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Background: Diabetic nephropathy (DN) is a common complication of diabetes, 
characterized by damage to renal tubules and glomeruli, leading to progressive 
renal dysfunction. The aim of our study is to explore the key role of metabolic 
reprogramming (MR) in the pathogenesis of DN.

Methods: In our study, three transcriptome datasets (GSE30528, GSE30529, and 
GSE96804) were sourced from the Gene Expression Omnibus (GEO) database. 
These datasets were integrated for batch effect correction and subsequently 
subjected to differential expression analysis to identify differentially expressed 
genes (DEGs) between DN and control samples. The identified DEGs were cross-
referenced with genes associated with MR to derive MR associated differentially 
expressed genes (MRRDEGs). These MRRDEGs underwent Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. 
To identify key genes and develop diagnostic models, four machine learning 
algorithms were employed in conjunction with weighted gene co-expression 
network analysis (WGCNA) and the protein interaction tool CytoHubba. Gene 
set enrichment analysis (GSEA) and CIBERSORT analysis were conducted on the 
key genes to assess immune cell infiltration in DN. Additionally, a competitive 
endogenous RNA (ceRNA) network was constructed using the key genes. Finally, 
the expression levels of core genes in human samples were validated through 
quantitative real-time PCR (qRT-PCR).
Results: We identified 256 MRRDEGs, highlighting metabolic and inflammatory 
pathways in DN. KEGG analysis linked these genes to the MAPK signaling 
pathway, suggesting its key role in DN. Six key genes were pinpointed using 
WGCNA, PPI, and machine learning, with their diagnostic value confirmed by 
ROC analysis. CIBERSORT revealed a strong link between these genes and 
immune cell infiltration, indicating the immune response’s role in DN. GSEA 
showed these genes’ involvement in inflammatory and metabolic processes. A 
ceRNA network was predicted to clarify gene regulation. qRT-PCR confirmed
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the expression patterns of CXCR2, NAMPT, and CUEDC2, aligning with 
bioinformatics results.
Conclusion: Through bioinformatics analysis, a total of six potential MRRDEGs 
were identified, among which CUEDC2, NAMPT, CXCR2 could serve as potential 
biomarkers.

KEYWORDS

GEO database, diabetic nephropathy, metabolic reprogramming, bioinformatics, qRT-
PCR 

1 Introduction

Diabetic nephropathy (DN) is a severe complication associated 
with diabetes mellitus (Thipsawat, 2021), characterized by 
progressive damage to the renal tubules and glomeruli, ultimately 
leading to a decline in kidney function (Levin et al., 2020). 
It is estimated that approximately 30%–40% of patients with 
diabetes will develop DN (Thomas et al., 2015), making it a 
significant contributor to end-stage renal disease (ESRD) and 
associated mortality (Gilbertson et al., 2005; Cross et al., 2021; 
Dw et al., 2025). Despite the implementation of blood glucose 
regulation and therapeutic measures aimed at diminishing urinary 
albumin excretion, the fundamental progression of DN remains 
largely unaltered (Thomas et al., 2015). Recently, researchers have 
been exploring new treatments like glucose stabilizers, kidney-
protective agents, and therapies targeting inflammation and fibrosis 
(Ghose et al., 2024). SGLT2 inhibitors, for instance, help regulate 
blood glucose and may reduce kidney workload by decreasing 
glucose reabsorption (Neuen et al., 2024). Despite these advances, 
current treatments have limitations in slowing disease progression 
and cannot fully reverse DN. Understanding the molecular 
mechanisms behind DN could help identify new therapeutic targets 
and improve prevention and management strategies.

The pathogenesis of DN is intricate, with recent research 
highlighting the pivotal role of metabolic reprogramming (MR) 
in various diseases, such as tumors and metabolic disorders (Li and 
Liao, 2021; Huang et al., 2023). Metabolic reprogramming refers 
to the cellular adaptation to environmental changes through the 
modification of metabolic pathways under specific pathological 
conditions (Li et al., 2021). Recent studies have underscored the 
significance of MR in DN, demonstrating its close association 
with the onset and progression of the disease. Notably, significant 
alterations have been observed in energy and lipid metabolism 
(Wang et al., 2022a; Yu et al., 2025). A fundamental component 
of metabolic reprogramming in DN is the modification of 
mitochondrial function. Mitochondria are central to cellular 
energy metabolism, and their impaired function leads to increased 
oxidative stress, apoptosis, and dysregulated autophagy, thereby 
facilitating the advancement of renal fibrosis and dysfunction 
(Fan et al., 2024; Sharma et al., 2013). This dysfunction not 
only accelerates the progression of DN but also involves the 
reprogramming of lipid metabolism. Under diabetic conditions, 
renal cells exhibit significant lipid metabolic abnormalities, 
including increased lipid uptake, impaired fatty acid oxidation, 
disrupted cholesterol efflux, and enhanced lipid catabolism (Yu et al., 
2025). These alterations result in the accumulation of lipids such as 
free fatty acids, diacylglycerol, and ceramides, which subsequently 

induce lipotoxicity, inflammation, and fibrosis (Yu et al., 2025). 
Additionally, the interplay between MR and DN is critical, as 
metabolic dysregulation not only exacerbates renal injury but also 
promotes the progression of the disease through mechanisms such 
as oxidative stress and inflammation (Hou et al., 2025).

Existing research has highlighted the critical role of MR 
in the pathological progression of DN. However, the regulatory 
mechanisms at the molecular level and the specific role of MR 
in DN remain insufficiently understood. Consequently, this study 
aims to elucidate the key characteristics and functional importance 
of MR in DN through bioinformatics analysis. We employed 
bioinformatics and machine learning methodologies to identify 
biomarkers associated with metabolic reprogramming in DN. 
Initially, we acquired the DN dataset from the GEO database and 
conducted differential gene expression analysis. This was followed 
by an intersection with genes related to metabolic reprogramming. 
We further integrated weighted gene co-expression network analysis 
(WGCNA), four distinct machine learning algorithms, and protein-
protein interaction (PPI) network construction to pinpoint key 
differentially expressed genes associated with MR. Subsequently, a 
diagnostic model for DN was developed, and the diagnostic efficacy 
of the model and key genes was validated. Additionally, immune 
cell infiltration analysis was conducted to investigate the relationship 
between key genes and immune cell populations. The pivotal 
genes were employed to construct competitive endogenous RNA 
(ceRNA) networks. Finally, the expression levels of these key genes 
were experimentally validated. These findings have the potential 
to offer novel insights into the early diagnosis and therapeutic 
strategies for DN. 

2 Materials and methods

2.1 Data acquisition

We procured gene expression data pertinent to diabetic 
nephropathy from the GEO database (Barrett et al., 2013), 
specifically datasets GSE30528 (Woroniecka et al., 2011), GSE30529 
(Woroniecka et al., 2011), and GSE96804 (Pan et al., 2018; 
Shi et al., 2018), utilizing the GEO query package. The GSE30528 
and GSE30529 dataset is derived from the GPL571 platform, 
while the GSE96804 dataset is based on the GPL17586 platform. 
The GSE30528 dataset comprises 13 control samples and 9 DN 
samples, whereas the GSE96804 dataset includes 20 healthy human 
renal tubular samples and 41 tubular samples from DN patients. 
Additionally, the GSE30529 dataset consists of 10 control samples 
and 12 DN samples. We employed the R package ‘sva’ (v3.50.0) 
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TABLE 1  GEO Dataset Information list.

Accession GSE30528 GSE96804 GSE30529

Platform GPL571 GPL17586 GPL571

Experiment type Expression profiling by array Expression profiling by array Expression profiling by array

Species Homo sapiens Homo sapiens Homo sapiens

Tissue glomeruli glomeruli glomeruli

Samples in Control group Control (13) Control (20) Control (10)

Samples in Disease group DN (9) DN (41) DN (12)

Reference Transcriptome analysis of human 
diabetic kidney disease

Dissection of Glomerular 
Transcriptional Profile in Patients With 
Diabetic Nephropathy: SRGAP2a 
Protects Podocyte Structure and 
Function

Transcriptome analysis of human 
diabetic kidney disease

DN, diabetic nephropathy.

to adjust for batch effects across the diabetic nephropathy datasets 
GSE30528, GSE30529, and GSE96804, resulting in a consolidated 
dataset, DN_Datasets, which encompasses 62 DN samples and 
43 control samples. The dataset specifics are outlined in Table 1. 
Furthermore, we identified 1,468 Metabolic Reprogramming-
Related Genes (MRRGs) from the GeneCards database (Stelzer et al., 
2016) (http://www.genecards.org) by searching for protein-coding 
genes related to “metabolic reprogramming” with a relevance 
score >4.

2.2 Differentially expressed gene analysis

To identify the differentially expressed genes (DEGs) associated 
with DN, we employed the ‘limma’ (v3.58.1) package to conduct 
a differential analysis of the expression profile data from the DN_
Datasets. The criteria for selecting DEGs were set at |logFC| > 0.25 
and p. value <0.01. To further identify metabolic reprogramming-
related differentially expressed genes (MRRDEGs), we intersected 
the DEGs derived from the DN_Datasets analysis with MRRGs. 
This intersection was visualized using a Venn diagram, and 
the resultant MRRDEGs were used for subsequent analyses. 
Additionally, a volcano plot was generated using the R package 
ggplot2 (v3.5.1) to illustrate the differential analysis results. For 
functional annotation, Gene Ontology (Mi et al., 2019) (GO) 
and Kyoto Encyclopedia of Genes and Genomes (Kanehisa and 
Goto, 2000) (KEGG) pathway analyses were conducted using 
the ‘clusterProfiler’ (v4.10.1) package (Yu et al., 2012), with an 
enrichment significance threshold set at p. adjust <0.05, corrected 
using the Benjamini–Hochberg (BH) method. 

2.3 Weighted gene Co-Expression network 
analysis (WGCNA)

WGCNA is a computational algorithm designed to cluster 
genes into distinct modules and elucidate the relationships between 

these modules and disease characteristics. To thoroughly investigate 
the genetic mechanisms underlying the pathogenesis of DN, a 
co-expression network was constructed utilizing the ‘WGCNA’ 
(v1.72-5) package (Langfelder and Horvath, 2008) in the R. This 
network was developed using the top 40% of genes with the 
highest variance from the DN_Datasets dataset. A dynamic tree 
cut method was employed to merge modules, applying a threshold 
of 0.15. Additional criteria for constructing the co-expression 
network included the use of the ‘pickSoftThreshold’ function, which 
selects powers of soft thresholds (β) based on a scale-free topology 
criterion (independence index R2 = 0.8) (Tanimura et al., 2006), 
and a minimum module size of 100 genes. Spearman correlation 
analysis was conducted to identify potential associations between 
the modules and DN. The intersection of MRRDEGs and modular 
genes was obtained by venn diagram to identify hub MRRDEGs. 

2.4 Construction of protein-protein 
interaction (PPI) networks

Protein-protein interaction (PPI) networks were developed 
utilizing the STRING online database (Szklarczyk et al., 2019) 
(https://www.string-db.org/), with a confidence interaction score 
threshold set at 0.4 to establish significance. The construction 
and analysis of the PPI network were conducted using Cytoscape 
(v3.9.1) software (Shannon et al., 2003). Within Cytoscape, the 
CytoHubba (C et al., 2014) plugin was employed to identify 
key genes. In particular, the Maximal Clique Centrality (MCC) 
algorithm was successful in identifying core genes with high 
centrality, whereas the Degree method enabled the identification of 
genes with the most connections. The Protein-Protein Interaction 
(PPI) network was analyzed using MRRDEGs scores, and the 
top 80 MRRDEGs were selected based on these scores. This 
approach focuses on genes with the highest scores, facilitating 
manageable downstream analysis and highlighting key network 
components. A venn diagram was employed to illustrate the overlap 
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of genes identified by the two algorithms, thereby pinpointing the 
candidate genes. 

2.5 Machine learning

For the identification of key genes in the diagnosis of DN, we 
utilized four machine learning algorithms: Random Forest (RF) 
(Rigatti, 2017), Extreme Gradient Boosting (XGB) (Guo and Chang, 
2022), Support Vector Machine (SVM) (Tan et al., 2014), and 
Generalized Linear Model (GLM) (Song et al., 2013). RF was 
selected for its robust capability in feature importance ranking, XGB 
for its proficiency in capturing non-linear interactions pertinent 
to metabolic reprogramming, SVM with a radial basis function 
(RBF) kernel for its effectiveness in high-dimensional classification 
tasks, and GLM as an interpretable baseline model. Using the train 
function from the R ‘caret’ (v6.0-94) package, we trained RF, SVM, 
XGB, and GLM models, utilizing the ‘randomForest' (v4.7-1.1), 
‘kernlab' (v0.9-33), ‘xgboost' (v1.7.8.1), and ‘stats' (v4.3.3) packages, 
respectively. Concurrently, we utilized the ‘caret’ (v6.0-94) package’s 
to tune their parameters through grid search, and evaluated their 
performance using fivefold cross-validation. Furthermore, to ensure 
the reliability of the models, we generated residual boxplots, feature 
importance plots, reverse cumulative distribution of residuals, and 
receiver operating characteristic (ROC) curves for the models. 

2.6 Diagnostic model construction and 
assessment

To determine the feasibility of this diagnostic model as a 
diagnostic factor, a nomogram model was performed for six 
genes using the ‘rms’ (v6.7-1) package. The reliability of the 
model predictions was then assessed using ROC curves. To 
evaluate the predictive performance and clinical applicability of 
the models, calibration curves and decision curve analysis (DCA) 
were employed. Furthermore, based on the results of the DCA, we 
assessed the clinical impact curves (CIC). 

2.7 Immune infiltration analysis

The immune infiltration matrix was derived from the DN 
gene expression dataset using the ‘CIBERSORT’ (v0.1.0) package 
in R. The CIBERSORT algorithm was then used to compare 
the distribution of immune cell infiltration between patients with 
DN and controls (Newman et al., 2015). Additionally, Spearman’s 
correlation analysis was conducted to explore the relationship 
between MRRDEGs, DN, and immune infiltration. The immune 
infiltration matrix for each sample and group was visualized using 
the ‘ggplot2’ (v3.5.1) package. 

2.8 Single-sample gene set enrichment 
analysis (ssGSEA)

We employed single-sample Gene Set Enrichment Analysis 
(ssGSEA), an advanced analytical technique that leverages 

molecular feature databases, to elucidate the effects of gene 
expression (Subramanian et al., 2005). The calculations were 
conducted using the ‘gsva’ function within the clusterProfiler 
package (v4.10.1). This method utilizes a precise algorithm for 
functional enrichment analysis, allowing us to investigate the 
potential biological pathways associated with key MRRDEGs. 

2.9 ceRNA networks and validation of key 
gene expression

To predict microRNAs (miRNAs) targeting the model genes, we 
utilized TargetScan (http://www.targetscan.org/) with a screening 
criterion of pancancer num >7. For predicting lncRNA-miRNA 
interactions, we employed Starbase (https://starbase.sysu.edu.
cn/starbase2/) using a screening criterion of pancancer num >12. 
Following this, we utilized Cytoscape (v3.9.1) software to construct 
and visualize the lncRNA-miRNA-mRNA regulatory networks. To 
assess the differential expression of crucial genes between disease 
and control groups within the DN_Datasets, we employed the 
Mann-Whitney U test (Wilcoxon rank-sum test). The results of 
this differential analysis were visualized using group comparison 
graphs generated with the R package ggplot2 (v3.5.1). 

2.10 qRT-PCR experiments

Additionally, qRT-PCR validation was conducted. Between 
March to April 2025, twelve whole-blood samples were collected 
from the First Affiliated Hospital of Nanchang University, including 
six from DN patients and three from healthy controls, aged 30 to 60. 
All participants gave informed consent, and the study was approved 
by the ethics committee (Ethical number: (2024) CDYFYYLK 
(07–026)). Blood samples ranging from 3 to 5 mL were collected 
into EDTA tubes for subsequent white blood cell enrichment. Total 
leukocytes were isolated through the lysis of red blood cells using 
ACK Lysing Buffer (Thermo Fisher, USA). The whole blood was 
combined with 10 volumes of the lysis buffer, incubated at room 
temperature for 10 min, and then subjected to centrifugation at 300 g
for 5 min. The resulting leukocyte pellet underwent three washes 
with PBS to ensure the thorough removal of erythrocyte debris. RNA 
was extracted from both DN patients’ and healthy controls’ samples, 
with DN samples taken before treatment. Reverse transcription was 
performed using the Servicebio®RT First Strand cDNA Synthesis 
Kit from Wuhan, China, followed by quantitative PCR. In the next 
step, qPCR was performed using the 2 × SYBR Green qPCR Master 
Mix (None ROX) from Servicebio, Wuhan, China, following the 
manufacturer’s instructions. The thermocycling protocol included 
an initial phase at 95 °C for 5 min, followed by 40 cycles of 95 °C for 
10 s and 60 °C for 30 s β-actin was used as the reference gene for data 
normalization, and gene expression was calculated using the 2−ΔΔCT 
method. The primers used are listed in Table 2.

2.11 Statistical analysis

All statistical analyses were performed using R software, version 
4.3.3. For comparing two groups with normally distributed data, 
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TABLE 2  Primer sequences for quantitative real-time PCR.

Gene Names Forward (5′-3′) Reverse (3ʹ-5ʹ)

CXRC2 CTCCCTTTCATAGGTCACAG AAACTTAAATCCTGACTGGGTC

CUEDC2 GGAACAAAGAGAACCTGCA CTTCTTTGAGCATTTCGGG

NAMPT GAAATGTTCTCTTCACGGTGG GACTGAACAAGAATAGTCTCAATCC

ATF3 AGAAGGAGAAGACGGAGTG TATGCAGGTCTTCAGGACC

GDF15 GCTGGGAAGATTCGAACAC ACTTCTGGCGTGAGTATCC

CEBPD AGAAGTTGGTGGAGCTGTC GCAGCTGCTTGAAGAACTG

we applied the Student’s t-test. The chi-square test was used 
to compare categorical and pairwise features across different 
groups. The Mann-Whitney U test was employed to determine 
statistically significant differences between two groups, while the 
Kruskal–Wallis test was used to assess significant differences among 
multiple independent groups. Pearson’s correlation test was applied 
to evaluate correlations between normally distributed variables, and 
Spearman’s correlation test was used for non-normally distributed 
variables. All statistical tests were two-sided, and a p-value of less 
than 0.05 was considered statistically significant unless otherwise
specified. 

3 Results

3.1 Calibration of data set, variance 
analysis, and functional enrichment 
analysis

We employed the R package ‘sva' (v3.50.0) to address batch 
effects in the DN_Datasets by performing de-batching, resulting 
in a refined dataset. We then conducted a comparative analysis 
of the datasets before and after batch effect removal using 
Principal Component Analysis (PCA) plots (Figures 1A,B). The 
PCA results indicate that the batch effect in the DN_Datasets 
was effectively mitigated. To identify differentially expressed 
genes (DEGs) associated with DN across various subgroups, we 
utilized the R package ‘limma' (v3.58.1) to analyze the expression 
profiling data of the DN_Datasets. This analysis revealed a 
total of 2,080 DEGs, comprising 1,007 upregulated and 1,073 
downregulated genes in the DN group compared to the control 
group. Subsequently, a volcano plot (Figure 1C) was generated 
to visualize the differential analysis results. To identify the 
MRRDEGs, we determined the intersection of DEGs from the 
DN_Datasets, which pertains to DN, with MRRGs. This process 
yielded a total of 256 genes designated as MRRDEGs for further 
analysis. A venn diagram was constructed to illustrate these results 
(Figure 1D). GO functional analysis revealed that the biological 
processes (BPs) were predominantly enriched in pathways such 
as response to insulin, hexose metabolic process, monosaccharide 
metabolic process, carbohydrate biosynthetic process, and glucose 

metabolic process. The cellular components (CC) were primarily 
associated with the mitochondrial matrix and chromosomal region. 
Regarding molecular function (MF), significant enrichment was 
observed in DNA-binding transcription factor binding, calmodulin 
binding, ubiquitin-like protein ligase binding, and transcription 
factor binding (Figure 1E). The KEGG pathway analysis 
indicated significant enrichment in the AMPK signaling pathway, 
insulin resistance, cell cycle, and PI3K-Akt signaling pathway
(Figure 1F).

3.2 Weighted gene Co-expression network 
analysis (WGCNA)

To identify key gene modules associated with DN, we employed 
the WGCNA algorithm to construct co-expression networks and 
modules for both DN and control groups. Initially, we calculated the 
expression variance of each gene within the DN datasets and selected 
the top 40% of genes exhibiting the highest variance for further 
analysis. A threshold of β = 10 (scale-free R = 0.8) was utilized 
to construct a scale-free network, facilitating the identification 
of co-expression gene modules (Figure 2A). Through hierarchical 
clustering of the samples, eight distinct co-expression modules, each 
represented by a unique color, were identified using the dynamic tree 
cut algorithm (Figures 2B–D). Subsequently, we assessed the co-
expression similarity and adjacency of these modules in relation 
to clinical characteristics of the control and DN groups. Our 
analysis revealed that the blue and yellow modules were strongly 
associated with DN, encompassing a total of 1,834 genes (Figure 2E). 
Additionally, we examined the extent of overlap between 
module genes and MRRDEGs, identifying 114 genes in common
(Figure 2F).

3.3 Protein-protein interaction (PPI) 
networks

PPI networks (Figure 3A) were developed utilizing the STRING 
database (https://www.string-db.org/) for the 118 genes obtained in 
the previous step. The construction and analysis of the PPI network 
were conducted using Cytoscape software. Within Cytoscape 
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FIGURE 1
Dataset correction and analysis of differentially expressed genes (A). PCA plot of DN- Datasets before correction. (B) PCA plot of the corrected 
DN-Datasets. (C) Volcano plot of differential analysis results between DN and Control groups in the DN- Datasets dataset. (D) Venn diagram of the 
DEGs and MR. (E) GO enrichment analyses of MRRDEGs. (F) KEGG enrichment analyses of MRRDEGs. DN, Diabetic nephropathy. MR, Metabolic 
reprogramming. GO, Gene ontology. KEGG, Kyoto encyclopedia of genes and genomes. BP, Biological process. CC, Cellular component. MF, 
Molecular function. The screening criteria for GO/KEGG enrichment items were p. Adj <0.05 and FDR value (q. value) < 0.25, and the p value correction 
method was Benjamini–Hochberg (BH).
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FIGURE 2
The WGCNA analysis and identification of MRRDEGs (A). The soft threshold power and the mean connectivity of WGCNA. (B) Clustering dendrogram 
of genes. (C) A cluster tree. (D) Gene dendrograms from average linkage hierarchical clustering. (E) Module-trait relationships. (F) Venn diagram of the 
MRRDEGs and module genes. MRRDEGs, Metabolic reprogramming related differentially expressed genes. WGCNA, Weighted Gene Co-expression 
Network Analysis.

(v3.9.1), the CytoHubba plugin was employed to apply two distinct 
computational methods, namely, Maximal Clique Centrality (MCC) 
and Degree, for the identification of key genes. The scores are 

detailed in Supplementary Table S1, S2. Subsequently, a total of 78 
key genes (Supplementary Table S3), referred to as hub MRRDEGs, 
were identified through the use of a Venn diagram (Figure 3B).
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FIGURE 3
Identification of mitochondria-related DEGs (A). PPI networks of overlapping MRRDEGs constructed in the STRING database. (B) Venn diagram of hub 
MRRDEGs identified by two different algorithms in Cytohubba (MCC and Degree).

3.4 Machine learning

In this study, we utilized four different machine learning 
algorithms: RF, SVM, XGBoost, and GLM. The RF algorithm was 
utilized to develop the model, leading to the identification of 40 
genes (Figures 4A,B). Subsequently, the SVM algorithm was applied 
to select the 10 genes with the highest accuracy (AUC = 0.949) 
(Figures 4C–F). Furthermore, the XGBoost algorithm was used 
to construct the model, resulting in the selection of 10 genes 
(Figures 5A,B). Finally, the GLM algorithm was used to screen the 
key genes, and six genes were identified as UEDC2, CXCR2, ATF3, 
GDF15, CEBPD and NAMPT (Figures 5C–F).

3.5 Diagnostic model construction and 
evaluation

We created a nomogram model (Figure 6A) and assessed the 
diagnostic performance of genes using a six-gene ROC analysis. 
CXCR2 showed the highest AUC of 0.846 (Figure 6B), while 
the other genes had AUCs of 0.704, 0.8, 0.689, 0.77, and 0.704 
(Figures 6B,C). Calibration curve analysis confirmed that predicted 
rates matched observed rates well (Figure 6D). Decision curve 
analysis (DCA) indicated that the logistic regression model with the 
six diagnostic factors was stable at high-risk thresholds (Figure 6E). 

In the high-risk threshold range of 0.4–1, clinical impact curves 
showed strong predictive ability, as the “number of people at 
high risk” closely matched the “number of people at high risk of 
having an event” (Figure 6F).

3.6 Immune infiltration analysis

To investigate potential changes in the immune system 
between DN patients and controls, we conducted immune cell 
characterization utilizing the CIBERSORT algorithm. Our analysis 
was designed to elucidate variations in the composition of the 
immune cell population. The findings revealed significant disparities 
in the proportions of various immune cell types between the DN 
and control (Figures 7A,B). Notably, the disease group exhibited 
an elevated presence of M1 macrophages, M2 macrophages, and 
gamma delta T cells relative to the control group, indicating that 
alterations in the immune system might be critically involved 
in the development of DN. Furthermore, interactions among 
different immune cell types were evident (Figure 7C). The 
microenvironment of DN was evaluated using the CIBERSORT 
algorithm, and the relationship between key genes and immune 
cells was investigated using Spearman’s correlation analysis (p < 
0.05, |correlation coefficient|>0.3). Significant associations were 
identified between most key genes and immune cell components. 
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FIGURE 4
Construction of machine learning models (A). Confidence intervals for error rates of random forest models (B). The relative importance of genes in 
random forest models. (C) Boxplots showed the residuals of SVM model. (D) Cumulative residual distribution of SVM model. (E) ROC analysis of SVM 
and RF models based on five-fold cross-validation in the testing cohort. (F) The important features in SVM models. DN, Diabetic nephropathy. SVM, 
Support Vector Machine.
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FIGURE 5
Identification of key MRRDEGs (A). The feature gene importance for the XGB model. (B) Statistical graph of variable contribution in SHAP analysis. (C)
Boxplots showed the residuals of GLM model. (D) Cumulative residual distribution of GLM model. (E) ROC analysis of GLM and XGB model based on 
five-fold cross-validation in the testing cohort. (F) The important features in GLM models. DN, Diabetic nephropathy. XGB, eXtreme Gradient Boosting. 
GLM, Generalized Linear Model.
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FIGURE 6
Construction of nomogram model (A). Nomogram. (B) ROC analysis of CXCR2, ATF3, and GDF15. (C) ROC analysis of CEBPD, CUEDC2 and NAMPT.
(D) calibration curve. (E) DCA curves. (F) CIC curve. DCA, decision curve analysis; CIC, clinical impact curve.

A notable observation was the positive correlation identified 
between CUEDC2 and M1 macrophages. Additionally, CXCR2
demonstrated a significant positive correlation with neutrophils. 

In contrast, a significant negative correlation was observed 
between NAMPT expression and the M0 macrophage population
(Figures 7D–F).
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3.7 Single-sample gene set enrichment 
analysis (ssGSEA)

To elucidate the enrichment pathways associated with the 
characterized genes, we conducted a ssGSEA. Target genes were 
ranked, and groups with high and low expression were delineated 
based on expression level differences. The enrichment degree was 
evaluated by calculating the cumulative score for the target gene 
set within the ranked list. The GSEA results indicated significant 
enrichment in pathways such as WP_INFLAMMATORY_
RESPONSE_PATHWAY, REACTOME_SIGNALING_BY_
INTERLEUKINS, and cellular metabolism-related pathways 
including KEGG_OXIDATIVE_PHOSPHORYLATION, along 
with other biologically relevant functions and signaling pathways 
(Enrichment score >0.5, p < 0.001) (Figures 8A–F). Normalized 
enrichment scores (NES), false discovery rates (FDR qvalues), and P-
values for all pathways are included in Supplementary Table S1, S4.

3.8 ceRNA networks and expression 
verification

The miRNA-mRNA interactions were obtained from TargetScan 
and subsequently screened to identify miRNAs interacting with five 
specific genes, resulting in 36 overlapping targeting relationships. 
Additionally, the StarBase database was employed to predict 
82 miRNA-targeted lncRNAs. The datasets were subsequently 
integrated into Cytoscape software to generate a ceRNA regulatory 
network (Figure 9A). This network offers insights into the potential 
regulatory mechanisms driving metabolic reprogramming in DN. 
We analyzed the expression differences of six key genes in the DN_
Datasets dataset between the DN and control groups using the 
WilCoxon rank-sum test, and the results of the expression difference 
analysis were presented by the subgroup comparison graph 
(Figure 9B). The results showed that in the DN_Datasets dataset, the 
expression of the six key genes was statistically significantly different 
between the DN and Control groups (P < 0.05). Fold-change and 
effect size are included in Supplementary Table S5.

3.9 qRT-PCR

The expression levels of the key genes in DNA and control 
blood samples were examined using qRT-PCR. The findings 
indicated significant differences in the expression levels of three 
genes (CUEDC2, CXCR2, and NAMPT), and the differences were 
statistically significant (P < 0.05). Specifically, the expression of 
CUEDC2, CXCR2, and NAMPT exhibited lower expression in the 
DN group relative to the control group. In contrast, no significant 
difference in expression was observed for ATF3, GDF15, or CEBPD
between the DN and control groups (Figures 10A–F).

4 Discussion

In the context of DN, renal cells experience substantial metabolic 
reprogramming, characterized by a transition from mitochondrial 
oxidative phosphorylation to glycolysis. This metabolic shift is 

believed to be instrumental in the development and progression of 
DN (Wang et al., 2022b). The rising prevalence of DN necessitates an 
urgent investigation into its underlying mechanisms and potential 
therapeutic targets. In this study, we aimed to clarify the crucial 
function of metabolic reprogramming in the development of DN 
using a bioinformatics analysis. We identified 256 MRRDEGs, and 
GO analysis indicated that these genes were significantly enriched 
in biological processes related to insulin signaling, carbohydrate 
catabolism, and glucose control. These observations are consistent 
with previous studies demonstrating a metabolic disorder in 
the pathogenesis of DN (Khoshjou and Dadras, 2014). KEGG 
pathway analysis showed that these genes are mainly linked to 
the MAPK signaling pathway, which is crucial in DN progression. 
Hyperglycemia triggers MAPK cascades (ERK/JNK/p38), leading 
to renal inflammation, fibrosis, apoptosis, and oxidative stress 
(Thongrung et al., 2025). This pathway connects metabolic signals 
to tissue damage, making it a key mechanism in DN, aligning 
with prior research (Wang et al., 2021; Han et al., 2020). We 
combined WGCNA, Cytohubba (Degree/MCC), and four machine 
learning algorithms (XGBoost, SVM-RFE, LASSO, Random Forest) 
to overcome individual model limitations. WGCNA finds co-
expression modules but needs hub gene refinement, Cytohubba 
identifies network hubs but relies on PPI completeness, and 
machine learning algorithms provide strong feature selection 
but have biases. We prioritized genes identified by at least 
two Cytohubba methods and 3 ML algorithms to ensure robust 
biomarker selection. This approach led to the identification of 
six key genes: CXCR2, ATF3, GDF15, NAMPT, CEBPD, and 
CUEDC2. To ascertain the diagnostic utility of the core genes, 
we assessed their diagnostic performance by constructing the 
nomogram. Further investigation involved examining immune 
infiltration in DN using the CIBERSORT algorithm, and evaluating 
the correlation between key genes and infiltrating immune cells 
to reveal relevant immune mechanisms. Additionally, we predicted 
the ceRNA regulatory network to further clarify the regulation of 
these core genes. While bioinformatics models provide valuable 
insights, experimental validation is essential for confirming the 
therapeutic potential of the identified biomarkers. Lastly, qRT-PCR 
was performed to confirm that CXCR2, NAMPT, and CUEDC2
could potentially serve as biomarkers for the clinical diagnosis and 
risk evaluation of DN patients. CXCR2 and CUEDC2 predominantly 
regulate inflammatory pathways, including NF-κB signaling and 
macrophage polarization, whereas NAMPT plays a critical role in 
linking metabolic dysfunction (NAD + depletion and mitochondrial 
impairment) to inflammatory responses and oxidative stress, crucial 
for DN progression.

CXCR2, a receptor that mediates the effects of specific 
chemokines, functions as a signaling molecule and exerts a key 
influence on inflammation and tissue damage (Leslie et al., 2022). 
The deletion of CXCR2 has been demonstrated to significantly 
enhance renal function in mice with DN, while concurrently 
inhibiting the activation of the NF-κB signaling pathway. This 
pathway is known to regulate inflammation, restore the endothelial 
glycocalyx, and mitigate DN, as evidenced by a study utilizing 
a mouse model with a specific knockout of the CXCR2 gene 
(Cui et al., 2024). Furthermore, another study suggests that the 
IL-8-CXCR1/2 axis may contribute to DN by inducing podocyte 
injury (Loretelli et al., 2021). Inhibition of CXCR1/2 resulted in 
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FIGURE 7
Immune cell infiltration analyses (A). Immune cell distribution map in DN. (B) boxplot showing the comparison of 22 kinds of immune cells between 
DN and the control group. (C) heatmap representing the associations of the differentially infiltrated immune cells with immune cells. (D) heatmap 
representing the associations of the differentially infiltrated immune cells with the six hub genes. (E) Scatter plot of correlation between NAMPT and 
immune cell. (F) Scatter plot of correlation between CUEDC2 and immune cell. DN, Diabetic nephropathy. The symbol ∗  is equivalent to P < 0.05, 
which is statistically significant. The symbol ∗∗  is equivalent to P < 0.01, which is highly statistically significant. The symbol ∗∗∗  is equivalent to P < 0.001 
and highly statistically significant.
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FIGURE 8
GSEA of DN Datasets dataset (A). GSEA for the AFT3 in DN. (B) GSEA for the CEBPD in DN. (C) GSEA for the CUEDC2 in DN. (D) GSEA for the CXCR2 in 
DN. (E) GSEA for the GDF15 in DN. (F) GSEA for the NAMPT in DN. GSEA, Gene set enrichment analysis. DN, Diabetic nephropathy. The screening 
criteria of gene set enrichment analysis (GSEA) were p. Adj< 0.05 and FDR value (q value) < 0.25.

reduced proteinuria, decreased thylakoid dilatation, and diminished 
podocyte apoptosis and DNA damage in diabetic mice. Given 
the observed significant downregulation of CXCR2 in the DN 
group, it is suggested that CXCR2 may not only be involved in 
the progression of the disease but may also represent the body’s 
attempt to ameliorate the condition by reducing the activity of 
the CXCR2 signaling axis. This complex association underscores 
the multifaceted role of CXCR2 in maintaining kidney health. 
Nicotinamide phosphoribosyltransferase (NAMPT), an essential 

enzyme, is pivotal in the biosynthetic pathway of nicotinamide 
adenine dinucleotide (NAD+), a molecule integral to renal 
physiology and central to cellular energy metabolism and redox 
balance. Research indicates that the downregulation of NAMPT
results in reduced NAD + levels, while NAMPT deficiency leads 
to an overload of mitochondrial ribosomes. This overload impairs 
the translation of proteins associated with the mitochondrial inner 
membrane’s oxidative phosphorylation complexes I (CI), III (CIII), 
IV (CIV), and V (CV), culminating in mitochondrial dysfunction. 
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FIGURE 9
ceRNA network and expression verification. (A) ceRNA network of key genes. (B) Expresion level of key genes in DN_datasets. ceRNA, competing 
endogenous RNA. DN, Diabetic nephropathy. The symbol ∗  is equivalent to P < 0.05, which is statistically significant. The symbol ∗∗  is equivalent to P < 
0.01, which is highly statistically significant. The symbol ∗∗∗  is equivalent to P < 0.001 and highly statistically significant.

FIGURE 10
qRT-qPCR. (A-F) RT-qPCR validation of relative expression of key genes. The symbol ∗  is equivalent to P < 0.05, which is statistically significant. The 
symbol ∗∗  is equivalent to P < 0.01, which is highly statistically significant. The symbol ∗∗∗  is equivalent to P < 0.001 and highly statistically significant.
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Furthermore, NAMPT downregulation is linked to diminished 
expression of the transcriptional repressor HIC1, which exacerbates 
mitochondrial ribosome overload and contributes to diabetic 
albuminuria and type IV collagen deposition (Hasegawa et al., 
2024). These findings imply a protective role of NAMPT in 
DN, aligning with our study’s conclusions. CUEDC2 is a protein 
characterized by the presence of the CUE structural domain, which 
is integral to various biological processes, including the cell cycle, 
inflammation, and tumorigenesis. Nonetheless, the involvement 
of CUEDC2 in the onset and progression of DN remains to be 
elucidated. Previous studies have indicated that CUEDC2 may 
influence bone formation and regeneration through the regulation 
of the SOCS3-STAT3 pathway (Kim et al., 2020). Additionally, 
CUEDC2 has been associated with the oxidative capacity of 
cardiomyocytes, impacting their oxidative stress response by 
modulating the stability of GPX1 (Jian et al., 2016). In the context 
of DN, oxidative stress and inflammation are critical components of 
its pathophysiological process. Therefore, CUEDC2 may contribute 
to the pathogenesis of DN by modulating oxidative stress and the 
inflammatory response.

The polarization state of macrophages, specifically the 
equilibrium between M1 pro-inflammatory macrophages and 
M2 anti-inflammatory macrophages, plays a crucial role in the 
pathogenesis of DN. Research indicates that excessive activation 
of M1 macrophages intensifies renal inflammation and fibrosis, 
while M2 macrophages aid in mitigating these pathological 
alterations (Yuan et al., 2020; Xie et al., 2020). Our immunological 
analyses further elucidated distinct patterns of immune infiltration 
within DN tissues, characterized by an increased presence of M1 
macrophages, M2 macrophages, and T cells gamma delta. This 
altered immune landscape indicates a dynamic interplay of immune 
responses within DN, particularly marked by the heightened 
infiltration of T cells gamma delta. T cells gamma delta represent 
a unique subset of T cell populations with specialized functions, 
playing a crucial role in immunosurveillance and tissue repair 
(Ribot et al., 2021). Previous studies have demonstrated that T 
cells gamma delta can modulate the activity of other immune cells 
through cytokine secretion and direct cell-cell interactions (Ziegler, 
2004). In DN tissues, increased T cells gamma delta likely regulate 
local immune responses and aid tissue repair. CUEDC2 positively 
correlates with M1 macrophages, indicating a role in macrophage 
polarization and inflammation. CXCR2 is significantly positively 
correlated with neutrophils, which is consistent with previous 
studies. CXCR2 can recruit neutrophils (Holloman et al., 2024). 
NAMPT negatively correlates with M0 macrophages, suggesting its 
role in their regulation. M0 macrophages’ differentiation into M1 or 
M2 influences disease progression (Chen et al., 2018), and NAMPT
downregulation may boost M0 activation.

Our GSEA analysis confirms that metabolic reprogramming 
drives DN progression through coordinated activation of 
inflammatory and metabolism. The dysregulation of CXCR2, 
NAMPT, and CUEDC2, as identified and validated in this study, 
represents key molecular intersections within this pathogenic 
network. Further study of these genes, including their immune 
connections and interactions with miRNAs and lnRNAs, could 
guide future DN targeting and immunotherapy focused on 
correcting metabolic-immune dysregulation. We plan to investigate 
their mechanisms in DN using molecular biology experiments.

Our study identified CUEDC2, NAMPT, and CXCR2 as potential 
MRRDEGs crucial in DN development. These genes showed high 
diagnostic value in ROC analysis, suggesting their potential as 
biomarkers for early DN diagnosis. Their roles in immune cell 
infiltration and metabolic reprogramming highlight their diagnostic 
and therapeutic potential. Targeting these genes may offer new 
strategies to slow or reverse DN progression. However, the study 
has limitations (Thipsawat, 2021): The current analysis of specific 
markers in the plasma of DN patients is still in its early stages. To 
improve the rigor and generalizability of our results, we intend to 
increase our sample size in future research. Moreover, we plan to 
utilize additional validation techniques, including Western blotting 
and ELISA, to confirm the RT-qPCR data and ensure that the 
observed alterations in gene expression precisely mirror the actual 
plasma levels of these markers. These further experiments will yield 
more substantial evidence to substantiate our findings regarding 
DN biomarkers (Levin et al., 2020). Bias in dataset selection can 
arise from sample variability, which future research could mitigate 
by using more uniform datasets or cross-validation. Even with 
batch-effect correction methods like ComBat, differences between 
datasets (such as platforms or cohorts) may still cause bias. Future 
studies should involve larger prospective cohorts (Thomas et al., 
2015). Theoretical ceRNA regulatory networks need experimental 
validation to confirm their therapeutic potential. Both predicted 
ceRNA networks and CIBERSORT-inferred immune proportions 
are computational and require experiments, such as luciferase 
assays for miRNA interactions and flow cytometry/IHC 
for immune cells, to verify their biological and therapeutic
relevance. 

5 Conclusion

In conclusion, CXRC2, NAMPT, and CUEDC2 were identified 
as key genes involved in DN metabolic reprogramming through 
GEO database analysis and confirmed by qRT-PCR. These insights 
improve our understanding of DN’s molecular mechanisms and 
support future research into new therapeutic strategies targeting 
these genes. More experiments and integrated multi-omics data are 
required to confirm these findings.
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