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Background:Oral squamous cell carcinoma (OSCC) is a challengingmalignancy
with poor prognosis despite therapeutic advancements. This study seeks to
derive a precise molecular subtyping and prognostic model for personalized
treatment strategies.

Methods: Multi-omics data from TCGA cohort was analyzed using
consensus clustering algorithms for subtype classification. Based on the
classification, a multi-omics cancer subtyping signature (MSCC) model
was constructed using machine learning methods. The model’s clinical
utility was assessed by evaluating immune features and immunotherapy
response. Potential therapeutic agents were identified through drug
sensitivity analysis.

Results: Three distinct OSCC subtypes with unique genetic and immunological
profiles were identified. The MSCC model, developed using the StepCox
[both]+plsRcox algorithm, demonstrated superior prognostic performance
compared to existing models. High MSCC scores correlated with poor
prognosis, reduced immune cell infiltration, and decreased likelihood of
benefiting from immune checkpoint inhibitor therapy. Docetaxel and paclitaxel
emerged as potential therapeutic candidates. In vitro experiments validated CA9
as a promising therapeutic target, with its knockdown significantly inhibiting
OSCC cell proliferation and migration.

Conclusion: This multi-omics analysis unveiled subtype-specific differences
in OSCC and established an MSCC model for predicting prognosis
and treatment response. These findings provide a foundation for
early diagnosis, molecular subtyping, and personalized treatment
strategies in OSCC.
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GRAPHICAL ABSTRACT

1 Introduction

Oral Cancer (OC), a frequent malignancy within the head
and neck region, typically affects sites including the inner lip,
dorsal tongue, gingiva, hard and soft palate, buccal mucosa, and
mouth floor (Sarode et al., 2020). It rank among the most widely
diagnosed cancer globally, with particularly high incidence rates in
Asian nations where cases are increasing rapidly (Karunakaran
and Muniyan, 2020; Nagao and Warnakulasuriya, 2020). The
vast majority, around 90%, of OC cases are classified as Oral
Squamous Cell Carcinomas (OSCC) (Tan et al., 2023). OSCC’s
etiology is complex, evolving from normal cellular states through
a sequence of pathological transitions to precancerous and
cancerous states (Khan M. A. et al., 2023). Studies indicate that
OSCC is subject to both genetic mutations and environmental

exposures, resulting in the altered expression of proto-oncogenes
and tumor suppressors (Irimie et al., 2018). Molecular mechanisms
driving OSCC include somatic mutations, regulatory disruptions,
epigenetic changes, and genomic variations (D'Souza and Saranath,
2017). DNA methylation is a key epigenetic process (Nasir et al.,
2020), with dysregulated patterns potentially silencing tumor
suppressor genes and accelerating tumorigenesis (Chamoli et al.,
2021). mRNA modification imbalances have also been linked
to the proliferation, migration, and invasiveness of OSCC cells
(Liu et al., 2023). Moreover, mutations in specific genomic
regions, such as the TERT promoter (Boscolo-Rizzo et al.,
2023), and the p53 gene (Singh et al., 2022) are associated
with increased OSCC aggressiveness. Comprehensive omics
analyses of these alterations offer valuable perspectives on the
molecular foundations of OSCC (Chai et al., 2020; Madhura et al.,
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2020), presenting novel avenues for its diagnosis and therapeutic
intervention.

Preventing and detecting OSCC at an early stage can markedly
enhance patient survival rates. Nonetheless, it is clear that the
majority of OSCC cases are identified at later stages, resulting
in a relatively poor 5-year survival rate (Abati et al., 2020).
The clinical presentation of OSCC significantly impairs patients’
quality of life, affecting oral functionality, physical appearance,
and mental health (Valdez and Brennan, 2018). Presently, the
primary therapeutic approaches for OSCC encompass surgical
excision, definitive radiotherapy, chemotherapy, or a combination
of these modalities, contingent upon disease severity and individual
patient conditions (Kim and Li, 2019; Pan and Rizvi, 2022).
Despite these treatments, recurrence occurs in over half of
OSCC patients, and among the diverse treatment strategies,
immunotherapy has shown distinct benefits (Shetty et al.,
2021). OSCC sidesteps immune surveillance by causing DNA
damage, leveraging immune checkpoint facilitators, and emitting
immunosuppressive cytokines (Tan et al., 2023). This presents
an opportunity for the application of immunotherapy. In 2016,
the FDA granted marketing approval for the inaugural class of
immune checkpoint inhibitors (ICIs) targeting PD-1, marking
a pivotal advancement in treating recurrent head and neck
squamous cell carcinoma (HNSCC) (Cohen et al., 2019). These
ICIs are an emerging principal therapeutic strategy in oncology,
targeting the interactions of CTLA-4 and PD-1 along with its
ligand 1 (PD-L1) to achieve checkpoint blockade (Naimi et al.,
2022). However, the heterogeneity of OSCC and variability in ICI
responsiveness among individuals continue to pose significant
challenges in targeted therapies for OSCC patients, underscoring
the pressing need to discover novel therapeutic targets. Precision
medicine, integrating OMICS data with machine learning (ML),
has revolutionized personalized treatment for OSCC, offering
sophisticated molecular classifications and predictive models
(Malcangi et al., 2023; Sultan et al., 2020). Our study integrated
multi-omics data from patients with OSCC, including expression
profiles of mRNA, lncRNA, miRNA, genomic mutations, and
epigenetic DNA methylation. We employed 10 multi-omics
integration strategies to establish a comprehensive consensus
molecular subtyping of OSCC. Based on the characteristic genes
identified among different subtypes, we constructed a classification
model named multi-omics cancer subtyping signature (MSCC)
using 10 ML algorithms. We evaluated the prognostic prediction
performance of the MSCC model in training and independent
validation datasets, and the results demonstrated that MSCC had
significant prognostic value. Furthermore, MSCC exhibited strong
performance in predicting responses to immunotherapy and drug
therapy. Collectively, the OSCC molecular subtypes and MSCC
classification model constructed in this study offer important novel
insights and references for precise stratification and personalized
treatment of this malignancy. We believe that these research
findings will contribute to the optimization and innovation of future
OSCC diagnosis and treatment strategies, ultimately benefiting
more patients.

2 Data and methodology

2.1 Data pre-processing

We initially downloaded an integrated multi-omics dataset of
OSCC from the TCGA-HNSC dataset, including transcriptome,
methylome, somatic mutation, and clinical profiles. 316 OSCC
clinical samples were included in the dataset. After excluding
samples with survival time ≤0 days and duplicate entries, 314 valid
clinical samples were retained. Among these, mRNA expression
data were available for 305 cases, DNA methylation data for 310
cases, and somatic mutation data for 299 cases. By calculating the
complete intersection of all four omics datasets (clinical, mRNA,
methylation, mutation), 294 samples were ultimately obtained.
The cohort included patients with a mean age of 61.2 years,
with 45% T1-T2/55% T3-T4 stages, 60% lymph node metastasis,
mostlymoderately/poorly differentiated squamous cell carcinoma, a
median follow-up of 626.5 days, and 46.3% mortality. Comparative
analysis of clinical characteristics between the 294 included samples
and 20 excluded samples demonstrated that the exclusion process
did not introduce significant selection bias (mean ages: 61.2 years vs
58.2 years; mortality rates: 46.3% vs. 45.0%; median survival times:
626.5 days vs. 644.0 days, with all differences being statistically
nonsignificant). We utilized the TCGABiolinks software package
to obtain the transcriptional profiles of mRNA and lncRNA, and
with miRNA annotations refined through the miRBaseVersions.db
package. Somatic mutations data were extracted via TCGABiolinks
and analyzed using the maftools package.

Additionally, we incorporated OSCC information from two
other sources: the GEO datasets GSE65858 and GSE41613. For the
GSE65858 cohort, we specifically selected patients with OSCC of
the head and neck, excluding cases involving non-oral sites such as
the hypopharynx, larynx, lips, tonsils, and oropharynx. Ultimately,
83 patients with pure oral squamous cell carcinoma were included,
ensuring the homogeneity of the cohort. The GSE41613 cohort
included 97 patients with oral squamous cell carcinoma. After
downloading the these datasets from the official website, the limma
package was used to process the data for background correction,
log2 transformation, and quantile normalization. In cases where
multiple probes mapped to a single gene symbol, the probe with the
highest expression level was retained for gene expression annotation.
And the GSE41613 and GSE65858 were merged into the META
cohort, and batch effects were removed using the sva package for
subsequent validation analysis.

2.2 Multiomics consensus ensemble
analysis

Data integration was effectively achieved by matching samples
ID (n = 294) from TGCA cohort including 5 dimensions.
Preprocessing included log2 transformation of TPM values and
CpG island probe selection for methylation data, and mutations
were defined by non-synonymous categories: frameshift, insertion
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or deletion, in-frame insertion or deletion, nonsense or missense or
nonstop mutation, or splice site or translation start site mutation.

Multi-Omics Integration and Visualisation for Cancer
Subtyping (MOVICS) integrates 10 advanced multi-omics
clustering algorithms (included SNF, CIMLR, PINSPlus, NEMO,
COCA, moCluster, LRAcluster, ConsensusClustering, IntNMF,
iClusterBayes), enabling the characterisation and comparison of
identified subtypes from multiple perspectives, such as somatic
mutations and genomic alterations, to achieve the most commonly
used downstream analyses in cancer subtyping (Lu et al., 2021).
Gene features selection was performed by the “getElites” function
of MOVICS. For mRNA, lncRNA, miRNA, and DNA methylation,
the “getElites” function with the “mad” parameter was used to select
the top 2,000 most variable genes. For mutation data, “oncoPrint”
in the maftools package prioritized top 1,000 mutated genes,
followed by the “getElites” function with the “freq” parameter
and an “elite.pct = 0.15” threshold to filter genes with mutation
frequencies in the 15th percentile. The selected genes were then
combined with clinical data for Cox proportional hazards regression
analysis (using a p < 0.01 threshold) to enable subsequent prognostic
stratification.

Further, the “getCluster2” function in MOVICS was used
to define the optimal clustering number for OSCC subtypes
classification by cluster prediction indices (CPI), gaps statistics,
and silhouette score, in conjunction with information from
previous studies on OC. Subsequently, the “getMOIC” function
was applied for cluster analysis, which includes 10 clustering
algorithms. Clustering results were merged using the consensus
clustering concept with the “getconsensus susMOIC” function
to enhance the robustness. Subsequent integration utilized
hierarchical clustering parameters (“distance” = “euclidean”,
and “linkage” = “average”) to produce definitive cluster
partitions.

2.3 Analysis of features and stability of
consensus subtypes

Gene set variation analysis (GSVA) was utilized to enrich
characteristics associated with subtype Hallmark, KEGG pathways,
and features related to immunotherapy and radiotherapy.These gene
characteristics are derived from Explore the Molecular Signatures
Database (MSigDB). Subgroup-specific immune checkpoints (ICs)
distribution was evaluated, with tumor immune and stromal score
of the tumor tissue calculated via ESTIMATE R package. The DNA
methylation score of tumor-infiltrating lymphocytes was calculated,
and immune microenvironment cell enrichments were profiled
using GSVA. The construction of regulons was accomplished
through the analysis of the Reconstruction of Transcriptional
regulatory Networks and analysis of regulons (RTN) R package,
which includes the collection of 23 inducible/repressible target-
associated transcription factors (TFs) and 71 candidate regulators
related to cancerous chromatin remodeling. Cluster robustness
was verified through TCGA validation cohort analysis using
subtype-specific molecular markers. A list of 150 genes consistently
upregulated across subtypes was selected as the feature gene list, and
the stability of each subtype was verified in the TCGA cohort using
the nearest template prediction (NTP) algorithm. Additionally, the

NTP algorithm and the partition around medoids (PAM) algorithm
were employed to classify cell lines corresponding to different
subtypes, and the kappa statistic was used to assess consistency.

2.4 Establishment of multiomics cancer
subtyping signature

To promote comparability across cohorts, all data were
preprocessed with Z-scoring. Subsequently, to evaluate the
relationship between MCSS, immunotherapy, and prognosis, the
TCGA cohort with comparably complete treatment information
was selected as the training set, while the GSE41613 and GSE65858
cohorts served as validation sets. In the TCGA cohort, univariate
Cox regression (uniCox) analysis was performed on differentially
expressed genes across different OSCC subtypes. Genes with P <
0.05 and consistent hazard ratios across all cohorts were identified
as candidate genes. Furthermore, an MCSS with high precision and
generalizability was constructed by integrated 10 ML algorithms:
StepCox, plsRcox, RSF, SuperPC, Ridge, Enet, CoxBoost, Lasso,
GBM, and survivalSVM. The TCGA cohort functioned as the
initial training set during the model construction phase. Initial
features were selected using the stepwise Cox, CoxBoost, Lasso,
and Enet algorithms, followed by the construction of an MCSS
model with the best concordance index (C-index) from the 101
models combined from the aforementioned 10 algorithms. For the
stepCox algorithm, all possible directional parameter combinations,
including “both, “backward,” and “forward,” were calculated. For
the Enet algorithm, alpha was varied from 0.1 to 0.9. The genes
identified after MCSS screening are considered as signature genes
for the model. If the number of selected genes is less than three,
the model is excluded. The MCSS model is further validated in the
validation cohort. The average C-index for each model is calculated,
and the model with the highest value is considered the optimal
model for constructing the MCSS model. Finally, multivariate Cox
regression analysis is performed to generateMCSS-associated scores
for each patient.

2.5 Prognostic value and clinical
application analysis of MCSS

The generated MCSS model underwent multivariate Cox
analysis on samples in theGSE41613, GSE65858, TCGA, andMETA
cohorts. The MCSS score threshold was defined using the “surv-
cutpoint” function, and samples were partitioned into high/low
MCSS groups. The value of MCSS in predicting prognosis was
estimated usingK-M survival curves. Additionally, 20OSCC-related
prognostic features from research were systematically collected
within the past 2 years and evaluated their risk scores against the
C-index of MCSS. Finally, MCSS, Stage, Tstage, Nstage, Mstage, and
Gender were assessed using multiple variables.

2.6 Correlation analysis of MCSS
immunomodulators in multi - Omics

From a selection of 78 immunomodulatory genes
(IMs), available genes were filtered based on criteria
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referenced from Thorsson et al. (2018), resulting in 67 genes
and 9,058 samples. The median expression level of IMs in
MCSS samples was calculated and normalized. The Bioconductor
package IlluminaHumanMethylation450kanno.ilmn12.hg19 and
IlluminaHumanMethylation27kanno.ilmn12.hg19 were used to
map DNA methylation probes to genes. Within each MCSS
group, Spearman correlation between gene expression and its
corresponding probes was determined, retaining probe sets with
consistent correlation signs for improved accuracy. Probe clusters
were filtered to ensure that probes were uniquely assigned to a single
cluster, were within a 10 kb size and had uniform correlation signs.
The final correlation value for each cluster was derived by averaging
individual probe correlations, and if multiple clusters linked to
the same gene were further averaged. Copy number alterations,
including amplifications and deletions, were analyzed across 8,461
tumors using PanCan GISTIC2.0 with ISAR-corrected Affymetrix
SNP6.0 array data. The proportions of each variation type were
compared across MCSS groups, and then the difference between the
frequency of amplifications/deletions and expected frequency (total
frequency of amplifications/deletions in all tumour samples) were
calculated in each IMs.

2.7 MCSS immune infiltration analysis

Seven immune infiltration methods including CIBERSORT,
MCPcounter, xCell, EPIC, estimate, TIMER, and quanTIseq were
employed to evaluate the differences in immune cell types, and
relative abundance.

2.8 Analysis of the prognostic value of
MCSS for anti-PD-L1 therapy

We further utilized two cohorts receiving PD-L1 therapy
(IMvigor210 and GSE78220) to explore the prognostic and
predictive value of MCSS for PD-L1 treatment. The performance
of MCSS in forecasting the prognosis of PD-L1 treatment was
assayed by the time-dependent receiver operating characteristic
(ROC) curve. The patients demonstrating complete/partial
response (CR/PR) were classified as responders, while those with
stable/progressive disease (SD/PD) were non-responders.

2.9 Screening and analysis of potential
therapeutic drugs

The GSEA algorithm was implemented to profile the
upregulated pathways in patients with high MCSS. Expression data
for Human Cancer Cell Lines (CCL) were obtained from the Broad
Institute’s CCL Encyclopedia (CCLE). Drug sensitivity data for CCL
were acquired through CTRP v.2.0 and the PRISM repurposing
dataset from the DepMap portal. Drug sensitivity was derived from
predicted area under the ROC curve (AUC) value, which calculating
by the calcPhenotype function from the R package “pRRophetic”.
The Wilcoxon rank-sum test and Spearman correlation analysis
were employed to determine the significant differences in sensitivity

to six commonly used chemotherapeutic drugs for OSCC. A lower
AUC value indicates greater sensitivity to drug therapy.

Expression and drug sensitivity data for 1,100 tumor cell lines
were sourced from the DepMap database, including 47 OSCC cell
lines. These data were analysed to investigate the relative expression
levels of the target genes CA9 and SPINK6 in OSCC cells and
utilized these expression levels to predict their sensitivity to the drug
docetaxel. Additionally, we employed theComputational Estimation
of Resistance and Sensitivity (CERES) method to predict the effect
of target gene knockout on the proliferative capacity of OSCC cells.
A lower CERES score indicates that the gene is more critical for cell
survival and proliferation.

2.10 MTT assay

OSCC cell lines SCC9 (Cat No. B26673) and SCC4 (Cat
No. B26674), from Sichuan Bio Biotech Co., Ltd. (http://htycbio.
com/IVDyuanliao/), cultured in DMEM/F12 + 10% FBS (37°C,
5% CO2). Docetaxel (Cat No. HY-B0011; purity ≥99.94%) and
Pembrolizumab (Cat No. HY-P9902; purity ≥99.17%) were
purchased from MedChemExpress (https://www.medchemexpress.
cn). Docetaxel was dissolved in dimethyl sulfoxide (DMSO) to
prepare a 10 mM mother liquor and store at −20°C. Pembrolizumab
was dissolved in phosphate buffered saline (PBS) to prepare a
10 mg/mL mother liquor, which was stored at 4°C.

SCC4 and SCC9 cells were seeded into 96-well plates at
a density of 4,000 cells/well and cultured overnight for cell
attachment. For Docetaxel treatment groups, a concentration
gradient of 0.1–1,000 nM (0.1, 0.5, 1, 5, 10, 50, 100, 500, and
1,000 nM) was applied for 72 h. For Pembrolizumab treatment
groups, a concentration gradient of 0.1–200 μg/mL (0.1, 0.5,
1, 5, 10, 25, 50, 100, and 200 μg/mL) was applied for 72 h.
Control groups received equivalent volumes of solvent (DMSO
for Docetaxel control with final concentration <0.1%; PBS for
Pembrolizumab control). After drug treatment, 20 μL of MTT
solution (5 mg/mL in PBS) was added to each well, followed by 4 h
of incubation at 37°C. The culture medium was carefully removed,
and 150 μL of DMSO was added to dissolve the formazan crystals.
Absorbance was measured at 570 nm using a microplate reader. Cell
viability percentages were calculated relative to the solvent control
group (set as 100%).

2.11 Cell culture and CA9 knockdown

CA9 knockdown was achieved by transfecting cells with CA9-
specific or control shRNA via Lipofectamine 3,000 (Invitrogen)
as directed, with efficacy validated by Western blot 48 h post-
transfection. The CA9-specific shRNA sequences were listed below:

shRNA-1:(Forward:5′-CCGGCTACCTGAAGTTAAGCC
TAAACTCGAGTTTAGGCTTAACTTCAGGTAGTTTTTG-3′ ,
Reverse:5′-AATTCAAAAACTACCTGAAGTTAAGCCTAAA
CTCGAGTTTAGGCTTAACTTCAGGTAG-3′)

shRNA-2:(Forward:5′-CCGGCAGCCGCTACTTCCAATA
TGACTCGAGTCATATTGGAAGTAGCGGCTGTTTTTG-3′ ,
Reverse:5′-AATTCAAAAACAGCCGCTACTTCCAATATGA
CTCGAGTCATATTGGAAGTAGCGGCTG-3′).
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2.12 Western blot analysis

Total protein was extracted from SCC9 and SCC4 cells using
RIPA lysis buffer with protease inhibitors. After protein quantitation
via BCA, 30 μg equivalent protein were resolved by 10% SDS-PAGE
and transferred onto PVDF membranes. The membranes were
blocked for 1 h at room temperature (RT) with 5% non-fat milk, and
then incubated overnight at 4°C with primary anti-CA9 (1:1,000)
and β-actin (1:5000) antibodies. After washing, themembranes were
incubated with HRP-conjugated secondary antibodies for 1 h at RT.
Protein bands were visualized using ECL and quantified by ImageJ.
The CA9 antibody (Cat No. 11071-1-AP) were purchased from
Proteintech (https://www.ptgcn.com/).

2.13 Colony formation assay

To assess the effect of CA9 knockdown on cell proliferation,
colony formation assays were conducted. CA9-knockdown or
control SCC9 and SCC4 cells were plated in 6-well plates (1,000
cells/well) and maintained for 14 days with medium renewal every
3 days. Colonies were fixed (4% paraformaldehyde, 15 min) and
stained (0.1% crystal violet, 20 min), followed by microscopic
quantification of colonies (>50 cells).

2.14 Transwell invasion assay

To evaluate the invasive ability of oral OSCC cells after CA9
gene knockdown, the Transwell invasion assaywas performed. 50 μL
of the Matrigel matrix gel (diluted 1:8 with serum-free medium)
was added to the upper chamber of the Transwell insert, and
then incubated at 37°C for 4 h. SCC9 and SCC4 cells in the
logarithmic growth phase were resuspended in serum-free medium
to a concentration of 2 × 10^5 cells/mL. Subsequently, 100 μL
of the cell suspension (shNC, shCA9-1, and shCA9-2 groups)
was seeded into the upper chamber, while 600 μL of complete
medium containing 10% fetal bovine serum was added to the lower
chamber as a chemoattractant. After incubation at 37°C with 5%
CO2 for 24 h, the upper chamber was rinsed with PBS, and non-
invaded cells on the upper membrane were removed with a cotton
swab. The cells were then fixed with 4% paraformaldehyde for
30 min, stained with 0.1% crystal violet for 20 min, and rinsed
with deionized water before air-drying. Invasive cells were observed
under an optical microscope, and five random fields of view
were photographed.

2.15 Wound healing assay

CA9-knockdown or control SCC9 and SCC4 cells were cultured
in 6-well plates. Once the cells reached 90% confluence, we made a
scratch on the cell monolayer using a 200 μL pipette tip. After that,
we rinsed the wells with PBS to get rid of the cell debris. Then, we
replaced themediumwith serum-freemedium.We captured images
of the wound areas at the starting point (0 h) and 24 h later using an
invertedmicroscope.Wound closure rates were calculated in ImageJ
by comparing wound dimensions over time.

2.16 Statistical analysis

For data obtained from public databases, all analyses were
performed in R.4.1.0. Unpaired Student’s t-tests were used to
evaluate differences between two groups for normally distributed
data, whereas the Wilcoxon rank-sum test was applied for non-
normally distributed data. For comparisons involving more than
two groups, parametric and nonparametric variables were tested by
one-way ANOVA and KruskalWallis test, respectively. Differential
expression analysis was analyzed by the limma package.

All experiments were conducted in triplicate, with data
expressed asmean ± standard deviation (SD). Statistical analysis was
performed using GraphPad Prism 8.0, employing Student's t-tests
for group comparisons. Significance was defined as P < 0.05.

3 Results

3.1 Integration of multi-omics data of
OSCC

We conducted a clustering analysis using information from
five levels: mRNA, lncRNA, and miRNA expression, along with
DNA methylation and mutation profiles. The optimal number
of subgroups was determined through CPI, gap statistics, and
silhouette scores, followed by ten multi-omics consensus clustering
algorithms, which identified three prognostic OSCC subtypes (CS1,
CS2, and CS3) (Figures 1A–C). The top ten overall survival (OS)-
related factors from each dimension are displayed on the right. For
example, six mutated genes with significantly differences across the
three subtypes were identified, including PIK3CA, FAT1, NOTCH1,
TTN, TP53, and CDKN2A. These subtypes exhibit different OS
outcomes, indicating that the classification of OSCC subtypes has
clinical significance (P < 0.001; Figure 1D). K-M analysis indicated
that CS3 patients had the longest median survival (90 months),
exceeding CS2 patients (54 months) by 36 months (P CS3/CS2 =
0.166). Both of these groups significantly outlive CS1 patients,
who have a median survival of 28 months (P CS3/CS1 = 0.002, P
CS2/CS1 = 0.017).

3.2 Characterization of OSCC integration
consensus molecular subtypes

In this study, GSVA was applied to measure the enrichment
scores of subtype-specific features in samples, characterizing the
biological functions of OSCC subtypes classified based onmolecular
expression levels. Our findings revealed distinct molecular
characteristics across different subtypes (Figure 2A). KEGG
pathway analysis indicated significant alterations in metabolic
and signaling pathways among the subgroups (P < 0.05). Notably,
cholesterol synthesis and metabolism were likely suppressed in the
CS1 subgroup, with Primary bile acid biosynthesis, Cholesterol
metabolism, and PPAR signaling pathways all exhibiting significant
downregulation. In contrast, the CS2 subgroup showed significant
positive enrichment of Adherens junction, Cholesterol metabolism,
and Glycosaminoglycan degradation pathways, suggesting
activation of cell adhesion mechanisms, cholesterol metabolism,
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FIGURE 1
The multiomics integrative consensus subtypes of OSCC. (A) Comprehensive heatmap of consensus ensemble subtypes, including mRNA, lncRNA,
miRNA, DNA CpG methylation site, and mutant gene. (B) Clustering of OSCC patients through 10 cutting-edge multiomics clustering methods. (C)
Consensus clustering matrix for three novel prognostic subtypes based on the 10 algorithms. (D) Different survival outcomes among the three
subtypes. Dashed line: median survival time.

and glycosaminoglycan degradation. The CS3 subgroup, however,
demonstrated a significant downregulation of Primary bile acid
biosynthesis compared to the other subgroups, which showed an
upregulation (P = 0.0229). Furthermore, we observed a gradual
increase in negative enrichment scores for the ErbB signaling
pathway, Lysine degradation, Apoptosis across multiple species, and
Progesterone-mediated oocyte maturation as the disease progresses
from CS1 to CS3. This suggests that the activity of pathways
related to cell proliferation and death may be increasingly inhibited
with disease progression. The differential signals related to cell

proliferation showed significant differences in theHallmark gene set,
and as progression occurs fromCS1 toCS3, we noted an increasingly
enhanced inhibitory trend in mitotic spindle and mTORC1
signaling, potentially related to changes in cell cycle control during
tumor development. The response to specific treatments also varied
significantly between subtypes (P<0.05). CS1 significantly enriched
pathways for immune suppression in cancer and radiotherapy,
while CS2 showed insensitivity to immunotherapy, and CS3
showed insensitivity to cell cycle-based radiotherapy. Compared
with CS1, CS2 significantly negatively enriched with the immune
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FIGURE 2
Molecular landscape and validation of OSCC CSs. (A) Pathway enrichment of the three isoforms for different treatment-associated features and oral
cancer-associated features. (B) Regulator activity profiles of 23 TFs in the three subtypes (upper panel) and potential regulators associated with
chromatin remodeling (lower panel). (C) Immunoprofiling in the TCGA cohort. The top annotation of the heatmap shows the immune enrichment
score, stromal enrichment score, and DNA methylation of tumor-infiltrating lymphocytes. The top part of the graph shows the expression of typical
immune checkpoint genes, and the bottom panel shows the enrichment levels of 22 TME-associated immune cells. (D) Validation of OSCC CS in
recent templates of the META cohort. (E) Survival analysis of OSCC CSs in the META cohort. (F) Consistency analysis of CSs by PAM in the META cohort.
(G) Consistency analysis of CSs by PAM in the TCGA cohort. (H) Consistency analysis of NTP in the TCGA cohort.

inhibited oncogenic pathways (VEGFA), whereas CS3 exhibited
significant negative enrichment in the radiotherapy-predicted
pathway (Cell cycle).

To more in-deep investigate transcriptomic differences, we
analyzed 23 TFs and potential regulators related to cancer chromatin
remodeling in OSCC (Figure 2B). Notably, we found significant
activation of FOXM1, GATA6, and RARA in CS1, and ESR1,
GATA3, FGFR1, andAR inCS2. Additionally, STAT3, KLF4, RARG,
ESR2, and GATA3 were specifically enriched in CS1, and RXRB,
ESR2, GATA3, FOXA1, PPARG, FGFR1, RARB, AR, FOXM1,
RARA, and GATA6 were significantly negatively enriched in
CS3. These regulators differences further highlight subtype-specific
transcriptional regulatory mechanisms, suggesting that epigenetic
alterations may play a pivotal role in molecular stratification.
For example, CS3 showed a significant negative enrichment of
HDAC6, KAT7, KDM5D, KDM5, EHMT2, SIRT5, KDM1A, and
NSD2. Given the established role of immune functions in tumor

development, we quantified the level of immune cell infiltration
in the microenvironment. The results indicated significant changes
in immune cells across subgroups; CS2 demonstrated a significant
increase in immune cell infiltration compared to the other two
subgroups, with immune checkpoint molecules PDCD1, CD247,
PDCD1LG2, CTLA4, TNFRSF9, and TNFRSF4 also being highly
expressed in CS2 (Figure 2C). This indicates that immunotherapy is
a viable option for CS2 patients. Specifically, T cells CD4 memory
resting, NK cells activated, and Monocytes showed significant
increases in CS1, while in CS2 there was also a significant increase
in B cells naive, T cells CD8, T cells CD4 memory activated, and
Macrophages M1. Meanwhile, CS3 exhibited a notable decrease in
Plasma cellsbut an increase in T cells follicular helper and Dendritic
cells resting.

To verify the stability of the molecular subtypes determined
by multi-omics analysis, we first applied the NTP algorithm. In
the TCGA cohort, we observed that the prognostic predictions of
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the three subtypes were consistent with the molecular subtypes we
determined, especially the CS3 subtype, which showed the most
favourable prognosis of all subtypes (P = 0.001) (Figures 2D–E). At
the same time, we also used the NTP classifier and PAM classifier for
validation in the TCGA cohort, and assessed consistency using the
kappa statistic. The kappa values from the mutual comparison of the
NTP, PAM, and multi-omics subtypes (CMOIC) algorithms were all
greater than 0.6 (P < 0.001) (Figures 2F-H). These results together
provided strong evidence for the high consistency of the identified
subtypes, providing strong support for their stability and reliability.

3.3 MCSS risk stratification system
development and predictive value
assessment

In the development and evaluation of the MCSS risk
stratification system, we applied uniCox analysis to select 32
candidate genes with significant expression correlations to OS (P <
0.05) from TCGA, which were then incorporated into an integrated
framework for executing MCSS. Within the TCGA training cohort,
the model composed of StepCox [both] and plsRcox among
101 algorithm combinations maintained the highest average C-
index (0.640), indicating its more accurate predictive performance
(Figure 3A). The most valuable prognostic gene was identified by
the StepCox algorithm, and themost valuable model was selected by
the plsRcox algorithm, ultimately constructing anMCSSmodel with
7 model genes (Figures 3B,C). The uniCox analysis results of the 7
genes across multiple datasets are shown in Figure 3C. Analysis of
MCSS scores indicated that patients with higher MCSS scores had
significantly poorer prognosis in the TCGA, GSE41613, GSE65828,
and META cohorts (Figures 3D–G).

To more accurately and comprehensively evaluate the reliability
of the MCSS model, we systematically reviewed literature on
OSCC prognostic models published in the past 5 years. Eventually,
20 features were included, systematically representing diverse
physiological pathways, including ferroptosis, oxidative stress,
immune therapy response, immune infiltration, and glycolysis.
Feature comparison analysis across four datasets found that the
MCSS model consistently showed high consistency in the C-Index
(C-index >0.6) (Figure 4A). Furthermore, survival analysis results
also indicated that MCSS had a higher AUC value (Figure 4B). This
finding confirms the applicability of the MCSS model as a powerful
prognostic tool. Notably, even after considering advanced features
based on Stage and Tstage, the MCSS model still maintained a
good AUC value, emphasizing its robustness and practicality in
cancer prognosis assessment. These results not only validate the
effectiveness of theMCSSmodel but also demonstrate its superiority
and clinical practicality in cancer prognosis assessment through
robust performance across multiple independent datasets.

3.4 Immune landscape of MCSS

In the exploration of the immunological landscape of the
MCSS, IMs are recognized for their potential to alter host immune
regulatory responses by either promotion or inhibition, affecting
various targets and marking a future direction in cancer therapy

(Wu et al., 2022). We investigated the expression and regulatory
mechanisms of IMs in the tumor immune microenvironment
(TIME) through epigenetic and miRNA mechanisms. Among the
65 key immunomodulatory genes, 22 genes (33.8%) exhibited
significant dysregulated expression patterns between the low MCSS
and high MCSS groups, suggesting a close association between
MCSS scores and the remodeling of the TIME (Figure 5A).
Compared to the low MCSS group, the high MCSS cohort exhibited
marked upregulation of IMs expression including CD276, VEGFB,
TGFB1, CD70, andMIC (P < 0.05); and SLAMF7 and CD28 showed
significant downregulation (P < 0.05) (Supplementary Table S1).
Concurrently, immune receptors such as TIGIT, CD27, TNFRSF18,
TNFRSF4, ICOS, and BTLA were significantly downregulated,
alongside a significant reduction in the expression of cytokines such
as CD40LG, IFNG, and IL2 (P < 0.05). However, a greater number
of IMs in high MCSS groups and low MCSS group are negatively
correlated with DNA methylation, such as PDCD1LG2, CD274,
BTN3A2, TNFSF9, TNF, TNFSF4, IL1B, CD70, TNFRSF18, and
PRF1, indicating that gene silencing and immune system activation
may be suppressed. We also observed that gene expression and
DNA methylation of SLAMF7, TGFB1, VEGFA, and LAG3 showed
opposite correlations between the high and low MCSS group, which
may be associated with the development of OSCC. Additionally,
comparative analysis between groups revealed that CNV-driven
genomic alterations were significantly enriched in TNFSF9, CD70,
CD40LG, and TLR4 (P < 0.05).

We further assessed the levels of immune cells in the two
MCSS groups using 7 immune infiltration algorithms. The heatmap
revealed significant differences in the composition of immune cells
between subgroups (Figure 5B). A more detailed examination of
immune cell abundance found that patients in high MCSS group,
had significantly reduced levels of various immune cell subsets
compared to the low MCSS group, including Neutrophils, Plasma
cells, Platelets, Mast cells, CD8+ Tcm, CD8+ T cells, CD8 T cells,
CD4+Tem, CD4+Tcm, CD4+ T cells, T cells, B cells, B lineage, T
cells regulatory (Tregs), and T cells CD4 memory activated (P
< 0.05) (Supplementary Figure S1). Additionally, the immune score
of the high MCSS group was significantly reduced (P < 0.05). In
contrast, NKT, NK cells resting, NK cells, CD4 Tcells, Macrophages
M1, and T cells CD4 memory resting exhibited higher expression
in high MCSS group (P < 0.05). This shows that the high MCSS
group may have an immunosuppressive microenvironment, thereby
increasing the risk of OSCC.

3.5 Prediction of immunotherapy response
in MCSS

In the context of cancer treatment, a reduction in immune
cells may suggest the need for new therapeutic strategies. Tumor
immunotherapy, especially ICIs, has demonstrated remarkable
efficacy in cancer treatment. Currently, anti-PD-L1 antibodies have
shown effectiveness against various cancer types (Rasihashemi et al.,
2022). Patients receiving anti-PD-L1 immunotherapy were selected
to further validate the potential capabilities of the MCSS model. In
the IMvigor210 and GSE78220 cohorts receiving immunotherapy,
we observed that patients with high MCSS had poorer prognosis
(Figures 6A,D), while those with low MCSS exhibited more
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FIGURE 3
Establishment of the MCSS. (A) Heat map of 99 combined machine learning algorithms. Based on 101 algorithms of 10 combinations of machine
learning methods, the C-index of each model was calculated by GSE41613, GSE65858, and TCGA cohort, and sorted by average C-index. (B)
Multivariate Cox model coefficients of pivotal genes selected by StepCox [both]+plsRcox algorithm. (C) Results of univariate Cox regression analysis of
pivotal genes in the training and validation cohort. (D–G) Survival analysis of OSCC patients with high and low MCSS in GSE41613, GSE65858, META
and TCGA cohorts.

Frontiers in Cell and Developmental Biology 10 frontiersin.org

https://doi.org/10.3389/fcell.2025.1629683
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhao et al. 10.3389/fcell.2025.1629683

FIGURE 4
Assessment of the predictive value of the MCSS model for prognostic purposes. (A) Comparison of MCSS features among the MCSS model and 21
other published models in TCGA, GSE41613, GSE65858, and META cohort. (B) Cox analysis of the MCSS model combined with MCSS, Stage, Tstage,
Nstage, Mstage, and Gender features.
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FIGURE 5
Differences in immune characteristics between MCSS subgroups. (A) Correlation between MCSS and immunomodulators. From left to right: mRNA
expression (median normalized expression levels), expression versus methylation (gene expression correlation with DNA methylation beta-value),
amplification frequency, and deletion frequency for regulators. (B) Heatmap showing the relative abundance differences of immune cell types.
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favorable responses to immunotherapy (Figures 6B,C,E,F). To
further assess the prognostic value of MCSS in forecasting the
efficacy of anti-PD-L1 treatment, we employed time-dependent
AUC curves for analysis. In the IMvigor210 cohort, MCSS achieved
the highest AUC value (0.81) at 2 months of treatment, indicating
its good performance in predicting prognosis (Figure 6G) and
immune response (AUC = 0.639, Figure 6H). In the GSE78220
cohort, MCSS demonstrated excellent prognostic prediction ability,
with AUC values reaching 1 at 7 and 8 months of treatment
(Figure 6I). Moreover, the ROC curves for predicting response
also confirmed the outstanding performance of the MCSS model
in forecasting immunotherapy response (Figure 6J). Collectively,
these results suggest that MCSS possesses remarkable capability in
predicting both prognosis and immunotherapy response in patients
receiving immunotherapy, highlighting its potential as a valuable
predictive tool.

3.6 Potential therapeutic drug
development for patients with high MCSS

In response to the high MCSS group’s poor response to
immunotherapy,we further employedGSEA to analyze the signaling
pathways related to its expression. Pathway enrichment analysis
revealed significant upregulation in the high MCSS group, with
the top four pathways having the highest enrichment scores being
Epithelial Mesenchymal Transition, E2f Targets, Hypoxia, and Myc
targets V1 (Figure 7A). Based on this, we used the CTRP and the
PRISM approach to screen for possible curative drugs for high
MCSS patients, and we conducted drug response analysis and
differential evaluation for the two MCSS subgroups to identify
drugs sensitive to the high MCSS group. We then performed
Spearman correlation analysis between the AUC values and the
MCSS risk scores. Ultimately, three potential drugs were identified
with AUC values negatively correlated with the MCSS scores:
docetaxel, paclitaxel, and vindesine. Docetaxel and paclitaxel both
showed lower Estimated AUC values in the high MCSS group (P
< 0.05) (Figure 7B). This indicates that these drugs have higher
sensitivity to the high MCSS group, especially docetaxel, which has
significant therapeutic potential.

The expression of candidate drug target genes in tissue of
OSCC tumor and normal tissue was assessed. Unpaired and
paired differential expression analysis results showed that CA9
and SPINK6 have higher expression in tumor tissue (P < 0.05)
(Figures 7C,D), indicating their involvement in development of
OSCC. DepMap analysis further confirmed the above results. CA9
and SPINK6 are abnormally activated in many OSCC cell lines,
especially in SCC9, where the expression level exceeds 7.5 logTPM
(Figures 7E,F). Therefore, we further analyzed the relationship
between the most promising docetaxel and highly expressed genes
in tumor cells. Docetaxel treatment showed a lower Estimated AUC
in the high CA9 group (P < 0.05), but no effect in the high and
low SPINK6 groups (P > 0.05) (Figure 7G). This indicates that
docetaxel effectively inhibits CA9. We used the CRISPR loss-of-
function screen from the DepMap database for analysis, focusing
on the SCC9 cell line where both genes are highly expressed.
According to the definition of CERES, each gene shows different
tendencies as a potential oncogenes or tumor suppressor genes;

the lower the CERES score of the gene effect, the lower the cell
survival rate. Notably, CA9 has a negative gene effect in many
OSCC cell lines, with the CERES score in SCC9 cells being lower
than −0.5, indicating that SCC9 cells are highly dependent on the
expression of CA9 (Figure 7H). On the other hand, SPINK6 tends to
have a positive gene effect, indicating that it is not essential for the
survival of OSCC cells. Overall, CA9 loss generally promotes OSCC
cell death, and docetaxel’s inhibition of CA9 activation suggests
promise for targeting OSCC cell survival and progression.

3.7 Validation of the immune therapy
prediction ability of MCSS model and the
therapeutic potential targeting CA9

To validate CA9’s role in OSCC progression and its therapeutic
potential, we performed in vitro experiments on SCC4 (MCSS
score = 2.686) and SCC9 (MCSS score = 2.200) with different
MCSS scoring characteristics. The MCSS score was calculated
based on the transcriptome expression data of OSCC cell
lines in the DepMap database, using the seven characteristic
genes and their corresponding coefficients of the MCSS model
(Supplementary Table S2; Supplementary Figure S2). The results
of drug sensitivity showed that the IC50 of SCC4 cells to
docetaxel was 8.726 nM, significantly lower than the 41.12 nM
of SCC9 cells, indicating that SCC4 cells have higher sensitivity
to docetaxel (Figure 8A). This direct IC50 measurement result
is highly consistent with our prediction based on AUC values,
effectively verifying the accuracy of the MCSS model in predicting
chemotherapy sensitivity in OSCC. In addition, we also tested
the sensitivity of these 2 cell lines to the ICIs pembrolizumab.
The IC50 of SCC4 cells was 33.88 μg/mL, which was also lower
than the 11.53 μg/mL of SCC9 cells (Figure 8B). These in vitro
experimental results directly support the potential value of the
MCSS model in predicting the sensitivity of OSCC treatment,
providing important experimental evidence for cross cancer
validation results.

Furthermore, the expression level ofCA9was reduced by shRNA
technology, and confirmed the knockdown efficiency by Western
blot analysis. CA9 protein levels were significantly reduced in
both SCC9 and SCC4 cells transfected with CA9-specific shRNA
compared to control shRNA (Figures 8C,D). We then assessed the
functional consequences ofCA9 knockdownonOSCCcell behavior.
Colony formation assays revealed that CA9 knockdown significantly
restrained the clonogenic potential of both SCC9 and SCC4 cells,
as evidenced by fewer colony formations (P < 0.05) (Figure 8E).
The Transwell invasion experiment results also demonstrated that
CA-9 knockout significantly inhibited the invasion ability of SCC9
and SCC4 cells (P < 0.05) (Figure 8F). Furthermore, wound healing
assays demonstrated that CA9 knockdown substantially impaired
the migratory capacity of SCC9 (Figure 8G) and SCC4 (Figure 8H)
cells, with slower wound closure compared to control cells. These
results collectively demonstrate the pivotal role of CA9 in promoting
OSCC cell proliferation and migration. The observed inhibitory
actions of CA9 knockdown on these malignant phenotypes further
support our previous findings and strengthen the feasibility for
targeting CA9 as a potential treating strategy in OSCC, particularly
in combination with docetaxel.
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FIGURE 6
Assessment of immunotherapy response by MCSS model in OC patients. (A–C) Differences in anti-PD-L1 efficacy of MCSS model and immunotherapy
response predicted by TIDE algorithm in IMvigor210 cohort. (D–F) Differences in anti-PD-L1 efficacy of MCSS models and immunotherapy response
response predicted by the TIDE algorithm in the GSE78220 cohort. From left to right, the figure sequentially illustrates the OS differences, disparities in
immunotherapy response, and variations in MCSS scores across groups with distinct immunotherapy responses in each cohort. They were compared
by Wilcoxon test.∗P<0.01,∗∗P<0.01,∗∗∗P<0.001. (G) Prognostic time curves of the IMvigor210 cohort. (H) Immune response response accuracy of the
IMvigor210 cohort. (I) Prognostic time curve of the GSE78220 cohort. (J) Immune response response accuracy of the GSE78220 cohort.
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FIGURE 7
Screening and analysis of potential drugs in patients with high MCSS (A) Pathways significantly upregulated in the high MCSS group. (B) Correlation and
differential analysis of drug sensitivity of potential drugs screened from CTRP and PRISM datasets. (C,D) Unpaired and paired differential expression
analysis of potential target genes of drugs in normal and tumor tissues.∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001,∗∗∗∗P < 0.0001. (E) Expression of CA9 gene in
OSCC cell lines. (F) SPINK6 gene expression in OSCC cell lines. Data from CCLE; DepMap Public 22Q4. dataset. (G) Predicted effects of docetaxel on
CA9 and SPINK6. (H) Gene effect (CERES) scores of CA9, SPINK6 in oral cancer cell lines. Data from CRISPR (AVANA) DepMap v22Q4 dataset.
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FIGURE 8
Validation of CA9 as a potential therapeutic target in OSCC cell lines (A) Analysis of drug sensitivity of OSCC to Docetaxel. (B) Analysis of drug sensitivity
of OSCC to Pembrolizumab. (C,D) Western blot analysis of CA9 protein expression in SCC9 and SCC4 cells transfected with control shRNA or
CA9-specific shRNA. GAPDH was used as a loading control. (E) Colony formation assay results for SCC9 and SCC4 cells transfected with control
shRNA or CA9-specific shRNA. (F) Transwell invasion assay results of SCC9 and SCC4 cells transfected with control shRNA or CA9 specific shRNA.
(G,H) Wound healing assay results for SCC9 and SCC4 cells transfected with control shRNA or CA9-specific shRNA. Data are presented as mean ±
SD from three independent experiments.∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001 (Student’s t-test).
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4 Discussion

OSCC carcinogenesis and progression are propelled by the
cumulation of genetic and epigenetic alterations, which diminish
the survival probabilities of patients with oral malignancies
(Balakittnen et al., 2023; Huang et al., 2020). Early diagnosis is
pivotal for enhancing the survival rates of those afflicted with OSCC
(Tan et al., 2023). Consequently, the identification of biomarkers
for precancerous lesions and cancer development, coupled with
the construction of predictive models for the disease, holds
significant importance for improving the management of OSCC.
Recently, high-throughput sequencing in conjunction with multi-
omics analysis has demonstrated its potential in disease screening,
diagnosis, staging, prognosis, and personalized drug therapy (Li
and Wang, 2021; Zhang and Li, 2023). Moreover, the integration
of multi-omics-based clustering algorithms with an understanding
of pathological processes aids in the molecular typing of cancer
and in enhancing the survival predictions and therapeutic outcomes
for different subtypes (Collisson et al., 2019; Heo et al., 2021).
For example, Yang et al. (2023) identified three HNSCC immune
subtypes using immune-related gene expression and somatic
mutation data, and then developed a novel, highly accurate, and
interpretable machine learning-based immune subtyping predictive
system. In this study, we employed an integrated multi-omics
approach for an in-depth analysis of OSCC. By combining
transcriptomic data-encompassing the expression levels of mRNA,
lncRNA, and miRNA - as well as epigenetic characteristics (DNA
methylation) and genetic mutation information, we meticulously
classified OSCC patient samples using ten advanced multi-omics
consensus clustering algorithms. Ultimately, three OSCC subtypes
were determined, each with distinct genetic and immunological
features. Subsequently, we selected the ML algorithms with the
optimal predictive performance to construct a comprehensive
clinical prediction model (MSCC) specific to OSCC subtypes.
This model excels not only in diagnostic accuracy and prognostic
reliability but also provides potential therapeutic drug options
through its precise scoring system, thereby robustly supporting
personalized medicine.

This research has delineated three unique subtypes of OSCC
across various dimensions, showing a significant correlation with
genetic profiles. The multi-omics clustering analysis has uncovered
the top 10 factors associated with OS. A plethora of studies
has illustrated the disrupted mRNA and miRNA expression in
OSCC (Bouaoud et al., 2022; Khan et al., 2020). We detected
mRNAs (LCE3A, LCE3D, LCE3E, CRCT1, among others) and
miRNAs (LCE3D, SPRR2B, PRR3) associated with skin barrier
functionality (Jalali et al., 2024; Niehues et al., 2023), despite no
current research linking OSCC to skin functionality. Non-coding
RNAs serve as critical regulators of diverse cellular processes
such as proliferation, migration, invasion, apoptosis, and resistance
to chemotherapy (Balakittnen et al., 2023). Notably, LINC00958
(Wang F. et al., 2020) has been recognized as an oncogenic gene
with marked upregulation in OSCC tissues. Additionally, PCED1B-
AS1, identified in a spectrum of cancers (Liu et al., 2022; Yao et al.,
2020), is underscored in this study for its relevance to OSCC. In
the context of OS-related DNA methylation anomalies in OSCC,
cg10474350 has been noted in esophageal (Peng et al., 2021) and
hepatic cancer (Zhang et al., 2020), indicating a potential novel

methylation marker for OSCC prediction. Various mutational sites
are established to influence tumor growth and invasion, including
the inactivation of tumor suppressor genes TP53 (Voskarides and
Giannopoulou, 2023) and CDKN2A (Gaździcka et al., 2020), which
may precipitate oral carcinogenesis. The three OS subtypes also
reflect the intricate interplay of transcriptional and epigenetic
information. For example, FOXM1, prominently enriched in CS2,
modulates several cancer cell attributes, including proliferation,
metastasis, and relapse (Khan M. M. et al., 2023). A thorough
examination of transcription factors and potential chromatin
remodeling regulators has identified elements significantly linked to
OSCC, which are already regarded as valid targets for therapeutic
intervention in oncology.

Currently,OC typing is predominantly grounded in pathological
histology, with OSCC representing the principal subtype (Roi et al.,
2020). OSCC is further categorized into various subtypes,
comprising a basal subtype akin to basal cells of the human airway
epithelium (55%), a mesenchymal subtype engaged in epithelial-
to-mesenchymal transition (EMT) (33%), an atypical subtype
strongly linked to HPV (4%), and a classical subtype associated
with smoking and xenobiotic metabolism (9%) (Chai et al.,
2020). Our investigation advances the molecular stratification of
OSCC, with each subtype presenting distinctive biological traits
and pathway activities that exhibit varied responses to diverse
treatment modalities. The OS times for subtypes CS3, CS2, and
CS1 progressively diminish, while the enrichment scores for
pathways such as ErbB signaling, Lysine degradation, multi-
species Apoptosis, and proliferation-associated mitotic spindle and
mTORC1 signaling escalate. This indicates that the activation of
these pathways intensifies with disease progression. The aberrant
signaling by ERBB family members, driven by genetic mutations
that abnormally activate tyrosine kinase, can propel tumor initiation,
progression, and severity, concurrently undermining the antitumor
immune response by modulating the tumor microenvironment’s
immune profile (Kumagai et al., 2021). The Lysine degradation
pathway predominantly unfolds within the mitochondria, with
the implicated enzymes localized in both mitochondrial and
cytoplasmic compartments (Leandro and Houten, 2020), and
mitochondria are notably correlated with cancer progression and
drug resistance (Bai et al., 2022). However, studies elucidating these
relationships have yet to emerge. Furthermore, the paradoxical
presence of a pro-apoptotic state in OSCC has piqued the interest
of numerous researchers, seemingly conflicting with the established
characteristics of cancer (He et al., 2022). Within the CS1 subtype,
we observed a significant downregulation of pathways including
primary bile acid biosynthesis, cholesterol metabolism, and
PPAR signaling relative to the other groups. Typically, rapidly
proliferating cancer cells necessitate elevated cholesterol levels
to foster membrane biogenesis and other cellular functions, and
an increase in cholesterol content has been noted in numerous
OSCC cases (Chan et al., 2023). The dysregulated cholesterol
metabolism observed in the advanced stages of the CS1 subtype
warrants further investigation.

Research indicates that primary bile acids can accumulate in
T cells and induce DNA damage, with the downregulation of
pathways such as primary bile acid biosynthesis in CS1 suggesting
potential impairment of immune cell function (Varanasi et al.,
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2025). Concurrently, elevated levels of T_cells_CD4_memory_
resting and activated NK cells highlight the complex immune
phenotype of CS1. As a key immunosuppressive cytokine in the
TIME, VEGFA orchestrates immune suppression through multiple
mechanisms, such as inhibition of dendritic cell maturation,
and modulation of T-cell exhaustion (Patel et al., 2023). The
significant negative enrichment of VEGFA signaling in CS2
indicates heightened activation of immune-stimulatorymechanisms
within this subtype’s TIME. Immune cell profiling further confirms
substantial enrichment of critical effector populations in CS2,
including naive B cells, CD8+ effector T cells, CD4+ memory-
activated T cells, and classically pro-inflammatoryM1macrophages.
Notably, CS2 exhibits marked upregulation of IC molecules such as
PDCD1 (PD-1), CD274 (PD-L1), PDCD1LG2, CTLA4, TNFRSF9,
and TNFRSF4. These molecules are predominantly expressed on
T cells of the adaptive immune system and cells of the innate
immune system (Zhang andZheng, 2020).The indicates that theCS2
subgroup may be more receptive to immune reactions. In contrast,
the cell cycle pathway, which regulates cell proliferation and division,
shows negative enrichment in radiotherapy-predicted pathways in
CS3, implying impaired tumor cell cycle progression and reduced
proliferative capacity, potentially leading to decreased sensitivity to
radiotherapy (Sun et al., 2021). Collectively, the distinct immune
profiles among OSCC subtypes underscore the clinical imperative
for molecular subtype-guided personalized treatment approaches.
Subsequent studies on the MSCC model have shown that the
expression of numerous IMs in OSCC patients are dysregulated
due to silencing or mutation, leading to changes in immune cell
infiltration levels and altering TIME. Particularly in high MCSS
group, levels of various immune cell subsets were significantly less
than in the low MCSS group, encompassing neutrophils, diverse B
cells, and T cells. Targeted blockade of ICs such as PD-1, PD-L1
has emerged as an effective strategy to enhance antitumor immune
responses, and the enhanced therapeutic response associated
with high IC expression has been widely reported (Li et al.,
2019). However, the high MCSS group consistently demonstrates
inadequate immune responses to anti-PD-L1 therapy, posing new
challenges for the development of our biomarkers.

The MCSS was constructed by ML algorithms with multi-
omics data. Among them, the optimal combination (StepCox
[both]+plsRcox) exhibited robust performance in AUC values and
C-Index across, underscoring the exceptional predictive power
of the MCSS model. We identified seven model genes from the
integrated cohort: TPSAB1, SPINK6, MT1X, METTL7B, CPA3,
CAMK2N1, and CA9. Notably, the genes CA9 and SPINK6
were found to be markedly elevated in OSCC cells. CA9, part
of the carbonic anhydrase family, expresses preferentially in
malignant cells under hypoxic conditions (Guan et al., 2020). The
Hypoxia pathway was also detected among the top upregulated
pathways in the high MCSS group. Hypoxic conditions can
foster tumor growth and inhibit the antitumor immune system;
reversing this hypoxia might enhance the viability and efficacy
of tumor-infiltrating T cells, potentially resensitizing tumors to
immunotherapy (Jayaprakash et al., 2022). The EMT pathway,
significantly upregulated in the high MCSS group, is a common
feature across various cancers and is key to the invasiveness and
metastatic potential of OSCC cells (Wang Z. et al., 2020). Recent
studies suggest that EMT may be linked to chemoresistance in

OSCC(Bai et al., 2021), offering a rationale for the treatment
resistance observed in the high MCSS group. Heightened E2F
activity, prevalent in many cancers, leads to the dysregulation
of E2F family genes in OSCC due to genetic or epigenetic
alterations, a critical factor in oncogenesis (Kassab et al., 2023;
Nakajima et al., 2023). Additionally, Myc targets V1, a therapeutic
target in numerous cancers, correlates with the proliferation
of cancer cells (Oshi et al., 2022; Zhang et al., 2022). These
pathways, once upregulated, underscore the complexity of treating
the high MCSS group. Our drug prediction efforts revealed the
significant potential of docetaxel. As an FDA-approved taxane-
based antimitotic chemotherapeutic, docetaxel can effectively
induce apoptosis and modulate intracellular immune mechanisms
(Gupta et al., 2023). It has been applied across a spectrum of
cancers, including OSCC (Ma et al., 2022; Mohanty et al., 2022).
CRISPR-Cas9 loss-of-function screening (Meyers et al., 2017) has
shown that docetaxel significantly suppresses the CA9 gene in
SCC9 cells. Tagawa et al. (Tagawa et al., 2023) recently discovered
that docetaxel exhibits maximal cytotoxicity to CA9-22 cells when
subjected to mild hyperthermia at 41°C–42°C for 45–60 min.
Further investigation is warranted to fully elucidate the impact
of docetaxel on CA9. This also suggests that targeting genes
associated with immune suppression represents a viable therapeutic
strategy for OSCC.

5 Conclusion

In conclusion, our comprehensive multi-omics integrative
analysis has shed light on the molecular heterogeneity
and complexity of OSCC. By employing a combination of
transcriptomics, epigenetics, and gene mutation data, we identified
three distinct OSCC subtypes (CS1, CS2, and CS3) with unique
genetic and immunological features. These subtypes exhibited
significant differences in pathway enrichment, immune evasion,
and potential treatment responses, highlighting the importance of
precise molecular subtyping in OSCC. Furthermore, we developed
a robust and superior MSCC model that integrates multiple ML
methods to predict patient prognosis. The MSCC model identified
seven key genes (TPSAB1, SPINK6, CPA3, MT1X, METTL7B,
CAMK2N1, and CA9) that play crucial roles in OSCC progression
and prognosis. Stratification analysis based on MSCC scores
revealed significant differences in prognosis, epigenetic alterations
of immune regulatory genes, and immune cell infiltration between
groupswith high and lowMSCC score.The insights shed light on the
mechanisms underlying the prognostic differences and the potential
for personalized treatment strategies. Notably, our analysis suggests
that patients in the high MSCC group may not respond favorably
to ICI therapy. However, we identified docetaxel and paclitaxel as
potential candidate drugs for treating this population, offering new
therapeutic options for OSCC patients with poor prognosis.

In summary, our study demonstrates the power of multi-
omics integrative analysis in unraveling the complex mechanisms
of OSCC and provides a solid foundation for the expansion of
precise molecular subtyping and personalized treatment strategies.
The MSCC model, along with the identified key genes and
potential therapeutic targets, holds great promise for improving
early diagnosis, treatment decision-making, and ultimately, patient
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prognosis and survival rates in OSCC. Rigorous validation
through prospective clinical trials is essential to operationalize
these biological insights within routine oncology practice and
drive advancements in precision medicine strategies for OSCC
management.
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