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Background: Diabetic nephropathy (DN) is a common complication of diabetes,
characterized by damage to renal tubules and glomeruli, leading to progressive
renal dysfunction. The aim of our study is to explore the key role of metabolic
reprogramming (MR) in the pathogenesis of DN.

Methods: In our study, three transcriptome datasets (GSE30528, GSE30529, and
GSE96804) were sourced from the Gene Expression Omnibus (GEO) database.
These datasets were integrated for batch effect correction and subsequently
subjected to differential expression analysis to identify differentially expressed
genes (DEGs) between DN and control samples. The identified DEGs were cross-
referenced with genes associated with MR to derive MR associated differentially
expressed genes (MRRDEGs). These MRRDEGs underwent Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses.
To identify key genes and develop diagnostic models, four machine learning
algorithms were employed in conjunction with weighted gene co-expression
network analysis (WGCNA) and the protein interaction tool CytoHubba. Gene
set enrichment analysis (GSEA) and CIBERSORT analysis were conducted on the
key genes to assess immune cell infiltration in DN. Additionally, a competitive
endogenous RNA (ceRNA) network was constructed using the key genes. Finally,
the expression levels of core genes in human samples were validated through
quantitative real-time PCR (qRT-PCR).

Results: We identified 256 MRRDEGs, highlighting metabolic and inflammatory
pathways in DN. KEGG analysis linked these genes to the MAPK signaling
pathway, suggesting its key role in DN. Six key genes were pinpointed using
WGCNA, PPI, and machine learning, with their diagnostic value confirmed by
ROC analysis. CIBERSORT revealed a strong link between these genes and
immune cell infiltration, indicating the immune response’s role in DN. GSEA
showed these genes’ involvement in inflammatory and metabolic processes. A
ceRNA network was predicted to clarify gene regulation. gRT-PCR confirmed
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the expression patterns of CXCR2, NAMPT, and CUEDCZ2, aligning with
bioinformatics results.

Conclusion: Through bioinformatics analysis, a total of six potential MRRDEGs
were identified, among which CUEDC2, NAMPT, CXCRZ2 could serve as potential

biomarkers.

KEYWORDS

GEO database, diabetic nephropathy, metabolic reprogramming, bioinformatics, qRT-

PCR

1 Introduction

Diabetic nephropathy (DN) is a severe complication associated
with diabetes mellitus (Thipsawat, 2021), characterized by
progressive damage to the renal tubules and glomeruli, ultimately
leading to a decline in kidney function (Levin et al, 2020).
It is estimated that approximately 30%-40% of patients with
diabetes will develop DN (Thomas et al, 2015), making it a
significant contributor to end-stage renal disease (ESRD) and
associated mortality (Gilbertson et al.,, 2005; Cross et al., 2021;
Dw et al, 2025). Despite the implementation of blood glucose
regulation and therapeutic measures aimed at diminishing urinary
albumin excretion, the fundamental progression of DN remains
largely unaltered (Thomas et al., 2015). Recently, researchers have
been exploring new treatments like glucose stabilizers, kidney-
protective agents, and therapies targeting inflammation and fibrosis
(Ghose et al., 2024). SGLT2 inhibitors, for instance, help regulate
blood glucose and may reduce kidney workload by decreasing
glucose reabsorption (Neuen et al., 2024). Despite these advances,
current treatments have limitations in slowing disease progression
and cannot fully reverse DN. Understanding the molecular
mechanisms behind DN could help identify new therapeutic targets
and improve prevention and management strategies.

The pathogenesis of DN is intricate, with recent research
highlighting the pivotal role of metabolic reprogramming (MR)
in various diseases, such as tumors and metabolic disorders (Li and
Liao, 2021; Huang et al., 2023). Metabolic reprogramming refers
to the cellular adaptation to environmental changes through the
modification of metabolic pathways under specific pathological
conditions (Li et al., 2021). Recent studies have underscored the
significance of MR in DN, demonstrating its close association
with the onset and progression of the disease. Notably, significant
alterations have been observed in energy and lipid metabolism
(Wang et al., 2022a; Yu et al., 2025). A fundamental component
of metabolic reprogramming in DN is the modification of
mitochondrial function. Mitochondria are central to cellular
energy metabolism, and their impaired function leads to increased
oxidative stress, apoptosis, and dysregulated autophagy, thereby
facilitating the advancement of renal fibrosis and dysfunction
(Fan et al, 2024; Sharma et al, 2013). This dysfunction not
only accelerates the progression of DN but also involves the
reprogramming of lipid metabolism. Under diabetic conditions,
renal cells exhibit significant lipid metabolic abnormalities,
including increased lipid uptake, impaired fatty acid oxidation,
disrupted cholesterol efflux, and enhanced lipid catabolism (Yu et al.,
2025). These alterations result in the accumulation of lipids such as
free fatty acids, diacylglycerol, and ceramides, which subsequently
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induce lipotoxicity, inflammation, and fibrosis (Yu et al.,, 2025).
Additionally, the interplay between MR and DN is critical, as
metabolic dysregulation not only exacerbates renal injury but also
promotes the progression of the disease through mechanisms such
as oxidative stress and inflammation (Hou et al., 2025).

Existing research has highlighted the critical role of MR
in the pathological progression of DN. However, the regulatory
mechanisms at the molecular level and the specific role of MR
in DN remain insufficiently understood. Consequently, this study
aims to elucidate the key characteristics and functional importance
of MR in DN through bioinformatics analysis. We employed
bioinformatics and machine learning methodologies to identify
biomarkers associated with metabolic reprogramming in DN.
Initially, we acquired the DN dataset from the GEO database and
conducted differential gene expression analysis. This was followed
by an intersection with genes related to metabolic reprogramming.
We further integrated weighted gene co-expression network analysis
(WGCNA), four distinct machine learning algorithms, and protein-
protein interaction (PPI) network construction to pinpoint key
differentially expressed genes associated with MR. Subsequently, a
diagnostic model for DN was developed, and the diagnostic efficacy
of the model and key genes was validated. Additionally, immune
cell infiltration analysis was conducted to investigate the relationship
between key genes and immune cell populations. The pivotal
genes were employed to construct competitive endogenous RNA
(ceRNA) networks. Finally, the expression levels of these key genes
were experimentally validated. These findings have the potential
to offer novel insights into the early diagnosis and therapeutic
strategies for DN.

2 Materials and methods
2.1 Data acquisition

We procured gene expression data pertinent to diabetic
nephropathy from the GEO database (Barrett et al, 2013),
specifically datasets GSE30528 (Woroniecka et al., 2011), GSE30529
(Woroniecka et al., 2011), and GSE96804 (Pan et al., 2018;
Shi et al., 2018), utilizing the GEO query package. The GSE30528
and GSE30529 dataset is derived from the GPL571 platform,
while the GSE96804 dataset is based on the GPL17586 platform.
The GSE30528 dataset comprises 13 control samples and 9 DN
samples, whereas the GSE96804 dataset includes 20 healthy human
renal tubular samples and 41 tubular samples from DN patients.
Additionally, the GSE30529 dataset consists of 10 control samples
and 12 DN samples. We employed the R package ‘sva’ (v3.50.0)
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TABLE 1 GEO Dataset Information list.

10.3389/fcell.2025.1630708

Accession ’ GSE30528 ’ GSE96804 ‘ GSE30529
Platform GPL571 GPL17586 GPL571
Experiment type Expression profiling by array Expression profiling by array Expression profiling by array
Species Homo sapiens Homo sapiens Homo sapiens
Tissue glomeruli glomeruli glomeruli
Samples in Control group Control (13) Control (20) Control (10)
Samples in Disease group DN (9) DN (41) DN (12)
Reference Transcriptome analysis of human Dissection of Glomerular Transcriptome analysis of human
diabetic kidney disease Transcriptional Profile in Patients With diabetic kidney disease
Diabetic Nephropathy: SRGAP2a
Protects Podocyte Structure and
Function

DN, diabetic nephropathy.

to adjust for batch effects across the diabetic nephropathy datasets
GSE30528, GSE30529, and GSE96804, resulting in a consolidated
dataset, DN_Datasets, which encompasses 62 DN samples and
43 control samples. The dataset specifics are outlined in Table 1.
Furthermore, we identified 1,468 Metabolic Reprogramming-
Related Genes (MRRGs) from the GeneCards database (Stelzer et al.,
2016) (http://www.genecards.org) by searching for protein-coding
genes related to “metabolic reprogramming” with a relevance
score >4.

2.2 Differentially expressed gene analysis

To identify the differentially expressed genes (DEGs) associated
with DN, we employed the limma’ (v3.58.1) package to conduct
a differential analysis of the expression profile data from the DN_
Datasets. The criteria for selecting DEGs were set at |logFC| > 0.25
and p. value <0.01. To further identify metabolic reprogramming-
related differentially expressed genes (MRRDEGS), we intersected
the DEGs derived from the DN_Datasets analysis with MRRGs.
This intersection was visualized using a Venn diagram, and
the resultant MRRDEGs were used for subsequent analyses.
Additionally, a volcano plot was generated using the R package
ggplot2 (v3.5.1) to illustrate the differential analysis results. For
functional annotation, Gene Ontology (Mi et al, 2019) (GO)
and Kyoto Encyclopedia of Genes and Genomes (Kanehisa and
Goto, 2000) (KEGG) pathway analyses were conducted using
the ‘clusterProfiler’ (v4.10.1) package (Yu et al, 2012), with an
enrichment significance threshold set at p. adjust <0.05, corrected
using the Benjamini-Hochberg (BH) method.

2.3 Weighted gene Co-Expression network
analysis (WGCNA)

WGCNA is a computational algorithm designed to cluster
genes into distinct modules and elucidate the relationships between
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these modules and disease characteristics. To thoroughly investigate
the genetic mechanisms underlying the pathogenesis of DN, a
co-expression network was constructed utilizing the “WGCNA
(v1.72-5) package (Langfelder and Horvath, 2008) in the R. This
network was developed using the top 40% of genes with the
highest variance from the DN_Datasets dataset. A dynamic tree
cut method was employed to merge modules, applying a threshold
of 0.15. Additional criteria for constructing the co-expression
network included the use of the ‘pickSoftThreshold’ function, which
selects powers of soft thresholds (B) based on a scale-free topology
criterion (independence index R? = 0.8) (Tanimura et al., 2006),
and a minimum module size of 100 genes. Spearman correlation
analysis was conducted to identify potential associations between
the modules and DN. The intersection of MRRDEGs and modular
genes was obtained by venn diagram to identify hub MRRDEGs.

2.4 Construction of protein-protein
interaction (PPI) networks

Protein-protein interaction (PPI) networks were developed
utilizing the STRING online database (Szklarczyk et al, 2019)
(https://www.string-db.org/), with a confidence interaction score
threshold set at 0.4 to establish significance. The construction
and analysis of the PPI network were conducted using Cytoscape
(v3.9.1) software (Shannon et al, 2003). Within Cytoscape, the
CytoHubba (C et al, 2014) plugin was employed to identify
key genes. In particular, the Maximal Clique Centrality (MCC)
algorithm was successful in identifying core genes with high
centrality, whereas the Degree method enabled the identification of
genes with the most connections. The Protein-Protein Interaction
(PPI) network was analyzed using MRRDEGs scores, and the
top 80 MRRDEGs were selected based on these scores. This
approach focuses on genes with the highest scores, facilitating
manageable downstream analysis and highlighting key network
components. A venn diagram was employed to illustrate the overlap
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of genes identified by the two algorithms, thereby pinpointing the
candidate genes.

2.5 Machine learning

For the identification of key genes in the diagnosis of DN, we
utilized four machine learning algorithms: Random Forest (RF)
(Rigatti, 2017), Extreme Gradient Boosting (XGB) (Guo and Chang,
2022), Support Vector Machine (SVM) (Tan et al, 2014), and
Generalized Linear Model (GLM) (Song et al., 2013). RF was
selected for its robust capability in feature importance ranking, XGB
for its proficiency in capturing non-linear interactions pertinent
to metabolic reprogramming, SVM with a radial basis function
(RBF) kernel for its effectiveness in high-dimensional classification
tasks, and GLM as an interpretable baseline model. Using the train
function from the R ‘caret’ (v6.0-94) package, we trained RE, SVM,
XGB, and GLM models, utilizing the ‘randomForest' (v4.7-1.1),
‘kernlab' (v0.9-33), xgboost' (v1.7.8.1), and ‘stats' (v4.3.3) packages,
respectively. Concurrently, we utilized the ‘caret’ (v6.0-94) package’s
to tune their parameters through grid search, and evaluated their
performance using fivefold cross-validation. Furthermore, to ensure
the reliability of the models, we generated residual boxplots, feature
importance plots, reverse cumulative distribution of residuals, and
receiver operating characteristic (ROC) curves for the models.

2.6 Diagnostic model construction and
assessment

To determine the feasibility of this diagnostic model as a
diagnostic factor, a nomogram model was performed for six
genes using the ‘rms (v6.7-1) package. The reliability of the
model predictions was then assessed using ROC curves. To
evaluate the predictive performance and clinical applicability of
the models, calibration curves and decision curve analysis (DCA)
were employed. Furthermore, based on the results of the DCA, we
assessed the clinical impact curves (CIC).

2.7 Immune infiltration analysis

The immune infiltration matrix was derived from the DN
gene expression dataset using the ‘CIBERSORT’ (v0.1.0) package
in R. The CIBERSORT algorithm was then used to compare
the distribution of immune cell infiltration between patients with
DN and controls (Newman et al., 2015). Additionally, Spearman’s
correlation analysis was conducted to explore the relationship
between MRRDEGSs, DN, and immune infiltration. The immune
infiltration matrix for each sample and group was visualized using
the ‘ggplot2’ (v3.5.1) package.

2.8 Single-sample gene set enrichment
analysis (ssGSEA)

We employed single-sample Gene Set Enrichment Analysis
(ssGSEA), an advanced analytical technique that leverages
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molecular feature databases, to elucidate the effects of gene
expression (Subramanian et al., 2005). The calculations were
conducted using the ‘gsva’ function within the clusterProfiler
package (v4.10.1). This method utilizes a precise algorithm for
functional enrichment analysis, allowing us to investigate the
potential biological pathways associated with key MRRDEGs.

2.9 ceRNA networks and validation of key
gene expression

To predict microRNAs (miRNAs) targeting the model genes, we
utilized TargetScan (http://www.targetscan.org/) with a screening
criterion of pancancer num >7. For predicting IncRNA-miRNA
interactions, we employed Starbase (https://starbase.sysu.edu.
cn/starbase2/) using a screening criterion of pancancer num >12.
Following this, we utilized Cytoscape (v3.9.1) software to construct
and visualize the IncRNA-miRNA-mRNA regulatory networks. To
assess the differential expression of crucial genes between disease
and control groups within the DN_Datasets, we employed the
Mann-Whitney U test (Wilcoxon rank-sum test). The results of
this differential analysis were visualized using group comparison
graphs generated with the R package ggplot2 (v3.5.1).

2.10 gRT-PCR experiments

Additionally, qRT-PCR validation was conducted. Between
March to April 2025, twelve whole-blood samples were collected
from the First Affiliated Hospital of Nanchang University, including
six from DN patients and three from healthy controls, aged 30 to 60.
All participants gave informed consent, and the study was approved
by the ethics committee (Ethical number: (2024) CDYFYYLK
(07-026)). Blood samples ranging from 3 to 5 mL were collected
into EDTA tubes for subsequent white blood cell enrichment. Total
leukocytes were isolated through the lysis of red blood cells using
ACK Lysing Buffer (Thermo Fisher, USA). The whole blood was
combined with 10 volumes of the lysis buffer, incubated at room
temperature for 10 min, and then subjected to centrifugation at 300 g
for 5 min. The resulting leukocyte pellet underwent three washes
with PBS to ensure the thorough removal of erythrocyte debris. RNA
was extracted from both DN patients’ and healthy controls’ samples,
with DN samples taken before treatment. Reverse transcription was
performed using the Servicebio® RT First Strand cDNA Synthesis
Kit from Wuhan, China, followed by quantitative PCR. In the next
step, QPCR was performed using the 2 x SYBR Green qPCR Master
Mix (None ROX) from Servicebio, Wuhan, China, following the
manufacturer’s instructions. The thermocycling protocol included
an initial phase at 95 °C for 5 min, followed by 40 cycles of 95 °C for
10 s and 60 °C for 30 s B-actin was used as the reference gene for data
normalization, and gene expression was calculated using the 2AACT
method. The primers used are listed in Table 2.

2.11 Statistical analysis

All statistical analyses were performed using R software, version
4.3.3. For comparing two groups with normally distributed data,
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TABLE 2 Primer sequences for quantitative real-time PCR.

Gene Names ’ Forward (5'-3')

10.3389/fcell.2025.1630708

’ Reverse (3’-5)

CXRC2 CTCCCTTTCATAGGTCACAG AAACTTAAATCCTGACTGGGTC
CUEDC2 GGAACAAAGAGAACCTGCA CTTCTTTGAGCATTTCGGG

NAMPT GAAATGTTCTCTTCACGGTGG GACTGAACAAGAATAGTCTCAATCC
ATF3 AGAAGGAGAAGACGGAGTG TATGCAGGTCTTCAGGACC

GDF15 GCTGGGAAGATTCGAACAC ACTTCTGGCGTGAGTATCC

CEBPD AGAAGTTGGTGGAGCTGTC GCAGCTGCTTGAAGAACTG

we applied the Students t-test. The chi-square test was used
to compare categorical and pairwise features across different
groups. The Mann-Whitney U test was employed to determine
statistically significant differences between two groups, while the
Kruskal-Wallis test was used to assess significant differences among
multiple independent groups. Pearson’s correlation test was applied
to evaluate correlations between normally distributed variables, and
Spearman’s correlation test was used for non-normally distributed
variables. All statistical tests were two-sided, and a p-value of less
than 0.05 was considered statistically significant unless otherwise
specified.

3 Results

3.1 Calibration of data set, variance
analysis, and functional enrichment
analysis

We employed the R package ‘sva' (v3.50.0) to address batch
effects in the DN_Datasets by performing de-batching, resulting
in a refined dataset. We then conducted a comparative analysis
of the datasets before and after batch effect removal using
Principal Component Analysis (PCA) plots (Figures 1A,B). The
PCA results indicate that the batch effect in the DN_Datasets
was effectively mitigated. To identify differentially expressed
genes (DEGs) associated with DN across various subgroups, we
utilized the R package ‘limma’' (v3.58.1) to analyze the expression
profiling data of the DN_Datasets. This analysis revealed a
total of 2,080 DEGs, comprising 1,007 upregulated and 1,073
downregulated genes in the DN group compared to the control
group. Subsequently, a volcano plot (Figure 1C) was generated
to visualize the differential analysis results. To identify the
MRRDEGs, we determined the intersection of DEGs from the
DN_Datasets, which pertains to DN, with MRRGs. This process
yielded a total of 256 genes designated as MRRDEGs for further
analysis. A venn diagram was constructed to illustrate these results
(Figure 1D). GO functional analysis revealed that the biological
processes (BPs) were predominantly enriched in pathways such
as response to insulin, hexose metabolic process, monosaccharide
metabolic process, carbohydrate biosynthetic process, and glucose
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metabolic process. The cellular components (CC) were primarily
associated with the mitochondrial matrix and chromosomal region.
Regarding molecular function (MF), significant enrichment was
observed in DNA-binding transcription factor binding, calmodulin
binding, ubiquitin-like protein ligase binding, and transcription
binding (Figure 1E). 'The
indicated significant enrichment in the AMPK signaling pathway,

factor KEGG pathway analysis
insulin resistance, cell cycle, and PI3K-Akt signaling pathway
(Figure 1F).

3.2 Weighted gene Co-expression network
analysis (WGCNA)

To identify key gene modules associated with DN, we employed
the WGCNA algorithm to construct co-expression networks and
modules for both DN and control groups. Initially, we calculated the
expression variance of each gene within the DN datasets and selected
the top 40% of genes exhibiting the highest variance for further
analysis. A threshold of B = 10 (scale-free R = 0.8) was utilized
to construct a scale-free network, facilitating the identification
of co-expression gene modules (Figure 2A). Through hierarchical
clustering of the samples, eight distinct co-expression modules, each
represented by a unique color, were identified using the dynamic tree
cut algorithm (Figures 2B-D). Subsequently, we assessed the co-
expression similarity and adjacency of these modules in relation
to clinical characteristics of the control and DN groups. Our
analysis revealed that the blue and yellow modules were strongly
associated with DN, encompassing a total of 1,834 genes (Figure 2E).
Additionally, we examined the extent of overlap between
module genes and MRRDEGs, identifying 114 genes in common
(Figure 2F).

3.3 Protein-protein interaction (PPI)
networks

PPI networks (Figure 3A) were developed utilizing the STRING
database (https://www.string-db.org/) for the 118 genes obtained in
the previous step. The construction and analysis of the PPI network
were conducted using Cytoscape software. Within Cytoscape
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MRRDEGs and module genes. MRRDEGs, Metabolic reprogramming related differentially expressed genes. WGCNA, Weighted Gene Co-expression

(v3.9.1), the CytoHubba plugin was employed to apply two distinct  detailed in Supplementary Table S1, S2. Subsequently, a total of 78
computational methods, namely, Maximal Clique Centrality (MCC)  key genes (Supplementary Table S3), referred to as hub MRRDEGs,
and Degree, for the identification of key genes. The scores are  were identified through the use of a Venn diagram (Figure 3B).
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FIGURE 3
Identification of mitochondria-related DEGs (A). PPI networks of overlapping MRRDEGs constructed in the STRING database. (B) Venn diagram of hub
MRRDEGs identified by two different algorithms in Cytohubba (MCC and Degree).

3.4 Machine learning

In this study, we utilized four different machine learning
algorithms: RE, SVM, XGBoost, and GLM. The RF algorithm was
utilized to develop the model, leading to the identification of 40
genes (Figures 4A,B). Subsequently, the SVM algorithm was applied
to select the 10 genes with the highest accuracy (AUC = 0.949)
(Figures 4C-F). Furthermore, the XGBoost algorithm was used
to construct the model, resulting in the selection of 10 genes
(Figures 5A,B). Finally, the GLM algorithm was used to screen the
key genes, and six genes were identified as UEDC2, CXCR2, ATF3,
GDF15, CEBPD and NAMPT (Figures 5C-F).

3.5 Diagnostic model construction and
evaluation

We created a nomogram model (Figure 6A) and assessed the
diagnostic performance of genes using a six-gene ROC analysis.
CXCR2 showed the highest AUC of 0.846 (Figure 6B), while
the other genes had AUCs of 0.704, 0.8, 0.689, 0.77, and 0.704
(Figures 6B,C). Calibration curve analysis confirmed that predicted
rates matched observed rates well (Figure 6D). Decision curve
analysis (DCA) indicated that the logistic regression model with the
six diagnostic factors was stable at high-risk thresholds (Figure 6E).
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In the high-risk threshold range of 0.4-1, clinical impact curves
showed strong predictive ability, as the “number of people at
high risk” closely matched the “number of people at high risk of
having an event” (Figure 6F).

3.6 Immune infiltration analysis

To investigate potential changes in the immune system
between DN patients and controls, we conducted immune cell
characterization utilizing the CIBERSORT algorithm. Our analysis
was designed to elucidate variations in the composition of the
immune cell population. The findings revealed significant disparities
in the proportions of various immune cell types between the DN
and control (Figures 7A,B). Notably, the disease group exhibited
an elevated presence of M1 macrophages, M2 macrophages, and
gamma delta T cells relative to the control group, indicating that
alterations in the immune system might be critically involved
in the development of DN. Furthermore, interactions among
different immune cell types were evident (Figure7C). The
microenvironment of DN was evaluated using the CIBERSORT
algorithm, and the relationship between key genes and immune
cells was investigated using Spearman’s correlation analysis (p <
0.05, |correlation coefficient|>0.3). Significant associations were
identified between most key genes and immune cell components.
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A notable observation was the positive correlation identified In contrast, a significant negative correlation was observed
between CUEDC2 and M1 macrophages. Additionally, CXCR2  between NAMPT expression and the MO macrophage population
demonstrated a significant positive correlation with neutrophils.  (Figures 7D-F).
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3.7 Single-sample gene set enrichment
analysis (ssGSEA)

To elucidate the enrichment pathways associated with the
characterized genes, we conducted a ssGSEA. Target genes were
ranked, and groups with high and low expression were delineated
based on expression level differences. The enrichment degree was
evaluated by calculating the cumulative score for the target gene
set within the ranked list. The GSEA results indicated significant

enrichment in pathways such as WP_INFLAMMATORY_
RESPONSE_PATHWAY, REACTOME_SIGNALING_BY_
INTERLEUKINS, and cellular metabolism-related pathways

including KEGG_OXIDATIVE_PHOSPHORYLATION,
with other biologically relevant functions and signaling pathways
(Enrichment score >0.5, p < 0.001) (Figures 8A-F). Normalized
enrichment scores (NES), false discovery rates (FDR qvalues), and P-

along

values for all pathways are included in Supplementary Table S1, S4.

3.8 ceRNA networks and expression
verification

The miRNA-mRNA interactions were obtained from TargetScan
and subsequently screened to identify miRNAs interacting with five
specific genes, resulting in 36 overlapping targeting relationships.
Additionally, the StarBase database was employed to predict
82 miRNA-targeted IncRNAs. The datasets were subsequently
integrated into Cytoscape software to generate a ceRNA regulatory
network (Figure 9A). This network offers insights into the potential
regulatory mechanisms driving metabolic reprogramming in DN.
We analyzed the expression differences of six key genes in the DN_
Datasets dataset between the DN and control groups using the
WilCoxon rank-sum test, and the results of the expression difference
analysis were presented by the subgroup comparison graph
(Figure 9B). The results showed that in the DN_Datasets dataset, the
expression of the six key genes was statistically significantly different
between the DN and Control groups (P < 0.05). Fold-change and
effect size are included in Supplementary Table S5.

3.9 qRT-PCR

The expression levels of the key genes in DNA and control
blood samples were examined using qRT-PCR. The findings
indicated significant differences in the expression levels of three
genes (CUEDC2, CXCR2, and NAMPT), and the differences were
statistically significant (P < 0.05). Specifically, the expression of
CUEDC2, CXCR2, and NAMPT exhibited lower expression in the
DN group relative to the control group. In contrast, no significant
difference in expression was observed for ATF3, GDF15, or CEBPD
between the DN and control groups (Figures 10A-F).

4 Discussion

In the context of DN, renal cells experience substantial metabolic
reprogramming, characterized by a transition from mitochondrial
oxidative phosphorylation to glycolysis. This metabolic shift is
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believed to be instrumental in the development and progression of
DN (Wang et al., 2022b). The rising prevalence of DN necessitates an
urgent investigation into its underlying mechanisms and potential
therapeutic targets. In this study, we aimed to clarify the crucial
function of metabolic reprogramming in the development of DN
using a bioinformatics analysis. We identified 256 MRRDEGs, and
GO analysis indicated that these genes were significantly enriched
in biological processes related to insulin signaling, carbohydrate
catabolism, and glucose control. These observations are consistent
with previous studies demonstrating a metabolic disorder in
the pathogenesis of DN (Khoshjou and Dadras, 2014). KEGG
pathway analysis showed that these genes are mainly linked to
the MAPK signaling pathway, which is crucial in DN progression.
Hyperglycemia triggers MAPK cascades (ERK/JNK/p38), leading
to renal inflammation, fibrosis, apoptosis, and oxidative stress
(Thongrung et al.,, 2025). This pathway connects metabolic signals
to tissue damage, making it a key mechanism in DN, aligning
with prior research (Wang et al,, 2021; Han et al, 2020). We
combined WGCNA, Cytohubba (Degree/MCC), and four machine
learning algorithms (XGBoost, SVM-RFE, LASSO, Random Forest)
to overcome individual model limitations. WGCNA finds co-
expression modules but needs hub gene refinement, Cytohubba
identifies network hubs but relies on PPI completeness, and
machine learning algorithms provide strong feature selection
but have biases. We prioritized genes identified by at least
two Cytohubba methods and 3 ML algorithms to ensure robust
biomarker selection. This approach led to the identification of
six key genes: CXCR2, ATF3, GDFI5, NAMPT, CEBPD, and
CUEDC2. To ascertain the diagnostic utility of the core genes,
we assessed their diagnostic performance by constructing the
nomogram. Further investigation involved examining immune
infiltration in DN using the CIBERSORT algorithm, and evaluating
the correlation between key genes and infiltrating immune cells
to reveal relevant immune mechanisms. Additionally, we predicted
the ceRNA regulatory network to further clarify the regulation of
these core genes. While bioinformatics models provide valuable
insights, experimental validation is essential for confirming the
therapeutic potential of the identified biomarkers. Lastly, qRT-PCR
was performed to confirm that CXCR2, NAMPT, and CUEDC2
could potentially serve as biomarkers for the clinical diagnosis and
risk evaluation of DN patients. CXCR2 and CUEDC2 predominantly
regulate inflammatory pathways, including NF-«xB signaling and
macrophage polarization, whereas NAMPT plays a critical role in
linking metabolic dysfunction (NAD + depletion and mitochondrial
impairment) to inflammatory responses and oxidative stress, crucial
for DN progression.

CXCR2, a receptor that mediates the effects of specific
chemokines, functions as a signaling molecule and exerts a key
influence on inflammation and tissue damage (Leslie et al., 2022).
The deletion of CXCR2 has been demonstrated to significantly
enhance renal function in mice with DN, while concurrently
inhibiting the activation of the NF-kB signaling pathway. This
pathway is known to regulate inflammation, restore the endothelial
glycocalyx, and mitigate DN, as evidenced by a study utilizing
a mouse model with a specific knockout of the CXCR2 gene
(Cui et al., 2024). Furthermore, another study suggests that the
IL-8-CXCR1/2 axis may contribute to DN by inducing podocyte
injury (Loretelli et al., 2021). Inhibition of CXCR1/2 resulted in
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reduced proteinuria, decreased thylakoid dilatation, and diminished
podocyte apoptosis and DNA damage in diabetic mice. Given
the observed significant downregulation of CXCR2 in the DN
group, it is suggested that CXCR2 may not only be involved in
the progression of the disease but may also represent the body’s
attempt to ameliorate the condition by reducing the activity of
the CXCR2 signaling axis. This complex association underscores
the multifaceted role of CXCR2 in maintaining kidney health.
Nicotinamide phosphoribosyltransferase (NAMPT), an essential

Frontiers in Cell and Developmental Biology

enzyme, is pivotal in the biosynthetic pathway of nicotinamide
adenine dinucleotide (NAD+), a molecule integral to renal
physiology and central to cellular energy metabolism and redox
balance. Research indicates that the downregulation of NAMPT
results in reduced NAD + levels, while NAMPT deficiency leads
to an overload of mitochondrial ribosomes. This overload impairs
the translation of proteins associated with the mitochondrial inner
membrane’s oxidative phosphorylation complexes I (CI), III (CIII),
IV (CIV), and V (CV), culminating in mitochondrial dysfunction.
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Furthermore, NAMPT downregulation is linked to diminished
expression of the transcriptional repressor HIC1, which exacerbates
mitochondrial ribosome overload and contributes to diabetic
albuminuria and type IV collagen deposition (Hasegawa et al,
2024). These findings imply a protective role of NAMPT in
DN, aligning with our study’s conclusions. CUEDC2 is a protein
characterized by the presence of the CUE structural domain, which
is integral to various biological processes, including the cell cycle,
inflammation, and tumorigenesis. Nonetheless, the involvement
of CUEDC2 in the onset and progression of DN remains to be
elucidated. Previous studies have indicated that CUEDC2 may
influence bone formation and regeneration through the regulation
of the SOCS3-STAT3 pathway (Kim et al., 2020). Additionally,
CUEDC2 has been associated with the oxidative capacity of
cardiomyocytes, impacting their oxidative stress response by
modulating the stability of GPX1 (Jian et al., 2016). In the context
of DN, oxidative stress and inflammation are critical components of
its pathophysiological process. Therefore, CUEDC2 may contribute
to the pathogenesis of DN by modulating oxidative stress and the
inflammatory response.

The polarization state of macrophages, specifically the
equilibrium between MI1 pro-inflammatory macrophages and
M2 anti-inflammatory macrophages, plays a crucial role in the
pathogenesis of DN. Research indicates that excessive activation
of M1 macrophages intensifies renal inflammation and fibrosis,
while M2 macrophages aid in mitigating these pathological
alterations (Yuan et al., 2020; Xie et al., 2020). Our immunological
analyses further elucidated distinct patterns of immune infiltration
within DN tissues, characterized by an increased presence of M1
macrophages, M2 macrophages, and T cells gamma delta. This
altered immune landscape indicates a dynamic interplay of immune
responses within DN, particularly marked by the heightened
infiltration of T cells gamma delta. T cells gamma delta represent
a unique subset of T cell populations with specialized functions,
playing a crucial role in immunosurveillance and tissue repair
(Ribot et al., 2021). Previous studies have demonstrated that T
cells gamma delta can modulate the activity of other immune cells
through cytokine secretion and direct cell-cell interactions (Ziegler,
2004). In DN tissues, increased T cells gamma delta likely regulate
local immune responses and aid tissue repair. CUEDC2 positively
correlates with M1 macrophages, indicating a role in macrophage
polarization and inflammation. CXCR?2 is significantly positively
correlated with neutrophils, which is consistent with previous
studies. CXCR2 can recruit neutrophils (Holloman et al., 2024).
NAMPT negatively correlates with MO macrophages, suggesting its
role in their regulation. MO macrophages’ differentiation into M1 or
M2 influences disease progression (Chen et al., 2018), and NAMPT
downregulation may boost M0 activation.

Our GSEA analysis confirms that metabolic reprogramming
drives DN progression through coordinated activation of
inflammatory and metabolism. The dysregulation of CXCR2,
NAMPT, and CUEDC2, as identified and validated in this study,
represents key molecular intersections within this pathogenic
network. Further study of these genes, including their immune
connections and interactions with miRNAs and InRNAs, could
guide future DN targeting and immunotherapy focused on
correcting metabolic-immune dysregulation. We plan to investigate
their mechanisms in DN using molecular biology experiments.
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Our study identified CUEDC2, NAMPT, and CXCR2 as potential
MRRDEGs crucial in DN development. These genes showed high
diagnostic value in ROC analysis, suggesting their potential as
biomarkers for early DN diagnosis. Their roles in immune cell
infiltration and metabolic reprogramming highlight their diagnostic
and therapeutic potential. Targeting these genes may offer new
strategies to slow or reverse DN progression. However, the study
has limitations (Thipsawat, 2021): The current analysis of specific
markers in the plasma of DN patients is still in its early stages. To
improve the rigor and generalizability of our results, we intend to
increase our sample size in future research. Moreover, we plan to
utilize additional validation techniques, including Western blotting
and ELISA, to confirm the RT-qPCR data and ensure that the
observed alterations in gene expression precisely mirror the actual
plasma levels of these markers. These further experiments will yield
more substantial evidence to substantiate our findings regarding
DN biomarkers (Levin et al.,, 2020). Bias in dataset selection can
arise from sample variability, which future research could mitigate
by using more uniform datasets or cross-validation. Even with
batch-effect correction methods like ComBat, differences between
datasets (such as platforms or cohorts) may still cause bias. Future
studies should involve larger prospective cohorts (Thomas et al.,
2015). Theoretical ceRNA regulatory networks need experimental
validation to confirm their therapeutic potential. Both predicted
ceRNA networks and CIBERSORT-inferred immune proportions
are computational and require experiments, such as luciferase
assays miRNA cytometry/IHC
for immune cells, to verify their biological and therapeutic

for interactions and flow

relevance.

5 Conclusion

In conclusion, CXRC2, NAMPT, and CUEDC2 were identified
as key genes involved in DN metabolic reprogramming through
GEO database analysis and confirmed by qRT-PCR. These insights
improve our understanding of DN’s molecular mechanisms and
support future research into new therapeutic strategies targeting
these genes. More experiments and integrated multi-omics data are
required to confirm these findings.
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