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Editorial on the Research Topic

Survival strategies: cellular responses to stress and damage
s

Stress and damage in organisms originate at the cellular level and require immediate
response to prevent onset of pathological conditions. The ability of cells to effectively
counteract stress is vital for the overall health and survival of the organism. The
stress that cells encounter varies, including oxidative stress, genotoxic stress, heat
shock, nutrient deprivation, hypoxia, exposure to toxic compounds, pathogen invasion,
mechanical injury and aging (Fulda et al., 2010). These stress conditions disrupt cellular
homeostasis by damaging structural components or impairing critical functions.The ability
of cells to offset and withstand stress conditions is primarily mediated by activation
of survival pathways such as DNA damage response (DDR), heat shock response
(HSR), unfolded protein response (UPR), anti-oxidant response, mitochondrial stress
signaling, stress granules (SGs) and autophagy (Yan et al., 2021; Bahar et al., 2016).
Beyond these pathways, inter-organellar crosstalk plays a crucial role in mitigating stress
conditions (Raimundo, 2014). Furthermore, AMPK and mTOR play essential roles in
managing cellular stress by coordinating their actions to restore cellular homeostasis
(Hardie, 2015; Saxton and Sabatini, 2017). Depending on the level and type of stress,
different pro-survival mechanisms are activated; however if the cell fails to neutralize
the stress, various cell death pathways are initiated and eventually lead to disease
states such as diabetes, neurodegeneration, cancer, and others (Fulda et al., 2010;
Martindale and Holbrook, 2002).

The crosstalk between different survival pathways is important to preserve cellular
functions and to repair macromolecular damage. For example, DDR and UPR direct a
coordinated response, especially under hypoxic conditions to maintain cell integrity and
prevent cell death (Endoplasmic Reticulum Stress and Unfolded Protein Response, 2024).
Similarly, HSR can assist UPR to relieve ER stress by enhancing ER export of misfolded
proteins (Kim and Gross, 2013). This coordination is essential when UPR is overwhelmed
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as in case of ER stress–mediated diabetes (Eizirik et al., 2008).
Further, to combat oxidative stress andmaintain redox homeostasis,
cells utilize robust antioxidant response such as the Nuclear Factor
Erythroid 2-Related Factor 2 (Nrf2)/Kelch-like ECH-associated
Protein 1 (Keap1) signaling pathway and mitochondrial antioxidant
systems to prevent molecular damage (Ma, 2013; Dodson et al.,
2019). Various cellular stressors can induce the formation of SGs,
which are cytoplasmic biomolecular condensates containing RNA
and proteins (Hofmann et al., 2021). SGs can be selectively cleared
by autophagy, a process termed granulophagy, to restore cellular
homeostasis (Buchan and Parker, 2009). Moreover, autophagy acts
as a survival mechanism under nutrient deprivation and helps
remove damaged or dysfunctional cellular components to restore
metabolic balance (Mizushima and Komatsu, 2011).

Thus, mammalian cells have developed an intricate and robust
network of survival pathways that allow adaptation to different stress
conditions. Intracellular responses to stress, their regulation and
their pathophysiological implications have been extensively studied.
This collection is an attempt to bring together recent studies on
the stress response mechanisms highlighting different aspects of
survival strategies, ranging from strategies of maintaining lysosomal
homeostasis to responses to oxidative damage.

The collection includes 5 review articles, 2 original articles and
2 method articles. Wang et al. reviewed the cellular response to
lysosomal damage, including alternative secretion pathways and
interactions with other organelles from the endolysosomal system,
ER andGolgi apparatus.They also explored the contribution of these
processes to disease progression. Lysosomal damage responses also
involve the conjugation of ATG8 (Autophagy-related protein 8) to
single membranes (CASM), as reviewed by Kaur et al. The authors
summarized how the decoration of lysosomes with ATG8 promotes
downstream effects, such as membrane repair and removal.

Similar to the lysosomal membrane, the nuclear envelope
can undergo rupture. In this collection, Di Bona and Bakhoum
provided a detailed protocol to study real-time nuclear and
micronuclear rupture and repair. They introduce a novel high-
resolution fluorescence microscopy-based technique that allows
for the induction and imaging of both micronuclear and primary
nuclear damage.

In cancer cells, DDR is often dysregulated. Ghai et al. reviewed
the roles of Heat Shock Factor 1 (HSF1) in cancer chemoresistance,
including through the inhibition of the DDR pathway, thus
promoting genomic instability and carcinogenesis. They also
highlighted HSF1’s role in apoptosis inhibition and autophagy
activation, and discussed the therapeutic potential of HSF1
inhibitors to overcome chemoresistance.

As in cancer, autophagy dysregulation has also been implicated
in Parkinson’s disease. An original study by Limanaqi et al. explored
the impact of alpha-synuclein - whose abnormal forms have been
linked to Parkinson’s disease - on THP1 monocytes and derived
macrophages.The authors showed that alpha-synuclein exerted cell-
and context-specific effects, including alterations in autophagy, lipid
dynamics, and inflammatory pathways, which may help explain the
functional impairments ofmonocytes andmacrophages observed in
this neurological disorder.

Mitochondrial dysfunction is linked to numerous pathologies.
Jiménez-Loygorri et al. described a method to quantitate mitophagy

(a selective type of autophagy targeting mitochondria) flux, using
the mitoQC reporter and flow cytometry. This approach can be
multiplexed with the analysis of other cellular parameters, such as
ROS production and cell viability in cultured cells, and has also been
validated ex vivo in the retina of mitoQC reporter mice.

Sergiev et al. described the role of the mitochondrial
protein Mitoregulin in regulating mitochondrial function. They
summarized the literature–including sometimes, contradictory
findings–on mitoregulin’s role in cellular metabolism, particularly
in kidney and muscle physiology.

Oxidative stress, characterized by the accumulation of reactive
oxygen species (ROS), is another major driver of cellular damage.
Liu et al. reviewed how radiotherapy induces skin reactions,
notably through oxidative stress, and discussed how antioxidant
therapies could help prevent these side effects, thus improving
cancer patients’ quality of life after radiotherapy. Extending the
focus on strategies to protect cells from stress-related damage,
Li et al. described a novel method to improve hepatocyte
survival upon cryopreservation, using ultrasonic ice seeding
technology.

Altogether, this Research Topic gathers original articles, reviews,
and methodological papers that explore various aspects of cellular
responses to stress and damage, to promote cell survival. We
hope it will become a valuable resource for the current and the
broader field.
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