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Background: Repetitive elements account for a large proportion of the human
genome and undergo alterations during early tumorigenesis. However, the
exclusive fragmentation pattern of DNA-derived cell-free repetitive elements
(cfREs) remains unclear.

Methods: This study enrolled 32 healthy volunteers and 112 patients with five
types of cancer. A novel repetitive fragmentomics approach was proposed to
profile cfREs using low-pass whole genome sequencing (WGS). Five innovative
repetitive fragmentomic features were designed: fragment ratio, fragment
length, fragment distribution, fragment complexity, and fragment expansion. A
machine learning-basedmultimodal model was developed using these features.

Results: The multimodal model achieved high prediction performance for early
tumor detection, even at ultra-low sequencing depths (0.1×, AUC = 0.9824). Alu
and short tandem repeat (STR) were identified as the primary cfREs after filtering
out low-efficiency subfamilies. Characterization of cfREs within tumor-specific
regulatory regions enabled accurate tissue-of-origin (TOO) prediction (0.1×,
accuracy = 0.8286) and identified aberrantly transcribed tumor driver genes.

Conclusion: This study highlights the abundance of repetitive DNA in plasma.
The innovative fragmentomics approach provides a sensitive, robust, and cost-
effective method for early tumor detection and localization.
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1 Introduction

Cell-free DNA (cfDNA) consists of DNA fragments released
during cell death and subsequently degraded by nucleases. It
functions as a non-invasive biomarker for the detection of cancer.
The fragmentation pattern of cfDNA exhibits a non-random
distribution throughout the genome, aiding in the identification
of early-stage cancer patients from healthy individuals (Lo et al.,
2021; Snyder et al., 2016; Cristiano et al., 2019; Chabon et al.,
2020; Ulz et al., 2016). Previous studies have identified certain
characteristic features of cfDNA fragments, including lengths of
approximately 166∼167 bp and peaks at 10 bp intervals, which
correlate with the distribution of nucleosomes (Snyder et al., 2016).
Additionally, the various nucleases and nucleosome accessibility
can result in preferential fragment shearing positions, producing
different patterns of fragment end motifs (Serpas et al., 2019;
Jiang et al., 2020). In recent years, several studies havemade progress
in the use of cfDNA fragmentomics for early cancer detection.
However, each approach has its own limitations (Cristiano et al.,
2019; Ulz et al., 2016; Jiang et al., 2020; Jiang et al., 2015; Sun et al.,
2019; Ulz et al., 2019). For instance, the utilization of genome-wide
biomarkers, such as fragment length ratios (DELFI) (Cristiano et al.,
2019), genome instability based on fragment coverage (CIN)
(Jiang et al., 2015), and diversity scores of fragment end motifs
(MDS) (Jiang et al., 2020), fails to elucidate the relationship between
genes and transcriptional regulation. Furthermore, the accuracy of
the calculated biomarkers in distinguishing cancer patients from
healthy individuals based on fragment depth and various functional
elements, such as transcription factor binding sites (TFBSs)
(Ulz et al., 2019) and transcription start sites (TSSs) (Ulz et al.,
2016), is limited. Therefore, these challenges constrain the clinical
application and dissemination of these methods.

To overcome this limitation, we need to explore comprehensive
cfDNA fragmentation features from blood in the early events
of tumorigenesis. Previous research studies have shown that
variants in repetitive elements (REs) are associated with more
than 50 serious human diseases (Hannan, 2018). These variants
can specifically contribute to tumor development (Xing et al.,
2019; Fujimoto et al., 2020; Hoyt et al., 2022), with a significant
accumulation of alterations occurring in the initial phases of
tumorigenesis (Hoyt et al., 2022). REs exhibit intricate biological
functions that can catalyze genomic instability, thereby contributing
to abnormal gene expressions or the emergence of pathogenic
variants (Hannan, 2018; Helman et al., 2014). Recent studies
have indicated that repetitive elements, such as Alu and short
tandem repeats (STRs, also known as simple repeats), can impact

Abbreviations: cfREs, cell-free repetitive elements; cfDNA, cell-free DNA;
lpWGS, low-pass whole genome sequencing; WGS, whole genome
sequencing; STR, short tandem repeats; Alu, Alu elements; AUC, area
under the curve; ROC, receiver operating characteristic; TOO, tissue of
origin; LASSO, least absolute shrinkage and selection operator; RF, random
forest; DELFI, DNA evaluation of fragments for early interception; CIN,
Chromosomal instability; WGBS, whole genome bisulfite sequencing; ATAC-
seq, assay for transpose-accessible chromatin using sequencing; TCGA,
The Cancer Genome Atlas; GO, Gene Ontology; TFBSs, transcription factor
binding sites; TSSs, transcription start sites; CDS, coding DNA sequence; FR,
fragment ratio; FD, fragment distribution; FL, fragment length; FE, fragment
expansion; FC, fragment complexity.

enhancer–promoter interactions through amplification and indel
events, leading to aberrant expression of anti-oncogenes and
oncogenes (Shen et al., 2021; Liang et al., 2023; Jakubosky et al.,
2020). Particularly, numerous studies have demonstrated that STR
variants exhibit tumor-specific characteristics and affect the efficacy
of immunotherapy in individuals withmalignancies (Fujimoto et al.,
2020; Erwin et al., 2023; Hause et al., 2016; Wooster et al., 1994).
Hence, REs have great potential for cancer detection. In recent
times, several studies have attempted to distinguish between healthy
individuals and cancer patients by analyzing the ratio of different RE
lengths in plasma (Sikora et al., 2015; Uto et al., 2016). Furthermore,
a recent study has suggested that RNA fragments of REs in plasma
have the potential to identify patients with cancer (Reggiardo et al.,
2023). However, the potential of DNA-derived cell-free repetitive
elements (cfREs) with more comprehensive fragmentomic profiles
to identify cancers through whole genome sequencing (WGS)
remains unknown.

In this study, we present our findings on the utility of
fragmentomic profiles of cfREs (cfRE-F) for detecting multi-cancer
through low-pass whole genome sequencing (lpWGS). There was
a significant enrichment effect of cfREs, especially the Alu and
STR elements, in the plasma of patients with cancer compared
to that of healthy individuals. We performed a comprehensive
analysis of five cfRE fragment profiles in plasma, namely, the
fragment ratio (FR), fragment length (FL), fragment distribution
(FD), fragment complexity (FC), and fragment expansion (FE).
Furthermore, we built a multimodal approach based on machine
learning to accurately identify multi-cancer across the sequencing
depth. Through the characterization of fragments from tumor-
specific enhancer and promoter regions within the cfRE, we
were able to precisely localize the tissue of origin (TOO) and
properly identify the aberrant transcription of cancer driver genes.
Taken together, our study provides a framework for analyzing
the genomic signature of cfRE fragments in plasma that can be
used for sensitive, robust, and cost-effective tumor detection and
localization.

2 Methods

2.1 Patient cohorts and study design

This study included 32 healthy volunteers and 112 early-
stage and operable cancer patients from the National Cancer
Center/CancerHospital, Chinese Academy ofMedical Sciences, and
Peking Union Medical College. Healthy volunteers were recruited
after routine physical checkups. In brief, blood samples were
obtained from participants over the course of two years (2020
to 2022). The information on the participants is summarized in
Additional File 1 in Supplementary Table S1.

The study followed the ICH-GCP guidelines. All participants
signed the informed consent form. The external independent
validation dataset was GSE71378 (Snyder et al., 2016), and it was
downloaded from the GEO websites. The independent dataset
excluded non-cancer patients, and pan-cancer patients were used
for validating the cancer prediction efficacy, while patients with
the same cancer type as the internal cohort were selected for the
evaluation of TOO performance.
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2.2 Sample collection and cfDNA
extraction

Approximately 10 mLof peripheral bloodwas collected from the
subject using a Cell-Free DNA BCT® (Streck, Cat: 230471). Samples
were delivered to the laboratory within 72 h, and plasma isolation
was subsequently performed. A volume of 4 mL of plasma was used
to extract cfDNA using a plasma cfDNA purification kit (Concert,
Cat: RC1101), following the manufacturer’s instructions. cfDNA
quantificationwas performed using theQubit Fluorometer (Thermo
Fisher Scientific, Cat: Q33231).

2.3 Library construction and sequencing

The libraries were constructed using the KAPA Hyper
Library Prep Kit (KAPA Biosystems, KK8504), according to the
manufacturer’s instructions. The library phosphorylation process
was then completed using phosphorylation primers, followed by
library cyclization and DNB generation (MGI, Cat: 1000005662),
and sequencing was performed on the MGISEQ-2000 platform in
the PE100 mode with 30G per sample.

2.4 WGS data processing and quality
control

Sequence quality filtering and adapter trimming of reads were
processed using fastp (v0.12.4) (Chen et al., 2018) with default
parameters. After adapter trimming, reads were aligned against the
hg19 human reference genome using BWA-MEM 0.7.17 (Li and
Durbin, 2009) with default parameters. PCR-duplicate fragments
were removed using GATK 4.2.0 (McKenna et al., 2010). Reads were
retained if they met the following criteria: a mapping quality score
of 30 or greater, no supplementary alignment, not a PCR duplicate,
and both ends uniquely mapped. Finally, themean effective depth of
all WGS samples was 11.3.

2.5 cfDNA covered repeat elements
processing and filtrations

Annotation files of RepeatMasker were downloaded from
https://repeatbrowser.ucsc.edu/data/(Fernandes et al., 2020).
Qualified mapped fragments were intersected with RepeatMasker
genome locations using BEDTools (v2.31.0) (Quinlan and Hall,
2010). These overlapped regions were defined as cfDNA repeat
elements and were filtered according to the following steps:

i) regions that could not be classified;
ii) regions located within the Duke blacklisted regions

or sex chromosomes (http://hgdownload.cse.ucsc.
edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/);

iii) regions that covered zero fragments in more than 80% of the
samples within the discovery cohort;

iv) regions that covered zero fragments in the GSM1833219
(mixed healthy human blood plasma) dataset (Snyder et al.,
2016); and

v) repeat families with a genome-wide occurrence frequency of
fewer than 500 instances.

2.6 cfRE signature definition and
calculation

To analyze the cfRE, we designed five variables that illustrate
the different patterns of cfREs between healthy and cancer disease
samples: i) cfRE fragment ratio (FR); ii) cfRE short/long fragment
length (FL); iii) cfRE non-zero covered ratio (FD); iv) cfRE reads
complexity score (FC); and v) cfRE STR expansion score (FE).

The FR score was defined as the fraction of fragmentsmapped to
the cfRE relative to the total number of qualifiedmapped fragments.
The FL score was calculated as the ratio of the number of short
fragments (fragment length less than 150 bp) to the number of long
fragments (fragment length greater than 150 bp) within the cfRE.
The FD score was the fraction of non-zero-covered cfREs within its
family regions.The FC score was calculated as the median linguistic
sequence complexity of the reads mapped to the cfRE.

We introduced a novel concept, the FE score, which represents
the expansion factor of STR families. If the genomic position of
an STR element is defined as chr-start-end, the repeat pattern is as
follows:

([ATCG]..[ATCG])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n1

[n2],

where n1 represents the repeat unit length and n2 represents the
number of times the unit is repeated. If the number of tandem
repeat units covered by a read exceeded the reference n2, N_ETR
(the number of expanded repeat units relative to the reference) was
accumulated. Eventually, the single FE score was calculated within
sub-groups for individual STR elements using the formula below:

Scorei =
N_ETRi

Ni
,

where N_ETRi represents the number of reads containing
unexpectedly expanded repeat units and Ni is the total number
of reads in each sub-group.

The STR family contains a large number of members, and
to determine the weight of each member, we use the variable
importance scores from a random forest (RF) model with 5-fold
cross-validation on the training set; these scores were used to assign
the weights to each STR sub-group. The FE score for each sample
was calculated using the following equation:

FEscore =
546

∑
n=1

WiScorei.

2.7 Modeling and performance evaluation

After generating the cfRE signature input matrix of all samples,
the datasets were split into the training set (98, 68%) and the test
set (46, 32%) based on the sample enrollment date. The cancer
prediction model was constructed by performing 10-fold cross-
validation and using the algorithm of logistic regression with a
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LASSO penalty. The threshold of the model score was determined
using the value corresponding to the Youden Index point. To
determine whether the model performance could be preserved
at low depths, we used Seqtk (v1.2-r101c) (Jeon et al., 2023) to
randomly resample all samples with a gradient of simulated depth
by 0.1×, 0.3×, 1×, 3×, and 5×.

2.8 Tissues-of-origin predictions using the
cfDNA repeat element score

Only tumor patients were considered in the tissues-of-origin
prediction. We downloaded the histone modification ChIP-seq
wiggle files of H3K27ac/H3K4me1/H3K4me3 from six datasets
corresponding to five cancer types [GSE136888 (Orouji et al.,
2022), GSE76153 (Ooi et al., 2016), GSE212342 (Jeon et al., 2023),
GSE67471 (Chen et al., 2015), GSE193257 (Gogleva et al., 2022),
and GSE64557 (Diaferia et al., 2016)]: lung cancer, colorectal cancer,
pancreaticcancer, livercancer, andgastriccancer.Theconsensussignal
peak region of histone modification intersected with the genome
position of cfRE Simple_Repeat and cfRE Alu. The candidate TOO
cfRE region needed to meet the following criteria: i) one type of
modification peak occurred in more than half of the samples of
corresponding ChIP-seq datasets; and ii) one candidate regulation
cfRE region occurred in two or three types of histone modifications.
Then, the cancer type-specific cfREs were determined using Fisher’s
exact test, which computes the odds ratio and significance of cancer
type preference. Finally, we calculated the FR, FL, FD, and FC scores
of STR/Alu elements specific to each cancer type cfRE and built a
multi-class logistic regression model for TOO prediction.

2.9 Statistical analyses

All statistical analyses were performed using R version 3.6.3. All
the two-group comparisons were computed for p-value using the
Wilcox-test. Based on true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) results of cancer prediction,
we calculated the sensitivity [TP/(TP + FN)], specificity [TN/(TN
+ FP)], positive predictive value (PPV) [TP/(TP + FP)], negative
predictive values (NPV) [TN/(TN + FN)], and accuracy [(TP
+ TN)/(TP + FP + TN + FN)]. The R package caret (v.6.0-
79) (Kuhn, 2008) was used to implement the classification of
healthy versus cancer samples and the tissue of origin. ROC curve
and model output were obtained using the pROC (v.1.13) R
package (Robin et al., 2011). The R package clusterProfiler (v4.2.2)
(Yu et al., 2012) was used to carry out GO enrichment analysis.
Pathway networks were computed and plotted using aPEAR (R
package, v1.0.0) (Kerseviciute and Gordevicius, 2023).

3 Results

3.1 Characterization of cfREs in plasma
using lpWGS

We provided a biological approach to investigate the
fragmentation characteristics of repetitive elements released into

the plasma (Figure 1). This study involved four different datasets,
which were obtained through lpWGS of cfDNA. These datasets
were as follows: i) pilot cohort: this cohort consisted of three healthy
individuals and three patients with colorectal cancer (CRC). Each
dataset was created by merging five samples from the discovery
cohort, resulting in an average raw depth of 50x; ii) Discovery
cohort: this cohort included 76 patients with 5 types of cancer and
22 healthy individuals; iii) Validation cohort: this cohort included
data from 10 healthy individuals and 36 patients with various types
of cancer. The enrolled samples in the two cohorts had an average
data depth of 10x (Supplementary Table S1); and iv) GSE71378 was
used as the external validation dataset (Snyder et al., 2016). To
identify cfREs, we conducted a comprehensive screening procedure
using RepeatMasker (detailed in the “Methods” section). As a
result, we identified a total of 37 cfRE families in the genome
that are prone to being released into the plasma. Among these
families, L1 and Alu were found to be more prevalent, while
simple repeat and low-complexity repeat regions constituted a
smaller portion (Figure 2a).

Next, we examined the distribution patterns of cfREs
throughout the genome and compared their fragmentation
patterns between healthy controls and patients with cancer.
Previous studies have shown that REs are closely associated
with transcriptional regulation and that cfREs are predominantly
located in transcriptionally active chromatin regions (Figure 2b)
(Criscione et al., 2014). We evaluated the characterization of all
cfRE families across various transcriptional elements. The cfRE
families enriched in enhancers, TSSs with CpG islands (TSS
CGI), and other regulatory regions are mainly Alu, STR, and
low-complexity-related families (Figures 2c–h). In conclusion,
these results suggested that cfREs were involved in important
biological functions, especially Alu and STR, and that there existed
distinct fragmentation patterns between healthy individuals and
cancer patients.

3.2 Fragmentomic profiles of cfREs
effectively distinguish early-stage cancer
patients from healthy individuals

We analyzed the various fragmentomic profiles of all cfRE
families to identify early-stage cancer patients. To assess the
enrichment of fragments in the cfRE, we analyzed the proportion of
fragments covering the region of each family in the whole genome
(fragment ratio, FR). Similarly, to evaluate element activity, we
calculated the proportion of regions with a fragment distribution for
each family over all regions of the cfRE (fragment distribution, FD).
Fragmentation lengths were profiled as the ratios of short (<150 bp)
to long (≥150 bp) fragments for each family (fragment length, FL).
Based on these features, there were significant differences between
healthy individuals and CRC patients in the discovery cohort
(Figure 3a). To investigate the impact of biofunctional regions,
we performed an analysis of fragment characteristics in several
functional domains. We assessed cfRE regions associated with
different biological functions, such as compartment A/B (Fortin
and Hansen, 2015), promoter, enhancer (Andersson et al., 2014),
and coding sequence (CDS). The area under the curve (AUC) was
compared for each family using four different scores to identify
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FIGURE 1
Schematic diagram of the workflow for early tumor detection by cfREs. Blood samples were collected from cancer patients and healthy controls, and
low-depth whole genome sequencing was performed on plasma cfDNA. The qualified mapped reads were filtered and retained if they intersected with
the RepeatMasker annotations. Five variables were designed according to the fragmentomic features of the repeat elements, and the most relevant Alu
and STR families were screened out to establish a cancer prediction model. Cancer species-specific cfREs determined by histone modification were
used to develop the model for predicting the origin of tumor tissue.

CRC in healthy individuals (Figure 3b). The correlation coefficients
among the top 30% of families were consistently close to 1 (data
not shown) based on the AUC ranking of the families. Notably,
Alu and STR outperformed other elements in most features and
functional classes (Figure 3b). To study the effect of biofunctional
regions on repeat, we performed the AUC of CRC patients and
healthy individuals within the specific domains. The FD score
had the highest AUC compared to that of the other groups,
with AUC values of 0.96, 0.96, 0.94, 0.96, 0.97, and 0.96 in
compartments A/B, enhancer, MSI, promoter, TFBS, and CDS,
respectively. Nevertheless, there was only a slight variation in AUC
between the seven different functional components for four types of
biomarkers (Figure 3c).

We next investigated whether differential cfRE could respond
to aberrations involving gene regulatory elements in early-stage
cancer. To further investigate themolecular mechanisms underlying
these regulatory element abnormalities, we filtered the regions
with a |z-score| >1 and an adjusted p-value <0.05 and performed
gene annotation at the promoter (within the 1 kb upstream region

of the TSS). Pathway enrichment analysis was performed on the
annotated genes. As a result, we identified significant enrichment in
two pathways: the Hippo pathway (log2Odd = 6), which regulates
cell growth, proliferation, apoptosis, and tissue repair through the
interaction of various signaling molecules (Sanchez-Vega et al.,
2018); and the colorectal cancer pathway (Figure 3d). In summary,
our findings suggested that cfREs exhibited overall aberrations
in fragment patterns, and the pool singles may originate from
small portions of the tumor tissue. These aberrations appeared to
be closely associated with alterations in regulatory elements and
pathways involved in carcinogenesis.

3.3 STR-specific fragmentation features
improve the detection of cancer

STRs are usually regions of DNA repeats in the genome
consisting of 1–6 bp units. Their high variability provided a more
comprehensive characterization of the fragment. The 2 bp unit
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FIGURE 2
Characteristics of cfREs across the genome and pattern comparison between CRC patients and healthy controls. (a) Proportion of each repetitive
element family in cfREs. (b) Comparison of the proportion of REs in the genome between CRC patients and healthy controls (significance levels for
p-values are as follows: ns, p>=0.05;∗, p < 0.05;∗∗, p < 0.01;∗∗∗, p < 0.001; and∗∗∗∗,p < 0.0001). Distribution of Alu (c, e) and STR (d, f) family position
distance from enhancer and TSS in the cfRE of CRC patients. Distribution of STR family positions from enhancer and TSS in the cfRE of CRC patients
and healthy human controls. The enrichment of the 44 repetitive element family at enhancers (g) and promoters (h); the y-axis represents the odds
ratio of CRC patients compared to healthy controls.

length elements are most prevalent in the STR regions, followed
by the 4 bp unit length repeats (Supplementary Figure S1). STRs
were classified into six groups based on their repeat unit lengths,
ranging from 1 bp to 6 bp, and most STR repeat regions in these six
groups were between 20 bp and 200 bp (Supplementary Figure S1).
Except for the two groups with unit lengths of 2 bp and 3 bp, the
number of repeat units in the other four groups is mostly 6–50
times (Supplementary Figure S1). Finally, we summarized a total of
546 sub-families based on the unit base length and repeat length
of the STR in the plasma. This study showed that tumor patients
were enriched with more fragments in the STR region (p = 3.5e−09)
(Figure 3e), which is consistent with previous results (Erwin et al.,
2023). To evaluate indels of STR fragments in the plasma, we
analyzed the unit number variations of all 1–6 bp elements from
the pilot cohort. We observed a tendency for the unit number of
STR elements to differ between healthy individuals and patients
with cancer in cfREs (Figure 3f,g; Supplementary Figure S2). In
summary, fragmentswithmore unit repeat counts than the reference
genome were more active in tumor plasma, which is consistent with
previous tissue-related studies.

It is well-known that the variants generated by STR elements
promote tumor development and possess tumor specificity, so we
need to further analyze the characteristics of STR fragments to
improve tumor prediction performance. Inserting duplicate regions
by unit is called expansion. We calculated fragment expansion (FE)
based on the number of unit insertion reads detected in plasma,
weighting each subfamily accordingly (details are provided in the
“Methods” section). We distinguished between healthy individuals
and CRC patients in the discovery and validation cohorts based on
the STR expansion score (FE), and the AUC value was 0.947 and

0.771 in both cohorts (Figure 3h,i), respectively. To eliminate the
effect of different cfRE families, we calculated the five signatures
using only Alu and STR. The assay showed that the AUC for
differentiating healthy individuals fromCRCpatients did not change
significantly when reducing the families to Alu and STR only
(Figures 3c,h,i). Therefore, only two families, Alu and STR, were
selected for all subsequent features calculation. We first used the
least absolute shrinkage and selection operator (LASSO) algorithm
(10-fold cross-validation) to build a linear model based on five
fragment properties in the discovery cohort and finally confirmed
the model in the independent validation cohort. The AUC values of
cfRE-F were 0.973 and 0.993 in two different cohorts (Figure 3h,i).
The results showed that the FE score is complementary to the
other features and also proved that the cfRE-F model outperformed
models using a single indicator variable.

3.4 cfRE-F aids the detection of multiple
early-stage cancers

To effectively address clinical needs, the cfRE-F solution should
be expanded to incorporate multi-tumor assays and remain cost-
effective. To this end, we would need to evaluate the performance of
each characteristic at resampling depths. We randomly resampled
from 0.1× to 10× for 10 times of healthy human D1 to simulate
different sequencing depths. As we expected, the correlation
coefficients of the values of the different indicators with the raw
depths increased with increasing reads (Figure 4a). All the features
are saturated at 0.5× depth, while the FC, FD, and FR scores
are saturated when using 0.1× data, and the median correlation
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FIGURE 3
Fragmentomic characterization of cfRE and performance of the cfRE-F model. (a) Comparison of four cfRE fragmentomics variables between CRC and
healthy controls in the discovery cohort. (b) Four variables from different subfamilies to distinguish CRC patients from healthy individuals after
considering subsets of different functional regions in the human genome, and the color in the grid represents the AUC. (c) Performance of the four
representative variables in predicting CRC versus healthy individuals in terms of different functional regions. (d) Pathways enrichment of regulatory
regions corresponding to significantly altered cfREs in CRC patients, and the odds ratio was calculated for CRC cfRE versus random background.
(e) Comparison of the proportion of STR-derived cfDNA fragments in CRC patients and healthy controls. Distribution of structural variation events of
insertions (f) and deletions (g) of STR with 2 bp repeat units compared between CRC patients and healthy controls. The performance of the cfRE
fragmentomics variables and the integrated CFR-F model for predicting CRC in the training (h) and validation (i) sets.

coefficients of these three measures with the original data are 1.0,
0.73, and 0.81 (Figure 4a), respectively. In conclusion, our study has
shown that the cfRE-based fragmentation features can accurately
restore the original signal in the ultra-low depth detection of
WGS. In addition, we analyzed the correlation between fragment
features and tumor DNA concentration. The absolute value of
the correlation coefficient R between four fragment features and
DNA concentration at sequencing 10× data was less than 0.3
(Pearson’s correlation coefficient, Figure 4b). Our analysis revealed
that there was no correlation between four fragment features and
DNA concentration with varying coverage depth.

We built a multiple feature-based ensemble machine learning
model for cancer detection. For comparison,we tested eight different
machine learning algorithms for the integrated modeling of five
individuals based on all samples. The performance of the model
was calculated using 10-fold cross-validation, and the results showed
that the RF algorithm performed better in both the discovery
and validation cohorts, with AUC values of 0.961 and 0.95 in
raw depth (Figure 5a; Supplementary Tables S2-S4), respectively. To
further test the reliability of the cfRE-F, we used the independent
external validation set GSE71378 to predict pan-cancer (with nine

types of cancers) from healthy individuals. To ensure unbiased
modeling, we downsampled three different datasets to the same
depth (0.1×). The AUC of the cfRE-F model based on the RF
algorithm for the discovery, validation, and external validation
sets were 0.95, 0.98, and 1 (Figure 5a), respectively. The results
showed that the multimodal cfRE-F was effective for the prediction
of tumors versus healthy individuals and was not limited to any
cancer type.

Toassessthecost-effectivenessofcfRE-F,weanalyzedthedetection
performance from various sequencing analyses. We performed
downsampling for all samples and then calculated the AUC changes
at each depth based on cfRE-F. The analysis suggested that the
discovery cohort had less change in AUC across reads, with
AUC values of 0.961, 0.967, 0.962, 0.957, 0.949, and 0.942 from
10× to 0.1× (Figure 5b). Similarly, the AUC values for detecting
patients with cancer in the validation cohort were 0.95, 0.947,
0.931, 0.932, 0.938, and 0.982 (Figure 5c). Meanwhile, we compared
cfRE-F with DELFI, CIN, and mtDNA (Cristiano et al., 2019) at
the same sequencing depth and found that cfRE-F outperformed
the others (Figure 5d,e; Supplementary Figure S3). In conclusion,
cfRE-F not only demonstrated the ability to detect multi-tumor

Frontiers in Cell and Developmental Biology 07 frontiersin.org

https://doi.org/10.3389/fcell.2025.1630231
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhang et al. 10.3389/fcell.2025.1630231

FIGURE 4
Performance of cfREs in predicting CRC at simulated low depths. (a) Prediction performance of the five cfRE variables at the simulated gradient
random-sampling depth, which shows that the efficiency at 0.5× has been basically saturated. (b) Spearman correlation between the concentration of
ctDNA and five cfRE variables in 10× depth.

FIGURE 5
Determination of the CFR-F model building approach and comparison of its performance with other models. (a) Polar bar plot of performance
comparison of cfRE-F models built using different algorithms in each dataset. ROC curves of cfRE-F in the training (b) and validation (c) sets at different
depths. Comparison of the performance of cfRE-F with other early cancer detection models in the training set (d) and the validation set (e).

types at an early stage but also showed ultra-sensitive and stable
performance at low depths.

3.5 Fragmented cfRE profiles of regulatory
element regions for multi-cancer
localization

Alu and STR elements are tumor tissue-specific in aberrant
transcriptional regulation. However, there may be a loss of

information due to extremely limited sequencing depths. In
recent years, it has been found that enhancers and promoters
abnormally promote tumor development, and Alu and STR
mainly mediate the recognition between enhancers and promoters.
Therefore, we collected enhancer and promoter histone data of
H3K4me1, H3K27ac, and H3K4me3 from colorectal, lung, gastric,
liver, esophageal, and pancreatic cancers. This study enrolled six
ChIP-seq datasets from five cancer types, including GSE136888,
GSE76153, GSE212342, GSE67471, GSE193257, and GSE64557.
Finally, we merged the identified tumor tissue-specific histone
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FIGURE 6
Model building of cfRE-TOO and genome enrichment of cancer-species-specific cfRE. Comparison of fragmentomics variables FE (a) and FC (b) for
cancer-specific cfRE across cancer types. The correlation between true tumor location and cfRE-TOO predicted the tumor location in the discovery (c)
and validation (d) datasets. (e) cfRE-TOO overall accuracy of prediction between different cancer types. The correlation between cfRE-TOO predicted
and true source tumor locations for discovery (f), validation (g), and independent validation (h) datasets at an ultra-low depth of 0.1×. Accuracy of
cfRE-TOO predictions in the validation (i) dataset and the independent validation (j) dataset at ultra-low depths. (k) Clustering of cfRE-TOO input
variables, where different cancer types can be clustered in corresponding one class. (l) Tumor-specific cfRE relative genes enriched in
tumor-associated pathways, with odds ratio computed in random gene background. (m) CDKN2A, as a tumor-specific cfRE-regulated gene, shows
upregulated expression in different cancer types (significance levels for p-values are: ns, p>=0.05;∗, p < 0.05;∗∗, p < 0.01;∗∗∗, p < 0.001; and∗∗∗∗, p <
0.0001), and its high expression is a poor prognostic factor (n) for worse overall survival.

regions with the Alu and STR regions of the cfRE, and the
overlapping regions were generated as the final tumor tissue-
specific cfRE transcriptional regulatory element regions. A total
of 85,498 regions were identified (Supplementary Table S5). We
calculated different fragment signatures based on the tumor-
regulated specific cfRE regions of Alu and STR, respectively. The
FE score was identified as a specific marker for lung cancer,
showing significantly higher values in lung cancer patients than
in other tumor types and in healthy individuals (Figure 6a). The
FC score calculated based on STR can effectively discriminate
gastrointestinal tumors from liver (p = 0.00091) and lung cancers
(p = 5e-16) (Figure 6b). All these different metrics were effective
in distinguishing different tumors (Supplementary Figure S4). In
conclusion, fragment features in tumor-specific cfRE regions based
on regulatory elements could enhance the identification of different
tissues of origin.

In order to trace the tumor-origin tissues, we developed amulti-
tumor of origin classifier (cfRE-TOO), in which a prediction model
was constructed based on the RF algorithm using five different
fragmentation features of the tumor-specific cfRE with Alu and
STR regions. The model correctly predicted tumor samples in both

the discovery cohort 56/76 (73.7%) (Figure 6c) and the validation
cohort 27/35 (77.1%) (Figure 6d), but P159 was excluded due
to insufficiently calculated cfRE regions (Supplementary Table S6).
The overall internal data accuracy was 74.1% (Figure 6e). We
discovered that some misclassifications were assigned to highly
correlated tissues. For instance, colorectal cancer was more likely
to be predicted as stomach cancer. To assess the model’s robustness
in ultra-low-pass scenes, we downsampled the data of the three
cohorts to 0.1×. We then validated the accuracy of the model
by constructing the cfRE-TOO model in discovery, followed by
validation and external independent validation sets. The model
correctly predicted 88/111 (79.3%) samples for the internal dataset
(Figures 6f, g, i) and 16/23 (69.6%) samples for the independent
external validation set (Figure 6h, j).

To further understand the biological functions of the
tumor tissue-specific selected repetitive elements, we calculated
five different indicators for specific regions across tumor
types and illustrated the results in a heatmap (Figure 6k;
Supplementary Table S7). Meanwhile, we performed enrichment
analysis by selecting genes whose elements were in the promoter
region and located in the tumor-associated pathway. The results
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showed that TGF-beta, MYC, and Cell_Cycle pathways were
significantly enriched (Figure 6l; Supplementary Table S8). Among
them, the mutated CDKN2A has been reported to be associated
with the progression of various tumors. Our analysis of TCGA
data revealed that it is barely expressed in normal tissues and
is highly expressed in tumor tissues (Figure 6m). CDKN2A was
associated with the prognosis of various tumors and is considered
a relevant therapeutic target (Kreuger et al., 2023). A combined
analysis of data from five different tumors in TCGA revealed that
patients with low CDKN2A expression had a better prognosis,
with hepatocellular carcinoma and lung squamous carcinoma
reaching significant levels (Figure 6n; Supplementary Figure S5). In
conclusion, tumor-specific transcriptional regulatory elements can
be utilized to identify the origin of tumor tissues and tumor-specific
prognostic markers and therapeutic targets.

4 Discussion

In this study, we reveal the feasibility of cfREs for the detection
of multiple cancers by low-throughput whole genome sequencing.
Regulatory elements have been reported to associate with aberrantly
activated or switched-on chromatin during tumorigenesis, and
these aberrant regulatory elements often exert their functions
through repetitive elements (Anwar et al., 2017; Lee et al., 2024).
Tumor cell-derived cfDNA shows a non-random breakage pattern
during nuclease digestion, which is influenced by the chromatin
state (Lo et al., 2021; Snyder et al., 2016; Cristiano et al., 2019;
Chabon et al., 2020; Ulz et al., 2016). Cancer patients’ cfDNA
has more repetitive elements than normal cfDNA, including
distinct cfRE profiles. Aberrant changes in these elements, such as
activation or structural variations, may cause genomic instability in
tumorigenesis. cfRE fragmentomic features offer new ways to study
cancer and other diseases.

Among the families of repetitive elements that distinguish
healthy individuals from tumor patients, Alu and STR were the
most important contributors. Alu plays important roles in gene
expression regulation, DNA replication and recombination, and
genome evolution (Hormozdiari et al., 2011). STRs are highly
polymorphic and are strongly associated with cancer. In tumor cells,
STRs may be gained or lost at high frequency due to the functional
disruption of DNA replication or repair (Chatterjee and Walker,
2017). To comprehensively characterize the fragmentomic profile
of cfREs in the plasma of cancer patients, we designed variables
corresponding to tumor-specific repeated sequence variation events,
and these features also provide important clues for cancer diagnosis
and localization.

Repetitive elements, especially transposon elements, are
increasingly recognized as tumor-driving factors and biomarkers.
A representative one is COMPLETE-seq, which detects the
expression of repetitive elements in cfRNA (Reggiardo et al.,
2023). Another recently released study focuses on the application
of the K-mer landscape of repetitive sequences for early tumor
screening (Annapragada et al., 2024). Compared with these research
articles, we have focused more on the fragmentation changes in
representative repeat elements Alu and STR under repeat patterns.
In addition to considering the content in cfDNA and the underlying
fragment length distribution, changes in sequence complexity and

expansion coefficients that may occur as a result of structural
variations in the repetitive elements were also addressed. By
performing an in-depth analysis of fragments in the cancer-type-
specific enhancer and promoter regions of the cfRE, we were able
to precisely trace the tissue origin of tumors and accurately identify
the aberrant transcription of cancer driver genes. The predictive
performance based on the tumor-specific cfRE fragmentomics
model remains robust under ultra-low depth sequencing, and
the cancer species-specific regulatory site-based cfRE model has
considerable potential for tissue tracing.

In addition, we performed data sampling from 10× to 0.1× and
found that the performance of the multimodal model at 0.1× (AUC
= 0.982) was not inferior to that at 10× (AUC = 0.95). The overall
detection cost of each sample is approximately 100 CNY, which is
comparable to the cost of a polymerase chain reaction (PCR)-based
assay. Hence, ultra-low-depth WGS effectively balances accuracy
and cost, which is conducive to clinical promotion.

In summary, our study constructs a comprehensive framework
for analyzing the genomic characteristics of cfRE fragments in
plasma, which reconciles the advantages of high sensitivity and
robustness and is remarkably cost-effective. The main limitation
of the current study is that the sample size is not large enough.
Furthermore,whole genomebisulfite sequencing (WGBS) can retain
the fragmentation histological information of the repetitive elements
and additionally supply the epigenetic information. Future studies
should consider using low-depthWGBS to replaceWGS to continue
to improve the prediction performance of cfRE. In screening
for cancer-type-specific repetitive elements, CUT&tag of histone
modifications, ATAC-seq, and RNA-seq from various tumor tissues
can be integrated to accurately identify altered RE sites specific
to each cancer type. Future studies with larger cohorts and more
multi-omics approaches will address the current problem.

5 Conclusion

In this study, we profiled five representative repetitive features
of cfREs and explored their application in early cancer detection
through low-pass whole genome sequencing. Alu and STR were
the representative repetitive element families that robustly predict
cancer and healthy cases. Furthermore, we developed a multimodal
machine learning approach based on cfRE fragmentomics that
accurately detects multiple early-stage cancers across different
sequencing depths. The analysis of cfREs in tumor-specific
regulatory regions demonstrated excellent accuracy in predicting
the tissue of origin and identifying tumor driver genes with aberrant
transcription.We performed additional testing on a limited number
of independent external validation datasets. Overall, our study
presents an innovative, sensitive, and cost-effective method that
utilizes cfRE fragmentomics for enhanced cancer detection and
localization.
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