pro-apoptotic effectors
like Bax and Bak (Ruhl et al., 2025). When activated, Bax
and Bak translocate to the outer mitochondrial membrane,
resulting in mitochondrial outer membrane permeabilisation
(MOMP) (Riley et al., 2018). This disrupts membrane integrity,
decreases mitochondrial membrane potential, and facilitates the
release of pro-apoptotic factors such as cytochrome C (Cyt C)
(Cheng and Ferrell, 2018).

In DFUs, hyperglycemia disrupts the balance between pro-
apoptotic (e.g., Bax) and anti-apoptotic (e.g., Bcl-2) proteins,
triggering mitochondrial apoptosis (Wu et al., 2025). Studies on
diabetic wounds have show significant reduced expression of Bcl-
2, and weakened anti-apoptotic defenses, leading to cell apoptosis
(Ye etal,, 2025) (Figure 3). This phenomenon exacerbates the loss of
fibroblasts and vascular endothelial cells, impairs tissue regeneration
and delays wound healing (Justynski et al., 2023). Moreover, AGEs
activate apoptotic signaling pathways through interaction with their
receptor, RAGE. This interaction enhances the production of ROS
and upregulates the expression of Bax, caspase-9, and cytochrome
¢, ultimately activating apoptotic markers such as caspase-3 and
PARP. Consequently, endothelial progenitor cell apoptosis occurs,
impairing tissue repair and further delaying wound healing
(Jin et al, 2018; Li et al., 2018). Similarly, Ren etal. found that
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FIGURE 4
Role of ferroptosis in diabetic wounds in non-healing diabetic wounds. Hyperglycemia induces mitochondrial dysfunction, leading to excessive ROS
production, reduced GPX4 activity and ETC., abnormalities. Excessive Fe?* accumulation induces the Fenton reaction to produce lipid peroxides, which
results in ferroptosis. This damage repair cells and impede wound healing.

hyperglycemia increases the expression of cleaved Bax and Caspase-
3 in human microvascular endothelial cells (HMEC-1), promoting
apoptosis, oxidative stress and inflammation. However, increased
expression of angiotensin-converting enzyme 2 (ACE2) was found
to attenuate hyperglycemia-triggered apoptosis by inhibiting the
JAK2/STAT3 signaling pathway, improving cell viability, and
decreasing mitochondrial apoptotic protein expression (Ren et al.,
2022). This suggests that ACE2 could be a potential therapeutic
target for improving vascular endothelial cell dysfunction and
promoting wound healing in diabetic patients.

Changes in mitochondrial membrane permeability is pivotal
in mitochondria-mediated apoptosis, directly determining cell
fate (Tomasina et al., 2022). Increased mitochondrial membrane
permeability facilitates the rapid release of Cyt C, a key mediator
in the mitochondrial respiratory chain. Cyt C disrupts electron
transfer, impairs respiratory chain function, and leads to excessive
production of superoxide ions. This triggers oxidative stress,
exacerbates the inflammatory response and further delays wound
healing in diabetic patients (Figure 3).

In addition, extrinsic apoptosis plays an important role in
wound healing in diabetes. TNF-a inhibition promoted wound
healing in diabetic mice and inhibited fibroblast apoptosis
(Siqueira et al, 2010). In diabetic wound, TNF superfamily,
member 6 (FasL) expression induces keratinocyte apoptosis,
leading to delayed healing (Liang et al, 2019; Wang et al,
2023). Modulating mitochondrial apoptotic proteins or directly
targeting mitochondrial function presents a promising intervention
strategy for diabetic wound management. However, the precise
mechanisms by which mitochondrial apoptosis influences diabetic
wound healing remains incompletely understood. Further research
is needed to explore the molecular pathways involved and
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develop targeted pharmacological interventions. Advancing our
understanding in this area could open new avenues for the treatment
of diabetes-induced complications and accelerate wound repair.

1.5 Mitochondrial calcium homeostasis
and its role in diabetic wound healing

Mitochondria, often referred as the “powerhouse” of the cell,
serves as an important regulatory centre for intracellular calcium
signaling (De Stefani et al,, 2016). In 1960, De Luca etal. first
discovered that mitochondrial calcium uptake is mediated by
the mitochondrial calcium uniporter (MCU), a channel located
across the inner mitochondrial membrane. The MCU complex
consists of channel subunits (MCU and MCUDb), regulatory subunits
(EMRE, MICU1, MICU2, and MCUR1), and additional proteins
associated with calcium transport. Calcium ion (Ca**) translocation
is regulated by the interaction between the channel subunits and the
regulatory proteins (Xue et al., 2022).

The mitochondrial Ca®* uptake is driven by the electrochemical
gradient established during oxidative phosphorylation, where the
proton concentration gradient across the inner mitochondrial
membrane fuels ATP synthesis (Patron et al., 2022; Szabo and
Szewczyk, 2023). This Ca** influx is essential for regulating aerobic
metabolism and maintaining redox homeostasis (Wescott et al.,
2019). However, disrupted mitochondrial calcium homeostasis
triggers oxidative stress, overproduction of ROS, mitochondrial
depolarization, and apoptosis (Meng et al., 2023; Weiser et al., 2023).

In the resting state, the cytoplasmic Ca** concentration
is low, and regulatory proteins such as MICUl and MICU2
prevent Ca®* from entering the mitochondria through MCU
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wound healing.

Sustained hyperglycemia-induced mitochondrial dysfunction—characterized by disrupted calcium homeostasis, excessive ROS production, impaired
mitophagy, increased apoptosis and ferroptosis, and altered mitochondrial dynamics—is a central pathological mechanism hindering diabetic

(Liu et al., 2016). Upon stimulated, cytoplasmic Ca®* levels rises
and activates MICU1, enabling mitochondrial Ca**influx; closure
of MCU, mediated by MCURI, restores balance (Dong et al,
2017). After sufficient calcium uptake, MCURI assists in
closing the MCU channel, preventing calcium overload. This
tightly regulated mechanism ensures that the mitochondria is
protected from oxidative damage caused by excess calcium while
maintaining their ability to respond to cytoplasmic calcium signals,
thereby preserving normal physiological functions of the cells
(Wang C. et al,, 2020; Garbincius and Elrod, 2022).

Chronic hyperglycemic induces persistent oxidative stress,
which disrupts mitochondrial calcium homeostasis (Gerber
and Rutter, 2017). Normally Ca®* helps regulate NADPH
production to counteract oxidative stress (Park et al, 2022).
However, in diabetes, mitochondrial dysfunction leads to
calcium dysregulation, impairing the mitochondrial electron
transport chain and decreasing the membrane potential
(Belosludtsev et al., 2019; Dia et al., 2020), which exacerbates ROS
generation and delays wound healing.

Mitochondrial calcium plays a dual role: in moderate amounts,
it activates enzymes in the tricarboxylic acid (TCA) cycle,
promoting ATP production. However, ROS-induced damage to the
mitochondrial membrane causes excess calcium influx into the
mitochondria, disrupts this balance. Chen et al. showed that MCU’s
mRNA and its regulatory protein MCURI1 were upregulated in high-
glucose environments, leading to increased mitochondrial calcium
levels and ROS production. This, in turn, triggers endothelial cell
dysfunction, apoptosis and impaired wound healing (Chen et al.,
2017). Regulating MCU expression improves Ca®* homeostasis,
thereby protecting the biological function of dermal fibroblasts in
wound healing (Wang M. et al., 2024).
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Calcium overload opens the mitochondrial permeability
transition pore (mPTP), a critical event in mitochondrial
apoptosis (Dubois et al, 2024). The mPTP opening leads to
a loss of mitochondrial membrane potential, mitochondrial
swelling, and the release of pro-apoptotic factors such as Cyt
C. These events exacerbate apoptosis, further impairing diabetic
wound healing (Figure 3).

Therefore, hyperglycemia-induced oxidative stress and
dysregulation of mitochondrial calcium homeostasis form a
self-reinforcing loop. Oxidative stress damages mitochondrial
membrane and impairs MCU function, leading to Ca®" overload
(Zhang et al., 2024). The imbalance increases ROS production,
aggravating oxidative stress (Ly et al., 2017). This vicious cycle
ultimately delays wound healing in diabetic patients. Although
these mechanisms are theoretically supported, the exact processes
remains to be determined.

Future studies should aim to further investigate the molecular
pathways involved and develop new strategies to effectively
regulate mitochondrial calcium homeostasis as a means to treat

diabetic wounds.

1.6 Ferroptosis and its role in diabetic
wound healing

Mitochondrial dysfunction is an important factor contributing
to delayed wound healing in diabetic ulcers. Studies have shown that
mitochondrial dysfunction is strongly associated with ferroptosis,
a hallmark of diabetes-related complications (He et al., 2022).
Ferroptosis, a Fe**-dependent type of programmed cell death, differs
from traditional modes of cell death such as apoptosis, necrosis,
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TABLE 1 Drugs targeting mitochondria improve diabetic wound healing.

10.3389/fcell.2025.1625474

Outcome References

Mechanisms

Mitochondrial autophagy and
inflammation

Providing antioxidant,
anti-inflammatory,
anti-apoptotic effects;
promoting angiogenesis

Negative ion

Promoting diabetic wound Cheng et al. (2022)

healing

the AMPK activation;
regulating HIF-1a levels

Photobiomodulation Regulating mitochondrial Mitochondrial quality control Enhancing collagen Tatmatsu-Rocha et al. (2018)
(laser/LEDs) fusion and fission; promoting production and angiogenesis
collagen production in diabetic wounds
Lonicerin Promoting angiogenesis Mitochondrial Sirtl autophagy Improving diabetic wound Lin et al. (2024)
through Sirt1-mediated healing and angiogenesis
autophagy
Vildagliptin Inhibiting Drp1 mediated Mitochondrial quality control Protecting endothelial cell Liu et al. (2019)
mitochondrial division; mitochondrial function and
ameliorating high promoting diabetic wound
glucose-induced healing
mitochondrial dysfunction
Metformin Enhancing autophagy through Mitochondrial autophagy Activating AMPK and Tombulturk et al. (2024)

autophagy, improving blood
vessel formation and
promoting wound healing

Calcium channel modulator Regulating mitochondrial
calcium overload; inhibiting

apoptosis

Mitochondrial homeostasis,
apoptosis

Reducing oxidative stress and Chen et al. (2017)
apoptosis; promoting
angiogenesis in hyperglycemic

environements

Activating SIRT3; inhibiting
cellular ferroptosis

Hesperetin

Ferroptosis, mitochondrial
function

Inhibiting ferroptosis and Yu et al. (2024)

promoting wound healing

Inhibiting Drp1 mediated
mitochondrial division;

Exosome/Metformin Hydrogel

promoting wound healing and
microvascular recovery

Mitochondrial quality control

Improving chronic wound Zhang et al. (2023a)
healing and restoring
microvascular function in

diabetes mellitus

apoptosis; providing
antioxidant effects; stabilizing
calcium homeostasis

Resveratrol Regulating Nrf2 pathway; Ferroptosis Enhancing diabetic wound Xiao et al. (2024)
inhibiting ferroptosis; healing and angiogenesis
promoting angiogenesis
Crocetin Inhibiting AGEs-induced Mitochondrial oxidative stress, Preventing vascular Xiang et al. (2006)

calcium homeostasis

complications and protecting
vascular endothelial cells
during diabetes

Platelet-rich plasma Inhibiting ferroptosis;
promoting vascular
regeneration; reducing
oxidative stress and

inflammation

Mitochondrial oxidative stress,
ferroptosis

Promoting healing of type 2 Chen et al. (2022)
diabetic ulcers and restoring
vascular endothelial cell

function

and autophagy. It is characterized by excessive lipid peroxidation.
Mitochondria, enriched in Fe*, serves as the primary site of
ROS production, which enhances cellular sensitivity to ferroptosis
through a variety of mechanisms.

In diabetic conditions, chronic hyperglycemia induces persistent
oxidative stress, leading to excessive ROS production and Fe**
accumulation (Wei et al., 2020; Feng et al., 2021). This activates lipid
peroxidation, impairs cellular functions, and triggers ferroptosis,
ultimately delaying wound healing (Feng et al., 2022) (Figure 4).
However, the mechanisms linking mitochondrial dysfunction to
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ferroptosis in diabetic wounds remains incompletely understood,
warranting further studies.

The critical ferroptosis inhibitors are glutathione peroxidase 4
(GPX4) and glutathione (GSH) (Xi et al., 2025). Their depletion
enhances lipid peroxide accumulation, exacerbating ferroptosis,
leading to cellular damage and delayed tissue repair (Li et al., 2021).

Hyperglycemia-induced mitochondrial ~dysfunction and
endoplasmic reticulum stress can result in Fe** accumulation and
excessive ROS production, further driving ferroptosis (Ma et al.,

2020). Cui et al. found that elevated Fe?" levels and ROS production
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damage mitochondria, impairing the proliferation and migration
of critical skin repair cells such as human dermal fibroblasts
(HDFs) and endothelial cells (Cui et al, 2023), significantly
hindering diabetic wound healing. Studies have shown that
administration of the Deferoxamine (DFO) improves ferroptosis
in human umbilical vein endothelial cells (HUVECs) induced by
high glucose (Chen et al., 2023a).

XKiong et al. (2024) developed a novel therapeutic approach
using a PF-PEG@ASIV-EXO hydrogel, which inhibited ferroptosis
pathways to promote wound healing. The hydrogel improved
mitochondrial function, inhibited ferroptosis, and promoted
angiogenesis by increasing the expression of SLC7A11, GPX4,
mitochondrial GSH and superoxide dismutase (SOD), while
decreasing the expression of the Acyl-CoA synthetase long
chain family member 4 (ACSL4) - accelerating wound healing.
This finding underscores the therapeutic potential of ferroptosis
inhibitors in diabetic wound therapy.

Thus,  hyperglycemia-induced  ferroptosis
significantly to diabetic ulcer pathology by altering mitochondrial

contributes

function, increasing oxidative stress and promoting lipid
peroxidation (Meng X. et al., 2025). While the interplay between
mitochondrial dysfunction and ferroptosis in diabetic ulcers is still
unclear, targeting ferroptosis-related pathways holds significant
therapeutic promise. Ferroptosis inhibitors, along with strategies to
enhance mitochondrial health and regulate oxidative stress, could
accelerate the healing of diabetic ulcers.

Thus, the modulation of ferroptosis pathways not only provides
insights into pathological mechanism of diabetic ulcers but also
offers a foundation for developing novel therapeutic strategy for

future clinical interventions (Han et al., 2025).

2 Conclusion

Sustained hyperglycemia-induced mitochondrial
dysfunction—characterized by disrupted calcium homeostasis,
excessive ROS production, impaired mitophagy, increased
apoptosis and ferroptosis, and altered mitochondrial dynamics-is
diabetic

wound healing (Figure 5). These dysfunctions impair cellular energy

a central pathological ~mechanism hindering
metabolism and compromise the activity of critical repair cells,
leading to delayed tissue regeneration. Consequently, therapeutic
strategies aimed at restoring mitochondrial function—particularly by
modulating calcium signaling, mitochondrial dynamics, mitophagy,
and ferroptosis-hold significant promise.

Many drugs have shown to have better therapeutic effects
on diabetes (Lin Y. et al., 2023; Oladoja et al, 2023). Notably,
mitochondrial modulators such as metformin have demonstrated
beneficial effects in diabetic wound models. Metformin inhibits
excessive mitochondrial fission, reduces oxidative stress, and
enhances mitophagy, collectively promoting wound repair. Table 1
summarizes pharmacological agents that target mitochondrial
pathways for diabetic wound treatment.

Future research should focus on developing integrated therapeutic
approaches that comprehensively regulate mitochondrial biological
functions. Such strategies offer a targeted and effective path toward
improved clinical outcomes in diabetic wound healing.
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