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Background: Early diagnosis and intervention for chronic kidney disease (CKD)
can significantly improve patient’s quality of life and prognosis. Besides routine
laboratory indicators and medical history, risk prediction models can predict
CKD outcome. However, there is currently a lack of CKD prognostic prediction
models based on transcriptomics and machine learning.

Methods:Utilizing weighted correlation network analysis (WGCNA) and random
forest algorithms in GSE137570, three core gene sets of different sizes were
constructed, which were externally validated in GSE66494 and GSE180394, and
evaluated for their predictive performance in GSE45980 by receiver operating
characteristic (ROC) curves. Predictive models were built using Cox regression,
LASSO regression, and logistic regression in GSE60861. And the reliability of
human CKD transcriptomic analysis and the feasibility of functional studies were
validated in a mouse UUO model.

Results: Combining WGCNA and differential gene analysis, 9 genes positively
associated with CKD occurrence and development and 20 genes negatively
associated with that were identified. By random forest algorithm, three gene sets
were constructed: minimal gene set (CCL2, SUCLG1, ACADM), medium gene
set (CCL2, GGT6, PCK2, SFXN2, SLC34A3, ALPL, GLTPD2, ACADM, SUCLG1),
and maximal gene set (CCL2, MMP7, GGT6, PCK2, SFXN2, SLC34A3, ALPL,
GLTPD2, ACADM, SUCLG1). In external validation, the maximal plage score
had best classification performance for CKD (AUC:0.767) in GSE66494 and
in GSE180394 (AUC:0.760), the medium plage score achieved a predictive
performance for CKD progression (AUC = 0.758) in GSE45980. In the
multivariate model, Cox regression analysis constructed a risk model with
only minimal z-score, further LASSO regression analysis included gender and
minimal z-score, but logistic regression multivariate analysis failed to be
constructed with any score. A high degree of similarity between mouse CKD
and human CKD in KEGG enrichment was observed in the mouse unilateral
ureteral obstruction model, and the core genes related to the occurrence
and progression of human CKD remained diagnostically valuable in mice.
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Conclusion: This study provides a transcriptomics-based risk prediction model
for the occurrence and development of CKD based on machine learning,
offering potential target genes for the further experimental research of CKD.

KEYWORDS

chronic kidney disease, bioinformatics, transcriptomics, machine learning, predictive
model

Introduction

Chronic kidney disease (CKD) represents a significant
global public health challenge, with an estimated prevalence of
14.3% (Ene-Iordache et al., 2016), affecting approximately 697.5
million individuals worldwide in 2017 (Bikbov et al., 2020).
Progression to end-stage renal disease (ESRD), also known as
uremia, necessitates renal replacement therapies such as dialysis
or kidney transplantation. Early diagnosis and intervention are
crucial for effective CKD management; however, for diagnosed
patients, accurately predicting disease progression is paramount
for personalized medical care and efficient allocation of healthcare
resources.

Current progression risk prediction models, such as the Z6
model (Zacharias et al., 2022) based on serum markers and the
PROGRESS-CKD system (Bellocchio et al., 2021) integrating renal
function indicators andmedical history, lack critical molecular-level
information. This limitation hinders the models’ ability to identify
potential biomarkers. Yuan et al. built a five-gene nomogrammodel
for diagnosing kidney fibrosis with anAUCarea of 0.923 (Yuan et al.,
2025). And Lai et al. only screened out three risk hub genes
associated with CKD progression including CCR7, CCL21 and
CCL19 without further construction of predictive models (Lai et al.,
2024).Multi-omics studies based on genomics (Galuska et al., 2024),
proteomics (Schanstra et al., 2015), transcriptomics (Zheng et al.,
2025), and metabolomics (Rhee et al., 2013) can significantly
contribute to elucidating disease mechanisms, identifying new
biomarkers and facilitating the development of more effective
diagnostic and prognostic tools for CKD.

The application of machine learning algorithms to analyze
multi-omics data for constructing diagnostic and prognosticmodels
represents a burgeoning research area (Dashtban et al., 2023),
given its capacity to handle high-dimensional datasets. Despite the
advantages of machine learning, existing research has not fully
explored the potential of integrating CKD transcriptomics data with
machine learning techniques for prognostic prediction. This study
aims to construct diagnostic and prognostic models for CKD using
machine learning algorithms. Furthermore, we seek to explore the
feasibility of functional research focusing on key risk molecules
in experimental mouse models. Investigating the feasibility of
functional research is essential for translating our findings into
clinically relevant applications and improved patient outcomes.

Abbreviations: CKD, Chronic kidney disease; DEGs, Differentially expressed
genes; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; WGCNA, Weighted correlation network analysis; C1, cohort 1; C2,
cohort 2; TCGA, The Cancer Genome Atlas.

Materials and methods

Data source

In GEO datasets, the main parameters were CKD, series, Homo
sapiens, and tissue. From these, three datasets with larger sample
sizes were selected: GSE137570 (n = 41), GSE66494 (n = 61), and
GSE180394 (n = 59). Additionally, using DKD as the keyword, the
dataset GSE60861 (n = 72) was chosen, which includes prognostic
information. GSE60861 was reported to be divided into two cohorts
with different size of microarray data including GSE45980 (n =
43) and GSE60860 (n = 29) (Rudnicki et al., 2016). All microarray
datasets were normalized before further analysis.

Differentially expressed genes and
enrichment analyses

Differential analysis of the raw counts matrix was performed
using the “DESeq2” package, following the standard workflow.
The raw counts matrix was normalized using the VST (Variance
Stabilizing Transformations) method. The differential analysis
resultswere visualized using theRpackage “ggplot2”,with a log (Fold
change) threshold of 1 and a P value threshold of 0.05. Specially,
enrichment analysis for GSE60861 was conducted using DAVID
(Sherman et al., 2022) and KOBAS (Bu et al., 2021).

Weighted correlation network analysis

WGCNA analysis was conducted online using BIC (Chen et al.,
2024). The soft threshold was β = 0.85, and the input data consisted
of standardized whole-genome transcriptomes or differential gene
transcriptomes. For cohort 1 of GSE137570, the selected clinical
traits were Gender, GFP, TIF (degree of renal tubulointerstitial
fibrosis, %), and CKD staging. For cohort 2, the input trait
was CKD progression (0 = stable, 1 = progressive). The main
outcomes included sample cluster, module dendrogram, module-
traits correlation, and module gene-trait correlation.

Random forest

Using the R package randomForest to perform a Random Forest
analysis on the uploaded data, and visualize them using ggplot2.The
importance of each variable in the classification tree is evaluated
based on theMeanDecreaseGini criterion. Generally, a higher value
indicates greater importance of the variable.
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Gene set scoring

The scoring methods for customized gene sets primarily include
GSVA, ssGSEA, z-score, and plage. These scores are mainly
generated by the “Gene Set Analysis” component of the Lianchuan
Bio Cloud Platform (Lyu et al., 2023).

Cox proportional hazard model

The analysis of prognostic data is performed using the R
package “survival” (version 3.3.1) for testing the proportional
hazards assumption and conducting Cox regression analysis. A
prerequisite for applying Cox regression is that the covariates must
satisfy the proportional hazards assumption (P > 0.05).TheVariance
Inflation Factor (VIF) can be used to assess multicollinearity among
variables in the model; generally, a VIF value between 0 and 10
indicates no significant multicollinearity. Variables are included in
the multivariate Cox regression analysis if their P-values meet the
threshold (P = 0.1).

Least absolute shrinkage and selection
operator (LASSO) regression model

The cleaned data were analyzed using the R package “glmnet”
(version 4.1.7) to obtain the lambda value, maximum likelihood
number, or C-index, and to visualize the data. Ten-fold cross-
validation was employed to screen the LASSO prognostic risk
coefficients. The optimal lambda (penalty value) is referred to as
lambda. min, and the lambda value within one standard error of
the optimal value is referred to as lambda.1se. Additionally, the
LASSO variable trajectories were observed to track the changes
in the coefficients of variables entering the model. Combining
non-zero parameters and variable trajectories, appropriate variables
are selected.

Logistic regression model

The glm function is used for logistic regression analysis. When
the P value from univariate analysis meets the threshold (P < 0.1),
the variable is included in the multivariate logistic analysis.

Unilateral ureteral obstruction (UUO)

Male 6–8 weeks C57BL6/J mice were used to establish the UUO
model. After intraperitoneal anesthesia, the mice were fixed and
a laparotomy was performed to expose the surgical field using a
retractor. The left ureter of the mice was ligated at both the renal
and bladder ends and then transected in between. The mice were
divided into the UUO group (n = 6) and the Sham group (n = 6).
On postoperative day 7, tissues and organs were harvested from the
mice for further study.

Quantitative PCR

The mouse kidneys were homogenized in Trizol, and the target
gene transcription levels were quantitatively analyzed through two
steps: reverse transcription and real-time quantitative PCR.

The relative expression values of the target genes in the samples
were calculated using the 2−ΔΔCT method, and the fold change was
normalized to the average expression level of the Sham group. The
primers used in this study are as follows: mouse Gapdh forward:
5′-AGTGTTTCCTCGTCCCGTAG-3′, mouse Gapdh reverse:
5′-GCCGTGAGTGGAGTCATACT-3′, mouse Fn1 forward: 5′-
CCCTATCTCTGATACCGTTGTCC-3′, mouse Fn1 reverse: 5′-
TGCCGCAACTACTGTGATTCGG-3′, mouse Col1a1 forward:
5′-CCTCAGGGTATTGCTGGACAAC-3′, mouse Col1a1 reverse:
5′-CAGAAGGACCTTGTTTGCCAGG-3′, mouse Ccl2 forward:
5′-GCTACAAGAGGATCACCAGCAG-3′, mouse Ccl2 reverse:
5′-GTCTGGACCCATTCCTTCTTGG-3’.

RNA sequencing

On postoperative day 7, total RNA was extracted from the
entire kidney tissue and sent to Shenzhen Huaplo Biotechnology
Co., Ltd. for sequencing analysis. After standard procedures, a
transcriptome profile was generated, and subsequent analyses were
performed using R.

Statistical analysis

Bioinformatics analysis was primarily conducted using R
(version 4.2.1), with statistical analyses performed using GraphPad
Prism (version 8.0.2). For comparisons of means between two
groups, Student’s t-test was used for statistical testing. Spearman’s
correlation was employed to analyze the correlations between
variables. Kaplan-Meier survival curves were constructed and
compared using the log-rank test. Graphs were created using Origin
2024. A p-value <0.05 was considered statistically significant.

Results

Differentially expressed genes and
enrichment analyses

We initially employed the chronic kidney disease (CKD)
dataset GSE137570 to perform differential gene screening and
enrichment analysis on large-scale human kidney RNA sequencing
or microarray datasets. This dataset comprises two subsets
characterized by distinct attributes: one encompassing relevant
clinical and pathological information (e.g., tubulointerstitial fibrosis,
TIF and glomerular filtration rate, GFR) and the other reflecting
CKD progression. Given the challenges in obtaining normal kidney
specimens, as acknowledged in the original dataset description,
the healthy control group (G1) consisted of only three individuals,
while the CKD groups (G2-G5) included 21 patients. Comparative
analyses between CKD cases (G2-G5, n = 21) and healthy controls
(G1, n = 3) using |logFC| > 1 and P < 0.05 thresholds identified
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1,878 upregulated and 410 downregulated genes (Figure 1A). The
transcriptional profile revealed that in progressive cases (n = 8)
compared to non-progressive cases (n = 9), 2,275 upregulated
and 1,110 downregulated transcripts were identified (Figure 1B).
Subsequently, functional enrichment analysis using Gene Ontology
(GO)was performed on the differentially expressed genes. Figure 1C
demonstrates that fibrosis-related functions, such as regulation
of cell-cell adhesion and positive regulation of cell-cell adhesion,
alongside multiple immune-related functions, including regulation
of T cell activation and positive regulation of cytokine production,
were enriched in CKD cases. These processes are known hallmarks
of renal fibrogenesis. A similar enrichment pattern was observed
in progressive CKD cases (Figure 1D). Notably, pathway analysis
identified significant enrichment of immune-related pathways,
such as cytokine-cytokine receptor interaction and the chemokine
signaling pathway, as well as inflammatory disease pathways like
graft-versus-host disease and asthma (Figure 1E,F). These pathway
enrichment patterns suggest that sustained immune activation may
drive both initial pathogenesis and subsequent deterioration in
CKD. Collectively, the enrichment of differentially expressed genes
indicates that renal immune responses are closely associated with
the onset and progression of CKD.

Identification of CKD traits-related
modules by WGCNA

We analyzed the whole genome using WGCNA to preserve
transcriptional integrity and construct gene modules closely related
to gender, glomerular filtration rate (GFP), tubulointerstitial fibrosis
(TIF), and CKD staging. As shown in Figure 2A, genes in cohort
1 were primarily divided into 10 modules. Among these, module
brown was positively correlated with GFP and negatively correlated
with TIF ratio and CKD staging; conversely, module blue and
module turquoise were positively correlated with TIF ratio and
CKD staging and negatively correlated with GFP. However, no
modules were notably associated with gender. In conjunction with
Figure 2B, module brown exhibited the most notable negative
correlation with CKD (r = −0.507, P = 0.014), while module
blue showed the most notable positive correlation with CKD
(TIF: r = 0.57, P = 0.0045; CKD staging: r = 0.653, P =
0.0068). Supplementary Figure 2A shows the correlations between
genes in module blue and module brown and the traits. During
sample clustering of cohort 1 (Supplementary Figure 1A), one
sample, S5, was initially identified as a potential outlier. However,
considering the authenticity and scarcity of this sample, and given
the acceptable data quality indicated by the sample abundance
distribution (Supplementary Figure 1C) and soft threshold selection
curves (soft power = 16) (Supplementary Figure 1D), we included it
in the analysis.

In contrast to cohort 1, WGCNA divided the entire genome
spectrum of cohort 2 into 5 modules. As shown in Figures 2C,D,
module turquoise had the most notable positive correlation with
CKD progression (r = 0.701, P = 0.0017), while module blue
had the most notable negative correlation (r = −0.532, P =
0.028). Supplementary Figure 2B shows the correlations between
genes in module turquoise and the traits. Similar to cohort 1, no
modules were found to be notably associated with gender, and

no outliers were detected in the sample clustering of cohort 2
(Supplementary Figure 1B). Given that module blue in cohort 1
and module turquoise in cohort 2 both demonstrated a positive
correlation with CKD and CKD progression, respectively, we sought
to identify commonly dysregulated genes. As shown in Figures 2E,F,
we intersected the differentially expressed genes from these two
modules. In dataset GSE137570, we identified 9 genes that were
notably positively correlated with CKD development, defining them
as the positive gene set; similarly, a negative gene set consisting of
20 genes was notably negatively correlated with CKD development.
ThroughWGCNA, we initially screened out a risk gene set for CKD
and a protective gene set for CKD.

Identification of CKD-related core genes
and core gene sets

To further identify core genes related to CKD, the random
forest algorithm was employed to rank the DEGs in Cohort 1 by
importance. Displayed in Figure 3A are the top 10 genes most
strongly associatedwithCKDonset based on this ranking. Presented
in Figure 3B are the top 10 genes most strongly associated with
CKD progression in Cohort 2. Subsequently, as shown in Figure 3C,
intersecting the positive gene set with the top 10 genes from the
random forest analysis of Cohort 1 identified CCL2 as a core
positively correlated gene. Following this, as displayed in Figure 3D,
two core negatively correlated genes, SUCLG1 and ACADM, were
identified. A Minimal gene set (CCL2, SUCLG1, ACADM) was then
constructed.

Drawing upon previous literature that utilized DEGs to divide
genes intomodules (39402203), an attempt was made to reconstruct
WGCNA analysis based on DEGs in both Cohort 1 and Cohort 2 of
GSE137570. As presented in Supplementary Figure 3A,B, the DEGs
in Cohort 1 were divided into 4 gene modules, with the blue module
(r = 0.759, P < 0.0001) demonstrating the most significant positive
correlation with CKD onset, and the brownmodule (r = −0.815, P <
0.0001) demonstrating the most significant negative correlation. In
Cohort 2, the turquoise module (r = 0.75, P = 0.00053) exhibited
the most significant positive correlation with CKD progression,
while the grey module (r = −0.869, P < 0.0001) exhibited the most
significant negative correlation. Compared to Figures 2B,D, the gene
modules constructed byDEGs inWGCNA analysis exhibited higher
correlations with fewer modules.

Next, as shown in Supplementary Figure 3C,D, the most
significant module genes were intersected with the top 10 important
genes screened by random forest. It was observed that the core
genes most significantly positively correlated with CKD onset were
CCL2 andMMP7, while the core genes most significantly negatively
correlated were GGT6, PCK2, SFXN2, SLC34A3, ALPL, GLTPD2,
ACADM, and SUCLG1. The core genes most significantly positively
correlated with CKD progression were CCL2, CLDN1, SLC34A2,
OSMR, and C1RL; however, no core genes were identified as
most significantly negatively correlated with CKD development.
Considering that a gene set composed of approximately 10 core
genes offers improved clinical translational feasibility, a maximal
gene set (CCL2, MMP7, GGT6, PCK2, SFXN2, SLC34A3, ALPL,
GLTPD2, ACADM, SUCLG1) and a medium gene set (CCL2,GGT6,
PCK2, SFXN2, SLC34A3, ALPL, GLTPD2, ACADM, SUCLG1) were
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FIGURE 1
Differentially expressed genes screening and enrichment analyses of GSE137570 (A) Volcano plots of the differentially expressed genes (DEGs) in
cohorts 1 and 2 (B), the 29 most significant genes about CKD occurrence and progression are labeled; (C) Gene ontology (GO) enrichment analysis of
cohort 1 and 2 DEGs (D), along with the top 20 most significant terms, are presented; (E) KEGG pathway enrichment analysis of cohort 1 and 2 DEGs (F)
and the top 20 most significant KEGG pathways are shown.
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FIGURE 2
Weighted correlation network analysis of GSE137570 (A) Cluster dendrogram of WGCNA module plot with traits in Cohort 1 (C1); (B) Module-trait
association heatmap with statistical significance (P values) in C1; (C) Cluster dendrogram of WGCNA module plot with traits in Cohort 2 (C2); (D)
Module-trait association heatmap with statistical significance (P values) in C2; (E) Venn diagram of blue module in C1, differentially expressed genes
(DEGs) in C1, turquoise module in C2, and DEGs in C2; (F) Venn diagram of brown module in C1, DEGs in C1, blue module in C2, and DEGs in C2.
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FIGURE 3
Screening and diagnostic capacity of core genes. Random forest screening based on the Gini index was performed on the GSE137570 dataset, cohort 1
(A) and cohort 2 (B), and the top 10 genes with the highest mean decrease in Gini index are listed. (C) A Venn diagram showing the overlap between
positive and negative gene sets (D), classified in Figures 2E,F, and the top 10 genes identified in (A,B). The diagnostic performance of three predefined
gene sets evaluated by four scoring algorithms in the discovery dataset (GSE137570 cohort 1, cohort 2) (E,F) was assessed and then in validation
datasets included GSE66494 (controls n = 8 vs. CKD n = 53) (G) and GSE180394, a validation dataset containing healthy (n = 9) and etiologically
diverse CKD samples (n = 50) (H).
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constructed for subsequent analyses. By integrating WGCNA and
random forest analyses of two gene expression profiles (whole-
genome and DEGs), three gene sets of varying sizes related to CKD
onset and progression were screened.

The aforementioned three gene sets were scored using different
gene set enrichment algorithms, including GSVA, ssGSEA, z-
score, and PLAGE, and the classification accuracy of these
scores was further evaluated using ROC curves for binary
diagnosis. For internal validation in Cohort 1 of GSE137570, as
presented in Figure 3E, all scoring methods, with the exception
of minimal GSVA (AUC: 0.778) and maximal ssGSEA (AUC:
0.794), which demonstrated moderate diagnostic performance with
AUC <0.8, exhibited excellent diagnostic performance (AUC >0.8).
Displayed in Figure 3F, internal validation inCohort 2 indicated that
all scoringmethods except medium ssGSEA (AUC: 0.764), maximal
ssGSEA (AUC: 0.764), minimal z-score (AUC: 0.708), medium z-
score (AUC: 0.792), and maximal z-score (AUC: 0.792), which
demonstrated moderate performance, had excellent diagnostic
performance.

Subsequently, GSE66494 (n = 61, whole-kidney array profiling)
and GSE180394 (n = 59, renal tubule array profiling) were used as
external validation datasets to assess the diagnostic performance of
different scoringmethods and gene set combinations.These datasets
were selected to represent different aspects of CKD pathology,
with GSE66494 providing a broad assessment of the whole kidney
and GSE180394 focusing specifically on the renal tubules. As
displayed in Figure 3G, in the diagnostic validation of GSE66494,
only minimal GSVA (AUC: 0.776), medium GSVA (AUC: 0.734),
medium PLAGE (AUC: 0.703), and maximal PLAGE (AUC:
0.767) demonstrated moderate diagnostic performance. Validation
using GSE180394, as shown in Figure 3H, indicated that minimal
ssGSEA (AUC: 0.718), medium PLAGE (AUC: 0.716), andmaximal
PLAGE (AUC: 0.760) exhibited moderate diagnostic performance
for CKD, while minimal PLAGE (AUC: 0.884) exhibited excellent
diagnostic performance. In summary, based on the evaluation of the
diagnostic performance of different gene sets and scoring methods,
standardization of a single gene set and a single scoring method
in this study remains challenging, and further integration with
prognostic diagnostic models.

Construction of prognostic prediction
model

GSE60861 is a CKD dataset encompassing comprehensive
clinical test data and prognostic information, with the observation
endpoint defined as progression to end-stage renal disease or a
doubling of serum creatinine (Cr) (Rudnicki et al., 2016).

Diagnostic receiver operating characteristic (ROC) assessments
were conducted on the GSE60861 dataset including GSE45980
and GSE60860 cohorts. As illustrated in Figures 4A,A few scoring
methods achieved a moderate but not excellent level of accuracy
in predicting CKD progression within the GSE45980 dataset,
with the medium plage score demonstrating the best performance
(AUC: 0.758). Calibration of the prediction based on the medium
plage score (Figure 4B) indicated acceptable accuracy for predicting
CKD progression within one or 3 years.

Univariate and multivariate Cox regression analyses were
performed to identify risk factors associated with CKD
progression. Table 1 summarizes the results of univariate Cox
regression analysis. Females exhibited a lower riskofCKDprogression
compared to males (HR: 0.159, P = 0.004), while age (HR: 1.031, P
= 0.047) and serum creatinine-BX (time of biopsy) (HR: 1.817, P
< 0.001) were identified as risk factors. Among the four candidate
scoring algorithms, only minimal z-score (HR: 0.494, P = 0.005) was
significantly associated with lower risk of CKD progression. Using P
< 0.1 as the significance threshold for inclusion in the multivariate
Cox regression analysis, the table indicated that minimal z-score
(HR: 0.226, P = 0.018) was independent low-risk factor for CKD
progression, while gender, age and creatinine-BX were not included.
These findings suggest the potential of gender, age, creatinine-BX, and
minimal z-score to form amultivariate prognostic prediction model.

Furthermore, LASSO regression analysis was employed to screen
the aforementioned potential predictors, including gender, age,
creatinine-BX, UPCR-BX and four scores with best performance in
Figure 4A (minimal GSVA, minimal ssGSEA, minimal z-score, and
medium plage). As shown in Figure 4C, after selecting the optimal
lambda.1se (Log(λ) = -2), four non-zero parameters were selected:
gender (coefficient: 0.436) and minimal z-score (coefficient: 0.111).
Integrating this with Figure 4D revealed that gender and minimal
z-score contributed substantially to the prediction model, while the
contribution of age and UPCR-BX was comparatively stable.

In internal validation, to evaluate the predictive performance
of the Cox regression and LASSO regression models for CKD
progression, Cox risk scores were stratified into groups based on the
median. Supplementary Figure 4A demonstrates that the High Cox
risk score group exhibited a shorter progression-free survival period
(P = 0.0012). Meanwhile, Supplementary Figure 4B shows that the
high LASSO risk score group showed a shorter free-progression
survival (P = 0.003).

Univariate and multivariate logistic regression models were
also used to assess the predictive performance of the factors.
As shown in Table 2, none factor was identified as an independent
risk factor for CKD progression. Only in the univariate logistic
regression analysis were gender (univariate OR: 0.176, P = 0.011;
multivariate OR: 0.270, P = 0.074), creatinine-BX (univariate OR:
1.721, P = 0.020; multivariate OR: 1.395, P = 0.182) and minimal z-
score (univariate OR: 0.555, P = 0.022; multivariate OR: 0.195, P =
0.079) predictive of CKD progression risk.

The relationship between the minimal z-score or medium plage
scoring methods and CKD progression was further investigated
through survival analysis. Figure 4E indicates that the high minimal
z-score group had a longer progression-free survival time (P =
0.0041). But, Figure 4F demonstrates that there was no significance
between two medium plage group (P = 0.9352). In summary, we
developed a Cox risk prediction model for CKD using the minimal
z-score and established a LASSO regression prediction model for
CKD incorporating both gender and minimal z-score.

Validation of bioinformatics results

To validate the stability of the aforementioned bioinformatics
screening and model construction, we established a unilateral
ureteral obstruction (UUO) model in mice, one of commonmodels
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FIGURE 4
Predictive and diagnostic value of minimal z-score in GSE60861 (A) Total twelve predictive values of different scoring in GSE45890, (B) Validation of
medium plage score calibration curve in GSE60861 during one or 3 years observation window, (C) LASSO coefficient paths of GSE60861, (D) LASSO
variable trajectory diagram, (E) Kaplan-Meier curve of progression-free survival based on minimal z-score in GSE60861, with the cutoff at the first
quartile, (F) Kaplan-Meier curve of progression-free survival based on the medium plage score in GSE60861, with the cutoff at the first quartile.
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TABLE 1 Univariate and multivariate Cox regression analysis of GSE60861.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Sex 72

Male 43 Reference Reference

Female 29 0.159 (0.046–0.554) 0.004 0.282 (0.077–1.037) 0.057

Age
(years)

72 1.031 (1.000–1.062) 0.047 1.017 (0.982–1.053) 0.346

Creatinine-BX
(mg/dl)

72 1.817 (1.310–2.521) <0.001 1.338 (0.874–2.048) 0.181

UPCR-BX
(g/g)

70 1.027 (0.894–1.180) 0.704

Minimal GSVA 72 0.362 (0.130–1.010) 0.052 7.049 (0.510–97.518) 0.145

Minimal ssGSEA 72 0.280 (0.056–1.407) 0.122

Medium Plage 72 6.298 (0.384–103.265) 0.197

Minimal z-score 72 0.494 (0.303–0.807) 0.005 0.226 (0.066–0.772) 0.018

Bold values in the table represent statistically significant values.

TABLE 2 Univariate and multivariate Logistic regression analysis of GSE60861.

Characteristics Total(N) Univariate analysis Multivariate analysis

Odds Ratio (95% CI) P value Odds Ratio (95% CI) P value

Gender 72

Male 43 Reference Reference

Female 29 0.176 (0.046–0.676) 0.011 0.270 (0.064–1.134) 0.074

Age
(years)

72 1.024 (0.993–1.056) 0.131

Creatinine-BX
(mg/dl)

72 1.721 (1.091–2.715) 0.020 1.395 (0.855–2.274) 0.182

UPCR-BX
(g/g)

70 1.041 (0.892–1.216) 0.609

Minimal GSVA 72 0.390 (0.134–1.136) 0.084 12.726 (0.311–520.136) 0.179

Minimal ssGSEA 72 0.281 (0.045–1.750) 0.174

Medium Plage 72 5.401 (0.245–119.033) 0.285

Minimal z-score 72 0.555 (0.336–0.917) 0.022 0.195 (0.031–1.210) 0.079

Bold values in the table represent statistically significant values.

for CKD characterized by kidney fibrosis (Chen et al., 2023),
and obtained transcriptome sequencing data from the kidneys.
Figure 5A presents a real operation view illustrating the left ureter
ligation during UUO model induction. Seven days post-operation,

kidney tissues and serum were harvested. Figure 5B demonstrates
that blood creatinine (P = 0.0002) and urea nitrogen (P =
0.0002) showed significant elevation in UUO versus sham groups.
Following cross-species ortholog mapping, the 29 key human
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FIGURE 5
Validation of human CKD bioinformatics analyses (A) Representative surgical views of the unilateral ureteral obstruction (UUO) model are shown. The
red arrow indicates the left ureter proximal to the left kidney of the mouse, and the blue arrow indicates the distal ureter near the bladder. (B) Kidney
function evaluated by serum creatinine and urine nitrogen level shown for UUO and Sham mice (n = 6). (C) The volcano plot illustrates differentially
expressed genes (DEGs) identified via whole kidney RNA sequencing in the UUO group compared to the sham group (n = 4). (D) Validation of RNA
sequencing results by quantitative polymerase chain reaction (qPCR) is shown (n = 6). (E) CircFunMap analysis of enriched Kyoto Encyclopedia
of Genes and Genomes (KEGG) terms is presented, where each node represents an enriched term, node color represents different clusters, and node size

(Continued)
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FIGURE 5 (Continued)

represents the enriched P value. (F) The bubble plot displays enriched KEGG terms, with the top five terms with the highest enrichment ratio from
each cluster shown. (G) A Venn diagram depicts the overlap between a medium 9-gene set and DEGs in the UUO model. (H) Receiver operating
characteristic (ROC) curves for the four gene sets in diagnosing UUO are shown (H), gene set 1 (gs1) represented the overlapping genes in (G), gene
set 2 (gs2) contained the 29 risk genes screened from GSE137570. Scale bar: 1 cm. P values were calculated using two-tailed Student’s t-test
assuming equal variances following confirmation of normal distribution by Shapiro-Wilk test.).

CKD genes identified previously, including Col1a1 and Fn1, were
highlighted in the differential gene analysis (Figure 5C).Then, qPCR
validation in Figure 5D reveals significant upregulation of Col1a1
(37.32 ± 10.50 vs. 1.00 ± 0.12, P < 0.0001), Fn1 (50.62 ± 9.62 vs. 1.00
± 0.18, P < 0.0001), andCcl2 (20.18 ± 7.00 vs. 1.00 ± 0.42, P < 0.0001)
in the UUO group comparing to sham group.

Figures 5E,F present the KEGG pathway enrichment analysis
of differentially expressed genes (DEGs) between UUO and sham
groups, revealing significant alterations in seven major pathways
clusters following UUO induction, including immune-related
pathways such as cytokine-cytokine receptor interaction and TNF
signaling. Inflammation-related pathways such as inflammatory
bowel disease and asthma were also significantly enriched;
these pathways have been previously implicated in renal fibrosis
mechanisms. The transcriptional profile of the affected kidney
in the UUO model thus closely resembled the transcriptomic
changes observed in human CKD. We further identified five
significantly expressed core human CKD genes (Ccl2, Slc34a3,
Alpl, Acadm, and Suclg1) from the DEGs in the mouse model
(Figure 5E) and designated them as gene set 1 (gs1). The 29
initially screened genes were designated gene set 2 (gs2). Here,
gs2 represents initial screening candidates while gs1 contains
evolutionarily conserved core genes. Using the z-score integration
algorithm, the diagnostic performance for CKD in mice showed
strong diagnostic capability (AUC >0.9) regardless of the size of the
custom gene sets in Figure 5H.

Disscussion

The mechanisms underlying the development and progression
of chronic kidney disease (CKD) remain incompletely elucidated.
Accurate prognosis is crucial for improving patient outcomes.
The development of prognostic prediction models for CKD offers
a translational approach to assess patient prognosis and inform
clinical decision-making.

In this study, bioinformatics, Weighted Gene Co-expression
Network Analysis (WGCNA), and random forest algorithms were
employed to identify molecules associated with CKD onset and
progression at the transcriptional level using the human dataset
GSE137570. To evaluate the predictive performance of gene sets, a
three-stage filtering process was implemented: first, Cox regression
was applied to establish a baseline model; second, LASSO regression
was used for feature reduction; and finally, logistic regression
was performed to clarify the risk factors. The effectiveness of the
minimal z-score, which is associated with CKD progression, was
validated.The reliability of the bioinformatics analysis of the human
dataset was subsequently confirmed in a mouse unilateral ureteral
obstruction (UUO)model, demonstrating the feasibility of in-depth
mechanistic studies using this model.

This study identified a core gene set of nine genes and a minimal
functional gene set of three genes significantly associated with the
onset and progression of CKD based on transcriptomic analysis and
riskmodel construction.The feasibility of studying these biomarkers
in a mouse UUOmodel was also demonstrated.

Machine learning methods have become increasingly prevalent
in the prognosis of kidney diseases (Sanmarchi et al., 2023).
While this study successfully constructed CKD prediction models
using various regression techniques, the prognostic effectiveness
requires further improvement. Several limitations inherent to
transcriptomic risk models warrant consideration. Firstly, the
number ofCKDdatasets with prognostic information is limited, as is
the sample size of sequenced patients. Secondly, the high biological
heterogeneity among different CKD subtypes introduces complexity
in constructing highly effective molecular diagnostic model.

Addressing these limitations necessitates exploring several
strategies. One approach involves integrating multi-omics
data to develop comprehensive molecular prognostic tools
(Provenzano et al., 2022). Another strategy is combining diverse
machine learning algorithms to mitigate selection bias for core risk
genes. While some studies have constructed CKD progression-
related prognostic models using machine learning applied to
laboratory data (Ferguson et al., 2022), their evaluation metrics
remain limited. Furthermore, risk prediction models based solely
on traditional laboratory data often fail to elucidate the underlying
molecular mechanisms driving CKD progression. A study using
patient kidney transcriptomics and urinary proteomics for risk
stratification (Reznichenko et al., 2024) suggests that individual
omics data possess significant value for precision treatment.
Therefore, future comprehensive risk models incorporating current
medical history, laboratory indicators, multi-omics datasets, and
machine learning algorithms hold promise for personalized
treatment decisions in CKD.

This study identified three core genes—CCL2, SUCLG1,
and ACADM—and validated similar transcriptomic changes
between human CKD and the mouse UUO model, suggesting
the UUO model as a platform for investigating the molecular
mechanisms and functional roles of CKD biomarkers. Experimental
evidence indicates that high CCL2 expression in infiltrating
macrophages and neutrophils is associated with renal fibrosis
in CKD (Puthumana et al., 2021). Clinical observation reveals
significantly increasedCCL2 concentrations in the plasma of human
CKD patients (Schettini et al., 2022). This finding, coupled with
clinical observations, suggests an important biological role forCCL2
in CKD onset and progression, although further investigations
using cell-specific knockout and other gene-editing strategies
in mice are needed to elucidate the specific mechanisms. Prior
research demonstrated that SUCLG1 promotes mitochondrial
biogenesis, leading to leukemia progression through POLRMT
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succinylation (Yan et al., 2024), indicating its role in post-
translational modification. However, its role in CKD remains largely
unexplored. Genome-wide association studies have identified a
correlation between ACADM and plasma metabolic markers in
CKD patients, yet the biological function of ACADM in CKD
requires further investigation.

In conclusion, this study offers a transcriptomics-based risk
prediction model for CKD onset and progression, providing
potential target genes for molecular mechanism research and
effective tools for exploring omics-based prognostic prediction in
CKD patients.

Conclusion

Using WGCNA and random forest algorithms, we constructed
core gene sets of varying sizes from CKD-related transcriptomic
datasets. The performance of different gene set scores showed
differential diagnostic accuracy across datasets. To clarify the
application value of these core gene sets, we developed CKD
progression prediction models. Specifically, we used the core gene
sets in three distinct ways: (1) a Cox proportional hazards model
for survival analysis, (2) LASSO regression for feature selection,
and (3) logistic regression for classification prediction, integrating
key clinical indicators such as eGFR and gender. We performed
cross-species validation through comparative analysis of the mouse
unilateral ureteral obstruction (UUO) model and human CKD
transcriptomics, demonstrating the reliability of our bioinformatics
analysis of human CKD datasets and the feasibility of the mouse
UUO model for functional studies of CKD-related risk genes.
This study provided effective classification and progression risk
prediction models for CKD diagnosis and prediction, laying a
foundation for further mechanistic research into the roles of specific
genes, such as CCL2, SUCLG1 and ACADM.
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