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Bone marrow adipocytes (BMAs) are emerging as metabolically active
endocrine organs within the bone marrow microenvironment, engaging in
extensive crosstalk with vascular niches, osteogenic cells, and hematopoietic
compartments. In aging and metabolic disorders, mesenchymal and adipocyte
progenitors undergo significant quantitative and qualitative transformations
that shift from osteogenesis toward adipogenesis. This enhanced adipogenic
profile alters the secretion of key adipokines and cytokines, thereby
impairing endothelial function, destabilizing the vascular niche, and reducing
hematopoietic stem cell support—culminating in bone fragility and disrupted
blood cell production. Central to these alterations are pivotal signaling pathways,
which orchestrate the interplay between BMAs and their surrounding cells.
Furthermore, factors like oxidative stress, chronic inflammation, and endocrine
dysregulation modulate BMA behavior and exacerbate their impact on marrow
homeostasis. In this comprehensive review, we integrate recent advances that
elucidate the molecular and cellular mechanisms underlying BMA function and
their complex interactions with vascular niches. We also discuss therapeutic
strategies designed tomodulate BMA-mediated pathways and their downstream
effects on aging and a range of diseases.
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Introduction

The bone marrow niche provides a specialized microenvironment that regulates
hematopoiesis, osteogenesis, and tissue homeostasis. Within the bone marrow (BM)
niche, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) engage
in intricate signaling crosstalk mediated by cytokines, growth factors, and extracellular
matrix components. HSCs maintain hematopoietic homeostasis through tightly regulated
signaling pathways such as Notch, Wnt, and CXCL12/CXCR4, which govern self-
renewal, differentiation, and migration. MSCs contribute to skeletal and vascular
homeostasis by differentiating into osteoblasts, chondrocytes, and adipocytes under the
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influence of transcription factors such as Runx2, Sox9, and
peroxisome proliferator-activated receptor gamma (PPARγ)
(Zhang Q. et al., 2021). Together, these cells support hematopoiesis,
bone remodeling, and tissue homeostasis (Li L. et al., 2020;
Aar et al., 2022). Homeostasis, differentiation, survival, quiescence,
and mobilization of stem and progenitor cells are tightly
regulated by the BM microenvironment within distinct vascular
niches. These niches orchestrate intercellular communication via
endothelial cells (ECs)-derived signaling molecules, including
angiocrine factors, chemokines, and cytokines, which modulate
their fate decisions. These vascular niches facilitate dynamic
interactions and signaling between ECs and hematopoietic stem
and progenitor cells, thereby influencing their fate. The BM
vascular niche comprises three distinct ECs subpopulations:
type-L, type-H, and arterial ECs (Kusumbe et al., 2014; Owen-
Woods and Kusumbe, 2022; Stucker et al., 2020). The functional
differences among these ECs subtypes, along with the secretion
of angiogenic factors, coordinate the proliferation, differentiation,
and maintenance of HSPCs, ensuring hematopoietic homeostasis.
Aging-induced dysregulation of the BM vascular niche is associated
with endothelial dysfunction, reduced angiogenic signaling, and
increased vascular permeability, contributing to a pro-inflammatory
and hypoxic microenvironment. Concurrently, aging skews MSC
fate toward adipogenesis over osteogenesis via altered Wnt/β-
catenin,Notch, andPPARγ signaling, exacerbated by oxidative stress
and senescence-associated secretory phenotype (SASP) factors . The
progressive accumulation of adipocytes in the aging BM niche
disrupts homeostasis, impairing HSC function and increasing
susceptibility to hematologic malignancies. These findings suggest
that both the vascular niche and the adipocytic lineage in marrow
are crucial for maintaining tissue equilibrium and hematopoiesis.

Bone marrow adipocytes (BMAs) are among the most abundant
mesenchymal cells in the BM, occupying up to 70% of its volume in
adults (Baldelli et al., 2024). BMAs reside in the medullary cavity
of long bones (e.g., tibia, femur, humerus) and vertebrae, where
they contribute to regulation of bonemetabolism and hematopoiesis
(Piotrowska and Tarnowski, 2021). Bone marrow adipose tissue
(BMAT) was first described over a century ago. Initially, BMAs
were thought to be inert “space fillers” lacking significant function
(Matsushita et al., 2022a; Liu et al., 2025a). Currently, BMAT
plays a crucial role in various cellular and molecular mechanisms,
though its precise function remains controversial. BMAT is involved
in the regulation of hematopoiesis, secretion of adipokines, bone
remodeling, and metabolic processes, including glucose and lipid
homeostasis. Additionally, it influences systemic energy balance
through factors such as leptin and angiotensin. Interestingly,
although BMAT constitutes only about 10% of total adipose
tissue—which includes beige (BeAT), brown (BAT), and white
adipose tissue (WAT)—recent studies suggest that BMAT possesses
distinct structural and functional characteristics compared to BAT
and WAT (Suchacki et al., 2020). Further highlighting BMAT’s
uniqueness, extensive literature characterizes BMAT as a dynamic
endocrine organ distinct from other adipose depots in terms of its
developmental origins, molecular markers, and physiological roles
(Supplementary Text, Supplementary Table S1). BMAT undergoes
lipolysis in response to metabolic stimuli, releasing free fatty acids
(FFAs) through hormone-sensitive lipase and adipose triglyceride

lipase activation. Additionally, BMAT exhibits reduced insulin-
stimulated glucose uptake due to lower expression of glucose
transporter 4 and demonstrates resistance to cold-induced glucose
uptake (She et al., 2020). Under conditions such as high-fat
diet (HFD) consumption, osteoporosis, anorexia nervosa, caloric
restriction, altered leptin levels, and dysfunctional hematopoiesis,
BMAT undergoes metabolic and molecular adaptations that alter
FFAs release and affect insulin and glucose sensitivity (Piotrowska
and Tarnowski, 2021; Scheller et al., 2019; Zhang et al., 2024).
Alterations in BMAT function may disrupt key cellular pathways
and thereby contribute to aging-related bone loss, diabetes, growth
hormone deficiency, hematopoietic dysfunction, and anorexia
(Wang et al., 2018; A et al., 2013). Given its unique metabolic and
endocrine properties, as well as its role in supporting hematopoiesis
and bone remodeling, BMAT has emerged as a potential biomarker
of BMpathology. Elucidating the role of BMAT in health and disease
may reveal novel therapeutic targets for BM-related metabolic and
hematopoietic disorders.

Previous review literature primarily focuses on the correlation
between BMAT, metabolism, and hematopoiesis (Cawthorn and
Scheller, 2017; Cornish et al., 2018). This review provides a
comprehensive analysis of recent findings on BMAs within the
BM microenvironment and its vascular niches. We integrate the
latest studies on the fundamental characteristics of BMAT and
explore the regulatory factors influencing BMAT homeostasis and
dysfunction. In addition, we discuss the impact of BMAT in aging,
bone malignancies, and endocrine, metabolic, and immunological
disorders.

Role of BMAs during homeostasis

BM constitutes a dynamic microenvironmental niche that plays
a crucial role in regulating physiological processes throughout
life. It comprises two primary niches: the endosteal and vascular
niches, both of which regulate HSCs and MSCs through various
signaling factors that maintain their homeostasis. However, the
cellular composition of these niches may change due to aging, sex
differences, and metabolic status (Zoulakis et al., 2025). HSCs give
rise to myeloid progenitors that differentiate into osteoclasts via
the monocyte lineage. And MSCs differentiate into adipocytes,
osteoblasts, chondrocytes, and myocytes (Zinngrebe et al.,
2020). By young adulthood, roughly 70% of BM volume is
occupied by adipocytes. This substantial presence of BMAT
influences the hematopoietic niche and metabolic regulation in
the marrow (Zinngrebe et al., 2020; Veldhuis-Vlug and Rosen,
2018). BMAs and their products are integral to the normal
balance between bone formation and marrow hematopoiesis, as
described below (Figure 1).

BMAs in the endosteal niche versus
vascular niche

The BM niches comprise the generally well-defined endosteal
and perivascular niches. The bone-marrow endosteal niche is
markedly hypoxic and enriched for HIF-1α, osteopontin and Ang-
1, conditions that tether haematopoietic stem cells (HSCs) in
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FIGURE 1
The role of BMAs in adult and aging bone marrow microenvironments. (1) Endosteal Niche: Adult: BMAs contribute to bone remodeling by secreting
adipokines and enhancing RANKL and TNF-α expression, thereby promoting osteoclast differentiation and bone resorption. Aged: Aging-associated
BMAs secrete senescence-associated secretory phenotype (SASP) factors, accelerating bone marrow mesenchymal stem cell (BMSC) aging.
Additionally, upregulated RANKL and TNF-α signaling drive osteoclast activation and bone loss, leading to impaired bone remodeling. (2)
Hematopoiesis: Adult: BMAs support hematopoiesis by secreting free fatty acids (FFAs) and adiponectin, modulating CXCL12 and SCF signaling, and
regulating Fe ion availability, thereby maintaining hematopoietic stem cell (HSC) homeostasis and balanced lineage differentiation. Aged: In aging bone
marrow, BMAs contribute to hematopoietic dysregulation by increasing FFA release and pro-inflammatory cytokine secretion (TNF-α, CCL5, IL-6),
while downregulating CXCL12 and SCF signaling. This results in impaired HSC maintenance, increased lipotoxic stress, and a shift toward myeloid bias.
(3) Vascular Niche: Adult: Type H vessels regulate bone homeostasis by supporting RUNX2-driven osteoblast activity, while bone marrow adipogenic
lineage precursors (MALPs) promote angiogenesis through ANGPT4 and VEGF signaling, ensuring vascular integrity in the bone marrow
microenvironment. Aged: Aging leads to BMA expansion and a decline in type H vessels, resulting in decreased RUNX2 expression and reduced
osteoblast activity, thereby impairing bone homeostasis. RANKL: Receptor Activator of Nuclear Factor-kappa B Ligand; CXCL12: C-X-C Motif
Chemokine Ligand 12; SCF: Stem Cell Factor; VEGF: Vascular Endothelial Growth Factor; ANGPT4: Angiopoietin-like 4; RUNX2: Runt-related
Transcription Factor 2; PPAR: Peroxisome Proliferator-Activated Receptor; FOXC1: Forkhead Box C1.

deep quiescence and couple their maintenance to osteogenesis. In
contrast, the vascular niche surrounding arterioles and sinusoids is
relatively oxygen-rich; LepR+ perivascular stromal and endothelial
cells here secrete high levels of CXCL12, SCF, nitric oxide
and IL-6, thereby stimulating HSC cycling, differentiation and
mobilisation (Tamma and Ribatti, 2017). Bone-marrow adipocytes
(BMAs), a dynamic stromal subset distributed between these
regions, interact with each niche. BMAs actively regulate the
endosteal niche by modulating osteogenesis (bone formation)
and bone resorption. Although bone-marrow adiposity is usually
inversely associated with bone mass in adult homeostasis, a
transient positive coupling can emerge during highly anabolic
phases such as puberty and fracture repair. In these contexts,
bone marrow adipocytes exhibit a brown adipocyte-like phenotype,
characterized by the expression of brown adipocyte transcription
factors such as PR domain-containing 16 (Prdm16) and Forkhead
box C2, as well as marker genes including PGC1α, Dio2, β3AR,
and UCP1. The expression of these factors contributes to the
establishment of a microenvironment that favors osteogenesis

(Muruganandan et al., 2018). BMAs also secrete hormones and
adipokines (e.g., leptin and adiponectin) that positively influence
osteoblast proliferation and function, promoting bone formation
(Zhang et al., 2024). Additionally, BMAT may protect the skeleton
by sequestering excess lipids: by uptaking FFAs, BMAs can
reduce lipotoxic stress on osteoblasts and prevent lipid-induced
oxidative damage and apoptosis in bone-forming cells. Such
protective uptake of lipids helps maintain osteoblast viability
and function (Gunaratnam et al., 2014). Conversely, BMAs can
inhibit osteogenesis and stimulate bone resorption under other
conditions. BMAs secrete pro-inflammatory cytokines–including
IL-6, tumor necrosis factor-α (TNF-α), and receptor activator of
NF-κB ligand (RANKL) – that stimulate osteoclast differentiation
and activity, thereby promoting bone resorption (Harmer et al.,
2018). Elevated marrow adiposity is associated with higher local
RANKL levels, especially in the absence of parathyroid hormone
(PTH) signaling, tipping the balance toward osteoclastogenesis and
bone loss (Fan et al., 2017; Kiechl et al., 2013). BMAs further
enhance osteoclast formation through adipocyte-derived chemerin
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and sustained PPARγ activation: chemerin binding to its receptor
(CMKLR1) on osteoclast precursors promotes their maturation,
and PPARγ shifts MSC lineage commitment toward adipocytes
(away from osteoblasts), indirectly favoring bone resorption by
reducing new bone formation (Muruganandan and Sinal, 2014).
Collectively, these interactions position BMAs as key regulators
of bone remodeling. Under homeostatic conditions, BMAs can
support osteogenesis through anabolic signaling pathways, whereas
in aging or osteoporosis their accumulation skews the niche toward
adipogenesis and bone breakdown, contributing to loss of bone
mass. This dualistic role highlights the complex influence of BMAs
on skeletal homeostasis.

The bone marrow vascular niche–composed of a network
of type-H vessels and sinusoids type-L vessels–provides crucial
cues for mesenchymal lineage allocation and indirectly affects
BMA development (Chen et al., 2020). Signals from vascular-
associated cells can regulate BMA formation. Perivascular cells
such as pericytes, vascular smooth muscle cells, and CXCL12-
abundant reticular (CAR) cells have been implicated in promoting
adipogenesis within the BM vascular microenvironment. The two
major vessel types in BM have distinct effects on mesenchymal
lineage allocation. Type-H endothelial cells mediate local vascular
growth and provide niche signals that promote the expression
of osteogenic transcription factors such as Osterix and Runx2 in
adjacent perivascular osteoprogenitors, thereby directing nearby
MSCs to become osteoblasts rather than adipocytes (Kusumbe et al.,
2014). In contrast, type-L vessels lack these osteogenic signals and
are enriched in CAR cells and leptin receptor-positive (LEPR+)
stromal cells that secrete stem cell factor (SCF) and CXCL12.
SCF and CXCL12 are not only vital for HSC maintenance
but also create a microenvironment that can support adipocyte
differentiation. CAR cells directly promote adipogenesis via PPARγ
signaling (Omatsu et al., 2014); accordingly, broad ablation of
CXCL12high CAR cells leads to a marked reduction in marrow
adipocytes and can perturb osteogenesis and HSC maintenance
(Omatsu et al., 2010), whereas selective deletion of the Adipoq+

CAR subset instead enhances bone formation (Zou et al., 2025).
Other Nestinlow perivascular progenitors (characterized by high
PDGFR-α/β expression) similarly give rise to BMAs, underscoring
that the vasculature serves as a niche for adipocyte progenitors
(Jiang et al., 2021). Interestingly, lineage-tracing studies suggest
that in blood vessel walls outside the marrow, only adventitial
fibroblasts (in the outer vessel lining) have significant adipogenic
potential, whereas ECs and mural cells do not contribute to new
adipocytes (Cattaneo et al., 2020). It remains to be seen whether
analogous adventitial cells in BM vessels are a source of BMAs.
Overall, these findings illustrate that the vascular niche provides
important developmental cues for BMAs.

BMAs in turn actively contribute to the vascular niche and local
blood supply. BMAs secrete a diverse array of adipokines, cytokines,
growth factors, and other mediators that can influence ECs and
blood vessel function. For example, a recently identified subset
of BM adipocytes with low lipid content supports angiogenesis
by secreting vascular endothelial growth factor (VEGF) and
angiopoietin-like 4. These factors promote blood vessel growth and
stability, helping tomaintain the vascular network of themarrow and
its capacity to support hematopoiesis (Wang et al., 2021; Zhong et al.,
2020). In general, BMAs also serve as an energy reservoir for

the niche: their lipid droplets (rich in saturated, monounsaturated,
and polyunsaturated fatty acids) can be mobilized to provide
fatty acids as fuel for neighboring cells, including osteoblasts,
osteoclasts, and HSCs. Additionally, BMAs secrete adiponectin,
an anti-inflammatory adipokine that improves insulin sensitivity
and lipid metabolism through AMPK and PPARα activation.
Adiponectin released into themarrow vasculaturemay help dampen
local inflammation and thereby benefit the vascular niche (Ouchi
and Walsh, 2007). In sum, BMAs are now recognized as integral
components of the vascular niche, helping to maintain vascular
homeostasis and angiogenesis in the BM microenvironment.

Signaling pathways regulating BMAs

The differentiation and function of BMAs are governed by a
complex network of molecular signals, integrating local niche-
derived factors and systemic hormonal cues (Table 1). A delicate
balance exists between adipogenesis (formation of adipocytes)
and osteogenesis (formation of osteoblasts) in the BM, largely
regulated by opposing pathways. On one side, PPARγ is the master
transcription factor driving adipocyte differentiation; on the other,
Wnt/β-catenin signaling promotes osteoblast commitment and
suppresses adipogenesis.The BMmicroenvironment leverages these
pathways to modulate BMAs. For example, in the absence of strong
osteogenic cues, MSCs more readily undergo adipogenesis under
the influence of PPARγ together with C/EBPα and other adipogenic
factors (such as fatty acid-binding protein 4 [FABP4] and perilipin-
2). Several paracrine factors in the endosteal niche also influence
this balance (Nuttall et al., 2014; Liu et al., 2011). Osteoclasts secrete
semaphorin 4D, which binds to osteoblast precursors (through
Plexin-B1 receptors) to potently inhibit osteoblast differentiation
while simultaneously enhancing adipogenic differentiation of MSCs
(Muruganandan and Sinal, 2014; Wan, 2013; Ishii et al., 2022). This
coupling of bone resorption activity to fat formation ensures that
increased osteoclast activity (as in low estrogen or inflammatory
states) can lead to greater BMA accumulation. Conversely,
osteoblast-lineage cells produce semaphorin 3A (Sema3A), which
has the opposite effect: Sema3A signaling via neuropilin-1 promotes
osteogenesis and suppresses adipocyte andosteoclast differentiation,
thereby protecting bone mass . Similarly, factors like Delta-like
1 (Dlk1) must be downregulated for adipogenesis to proceed;
Dlk1 (also known as Pref-1) normally inhibits preadipocyte
differentiation, so its absence greatly enhances adipocyte formation
(while somewhat paradoxically also permitting increased osteoblast
differentiation through upregulation of pro-osteogenic genes
like Runx2) (Lin et al., 2019; Tencerova and Kassem, 2016).
Inflammatory cytokines present in the BM niche can further tip
the balance: for instance, Oncostatin M and IL-6 released during
inflammation have been shown to stimulate osteoblast generation at
the expense of adipocytes, at least in short-term settings (West et al.,
2018). Through these local signaling mechanisms, the BM niche
tightly coordinates the inverse relationship between bone formation
and marrow adiposity.

Beyond the local microenvironment, systemic and
environmental factors profoundly influence BMA formation and
function. Below, we outline BMA dynamics under conditions of
obesity, caloric restriction, and circadian disruption.
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TABLE 1 The role of bone marrow adipocytes.

Category Function Factors/Signal
pathway

Mechanism Condition Reference

Endosteal niche (Bone
remodeling)

Osteogenesis inhibition PPARγ activation Drive adipogenesis,
Suppress osteoblast
lineage

Aging,
Osteoporosis,
Metabolic disorders

PMID: 27012163

Endosteal niche Osteogenesis inhibition Wnt/β-catenin inhibition Block osteoblast
differentiation,
Reduce bone formation

Bone remodeling
imbalance,
Osteoporosis

PMID: 29855795

Endosteal niche Osteogenesis inhibition Lipotoxicity (palmitate,
FFAs)

Release saturated lipids,
Induce osteoblast
apoptosis

Obesity,
Aging,
High-fat diet

PMID: 24169557

Endosteal niche Osteogenesis inhibition Glucocorticoid-induced
suppression

MSC fate shift to
adipocytes,
Wnt signaling
downregulation

Glucocorticoid therapy,
Osteoporosis

PMID: 28293453

Endosteal niche Osteogenesis inhibition Estrogen deficiency Increase PPARγ,
Inhibit osteoblast
function

Menopause,
Postmenopausal
osteoporosis

PMID: 37682419

Endosteal niche Promotes bone
resorption

RANKL-NFκB pathway Induce osteoclast
formation,
Enhance bone resorption

Aging,
Osteoporosis

PMID: 23396210

Endosteal niche Promotes bone
resorption

Chemerin-CMKLR1 axis Stimulate osteoclast
precursors,
Boost resorption

Bone loss,
Adipocyte-driven
inflammation

PMID: 24638917

Endosteal niche Promotes bone
resorption

Pro-inflammatory
cytokines

Increase
osteoclastogenesis,
Exacerbate inflammation

Chronic inflammation,
Metabolic disorders

PMID: 30671025

Endosteal niche Promotes bone
resorption

Glucocorticoid-
enhanced
osteoclastogenesis

Prolong osteoclast
lifespan,
Suppress osteoblasts

Steroid use,
Osteoporosis

PMID: 22870429

Endosteal niche Promotes bone
resorption

Bone malignancies Elevate IL-6/RANKL,
Induce osteolytic lesions

Multiple myeloma,
Leukemia,
Bone metastases

PMID: 30671025

Endosteal niche Promotes bone
resorption

Hyperglycemia,
oxidative stress

Upregulate NFκB,
Amplify osteoclast
activity

Diabetes-associated
bone loss

PMID: 31551934

Endosteal niche Potential protective
effects

Lipid buffering effect Sequester excess FFAs,
Reduce lipotoxic damage

Certain metabolic states,
Mild adipogenesis

PMID: 24169557

Endosteal niche Potential protective
effects

Hormones and
adipokines

Enhance osteoblast
proliferation,
Promote bone formation

Skeleton protection PMID: 31734905

Hematopoiesis (HSC
niche)

HSC maintenance,
Self-renewal

SCF/CXCL12 axis Maintains HSC
quiescence,
Enhances HSC
regeneration

Normal,
Hematopoiesis,
Stress recovery

PMID: 34912805
PMID: 24590069 

Hematopoiesis HSC maintenance,
Self-renewal

Lipid metabolism,
FFA release

Store and release FFAs,
Fuel HSC under stress

Starvation,
Chemotherapy,
Irradiation recovery

PMID: 31890207

Hematopoiesis HSC differentiation,
Lineage commitment

PPARγ-driven BMAT
expansion

HSC shift to
myelopoiesis,
Enhanced granulocyte,
Monocyte production

Aging,
Inflammation,
Metabolic disorders

PMID: 35360075 

(Continued on the following page)
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TABLE 1 (Continued) The role of bone marrow adipocytes.

Category Function Factors/Signal
pathway

Mechanism Condition Reference

Hematopoiesis HSC differentiation,
Lineage commitment

IL-6/TNF-α/CCL5-
mediated inflammatory
signaling

Promote myeloid bias,
Reduce lymphopoiesis

Age-related immune
dysfunction,
Chronic inflammation

PMID: 31806690

Hematopoiesis HSC differentiation,
Lineage commitment

β2-AR activation Promote myeloid
expansion,
Reduce lymphoid survival

Aging,
Stress,
Immunosenescence

PMID: 31303548

Hematopoiesis Impact on HSC niche Foxc1 suppression,
Adipogenic niche
replacement

Replace stroma with
adipocytes,
Disrupt HSC support

BMAT expansion,
Loss of osteogenic niche

PMID: 24590069

Hematopoiesis Impact on HSC niche Cholesterol transport
deficiency (ABCA1/G1
dysfunction)

Impair cholesterol efflux,
Alter HSC fate

Aging,
Lipid metabolism
disorders

PMID: 20488992

Hematopoiesis Hematopoietic recovery,
Malignancies

BMAT-derived CXCL12,
leptin

Fuel malignant cells,
Enhance tumor survival

Leukemia,
Multiple myeloma,
Therapy resistance

PMID: 27863383

Hematopoiesis Hematopoietic recovery,
Malignancies

FABP4-mediated FFA
transport in AML

Transfer FFAs to AML,
Increase chemoresistance

AML,
Metabolic,
Adaptation of cancer cells

PMID: 28049638

Hematopoiesis Hematopoietic recovery,
Malignancies

Decreased GATA2
expression

Excessive BMAT
accumulation,
Impair MSC
differentiation

Aplastic anemia PMID: 24876847

Vascular niche
(Angiogenesis)

Regulate vascular,
Endothelium

SPTBN1-VEGF Stimulate endothelial
proliferation,
Support vessel formation

Normal,
Angiogenesis,
Fracture repair,
Wound healing

PMID: 33816505

Vascular niche Interaction with BMAs BMAT-derived VEGF,
ANGPTL4

Promote local vessel
growth,
Stabilize endothelium

Bone marrow vascular
niche,
Steady-state hematopoiesis

PMID: 34912805

Vascular niche Interaction with BMAs Adiponectin
(anti-inflammatory)

Improve endothelial
function,
Reduce vascular
inflammation

Obesity,
Anti-inflammatory
environment

PMID: 17343838

Vascular niche Regulate vascular aging,
Dysfunction

Oxidative stress (ROS) Endothelial dysfunction,
Pro-inflammatory
environment

Diabetes,
Metabolic syndrome,
Chronic inflammation

PMID:38727260

Metabolic regulation
(Energy homeostasis)

Systemic energy balance PPARγ activation Drive adipocyte
differentiation,
Influence lipid storage

Obesity,
Aging,
Glucocorticoid therapy

PMID: 22863012

Metabolic regulation Systemic energy balance Leptin secretion Regulate appetite,
Modulate bone-fat axis

Normal nutritional status,
Leptin resistance

PMID: 27053299

Metabolic regulation Systemic energy balance Adiponectin Enhance insulin
sensitivity,
Reduce inflammation

Caloric restriction,
Anti-inflammatory
conditions

PMID: 14699128

Metabolic regulation Systemic energy balance BMAT lipolysis,
FFA release

Provide metabolic
substrates,
Support peripheral tissues

Starvation,
Intense exercise,
Chemotherapy

PMID: 31890207

Metabolic regulation Cross-talk with adipocyte
types

WAT-derived adipokines Impact glucose
metabolism,
Affect BMAT function

Obesity,
Insulin resistance

PMID: 30038881

(Continued on the following page)
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TABLE 1 (Continued) The role of bone marrow adipocytes.

Category Function Factors/Signal
pathway

Mechanism Condition Reference

Metabolic regulation Cross-talk with adipocyte
types

BAT-related
thermogenesis

Regulate marrow
adipocyte browning,
Energy dissipation

Cold exposure,
Metabolic interventions

PMID: 21135534

Metabolic regulation Cross-talk with adipocyte
types

Endocrine signals BMAT Formation,
Systemic Energy
Regulation

GH deficiency,
Cushing’s syndrome

PMID: 19821771

Metabolic regulation Metabolic disorders,
Aging

Insulin resistance Decreased GLUT4
expression,
Impaired glucose uptake

Type 2 diabetes,
Obesity

PMID: 32778749

Metabolic regulation Metabolic disorders,
Aging

Excess glucocorticoids Facilitate BMAT
accumulation,
Dampen
osteoblastogenesis

Cushing’s syndrome,
Prolonged steroid therapy

PMID: 36564571

Metabolic regulation Metabolic disorders,
Aging

Aging-related lipotoxicity Saturate FFA
accumulation,
Marrow ROS elevation

Osteoporosis,
Immunosenescence

PMID: 24169557

Metabolic regulation Potential therapeutic
targets

TZDs (PPARγ agonists) Improve insulin
sensitivity,
Expand BMAT

Type 2 diabetes,
Metabolic syndrome

PMID: 22304921

Metabolic regulation Potential therapeutic
targets

Nicotinamide riboside,
Sirt1 activators

Boost mitochondrial
function,
Attenuate adipogenic shift

Aging,
Diabetic bone
complications

PMID: 31000692

Immune modulation
(Inflammatory
environment)

Basal immune regulation Adiponectin
(anti-inflammatory)

Lowers NF-κB activity Mild inflammation,
Calorie restriction

PMID: 27529061

Immune modulation Basal immune regulation Leptin Activates T cells Obesity,
Leptin resistance

PMID: 27863383

Immune modulation Basal immune regulation Adipsin Enhances insulin
secretion,
Impacts complement
cascade

T2DM management,
Adipokine interplay

PMID: 27863383

Immune modulation Secrete cytokines,
Immune cell
differentiation

CCL5 (RANTES) Recruit monocytes,
Foster myeloid cell
expansion

Obesity-associated
inflammation,
Atherosclerosis

PMID: 22289892

Immune modulation Secrete cytokines,
Immune cell
differentiation

Functional defects in
BMAT-derived MSCs

Alters MSC
immunomodulatory
function

RA flares,
Chronic joint
inflammation

PMID: 35386146

Immune modulation Secrete cytokines,
Immune cell
differentiation

Decreased BMAT levels Increased IL-7 and
neutrophils,
Immune environment
shift

SpA pathogenesis,
Enthesitis

PMID: 34149700

BMA dynamics during obesity, hormone
treatment, fasting, circadian rhythm

A HFD and obesity are associated with increased BM
adiposity. Although circulating leptin levels rise in obesity,
bone marrow MSCs often develop leptin resistance, leading
to impaired JAK2/STAT3 signaling. This favors PPARγ-driven

adipogenesis and suppresses osteoblastogenesis. Consequently,
obese individuals often exhibit higher marrow fat content
and reduced bone formation. Nutritional excess is, therefore,
a driver of BMAT expansion, whereas calorie restriction
tends to limit leptin signaling (though extreme cases like
anorexia can paradoxically increase BMAT, as noted below)
(Yue et al., 2016).
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Glucocorticoids (stress hormones or therapeutic steroids)
strongly induce marrow adipogenesis; patients on long-term
glucocorticoid therapy often show elevated BMAT and concurrent
bone loss. Conversely, estrogen has protective effects against
BM fat accumulation–estrogen deficiency (for example, after
menopause) is linked to a surge in BMAs along with osteoporosis
(Li et al., 2024). Insulin-like growth factor 1 (IGF-1) and
thyroid hormones are additional systemic factors that modulate
BMAT homeostasis. From a therapeutic standpoint, targeting
JAK2/STAT3, a pathway implicated in certain pathological BMAT
expansions (e.g., leukemia-associated), has shown promise: in
a chronic lymphocytic leukemia model, inhibiting JAK2/STAT3
reduced pathological marrow adipogenesis more effectively than
dietary changes, highlighting a potential intervention to rebalance
the niche (Severin et al., 2019).

Paradoxically, conditions of extreme energy deficit, such
as prolonged fasting or anorexia nervosa, are associated with
increased marrow adiposity. In these states, peripheral fat is
depleted and BMAT may serve as a last reservoir of energy,
or the lack of nutrients may trigger stress signals (e.g., high
cortisol) that stimulate adipogenesis in the marrow. Thus, the
relationship between systemic energy balance and BMAT is
bidirectional and context-dependent–acute fasting reduces leptin
(removing an anti-adipogenic signal) yet other factors can drive
adipocyte accumulation as a survival mechanism (Piotrowska and
Tarnowski, 2021).

The BM niche is under circadian control, and disrupting normal
day-night cycles can alter adipocyte formation. Core clock genes
such as CLOCK, BMAL1, and PER2 regulate adipogenic signaling
pathways (Hafidi et al., 2019). Notably, BMAL1 (a key circadian
regulator) promotes adipocyte differentiation, and cross-talk with
PPARα/γ has been observed in regulating lipid metabolism and
circadian rhythms (Aggarwal et al., 2017). Therefore, disturbances
in circadian rhythm (due to shift work, jet lag, or sleep disorders)
can lead to abnormal BMAT expansion. Studies have shown
that knocking out BMAL1 reduces marrow adipogenesis, while
circadian disruption increases it (Kawai et al., 2010a; Kawai et al.,
2010b; Oishi et al., 2008; Fairfield et al., 2021). In line with this,
experimental models demonstrate that alteration of clock genes or
sleep patterns results in imbalanced adipogenic signals in the BM
microenvironment.

In homeostasis, these regulatory mechanisms ensure a
balanced interplay between bone, fat, and hematopoiesis in the
marrow. With aging or metabolic disease, shifts in signaling
(e.g., heightened PPARγ activity, chronic inflammation, or
endocrine changes) lead to disproportionate BMAT expansion
and associated dysfunctions in bone and blood cell production.
Conversely, in pathological conditions such as leukemia,
malignant cells can exploit normal signaling pathways (like
leptin-JAK/STAT or CXCL12-CXCR4) to favor an adipocyte-rich,
tumor-supportive niche. By unraveling the molecular regulation
of BMAs, we can better understand their versatile roles in
steady-state physiology, ultimately guiding interventions for bone
marrow disorders.

Role of BMAs during hematopoiesis

BMAs profoundly influence hematopoiesis (blood cell
formation) through both direct and indirect mechanisms. Under
steady-state conditions, BM adipocyte-lineage cells, particularly
adipocytic progenitors, contribute to the hematopoietic niche by
creating a supportive environment for HSCs and their progeny.
One key role of BM adipocytes is in regulating nutrient and
growth factor availability for blood-forming cells. Adipocyte-
lineage stromal cells are a source of SCF and CXCL12, two crucial
niche factors that promote HSC maintenance, quiescence, and
regeneration (Wang et al., 2021; Zhong et al., 2020; Shafat et al.,
2017; Mattiucci et al., 2018). The release of FFAs from BMAs
can provide metabolic fuel to highly proliferative hematopoietic
cells; in fact, adipocyte-derived FFAs have been shown to support
HSC recovery following stress and to enhance HSC progenitor
function (Pernes et al., 2019). Through these secreted factors
and nutrients, BMAs help sustain hematopoietic stem and
progenitor cells, contributing to normal blood cell homeostasis.
Consistently, moderate BMAT is a feature of healthy marrow,
and its adipokines (like adiponectin) may help maintain an anti-
inflammatory milieu that is conducive to balanced hematopoiesis
(Baldelli et al., 2024; Scherer, 2014). Overall, recognizing the dual
nature of BMAs in hematopoietic regulation is crucial for developing
therapies for bone marrow failure or malignancies that consider the
adipocytic component of the niche.

While a direct causal link between increased BM fat and HSC
myeloid bias is still under investigation, there is evidence suggesting
that excessive BMAT can contribute to skewed hematopoiesis.
High levels of BM adiposity have been correlated with a tendency
toward myeloid-biased HSC differentiation (Baldelli et al., 2024;
Aguilar-Navarro et al., 2020). Furthermore, disruption of critical
niche factors can mimic aging effects: for example, deleting the
transcription factor Foxc1 (which, as noted, normally suppresses
adipogenesis and supports HSC niches) leads to replacement
of hematopoietic cells with adipocytes and a significant loss of
HSCs (Omatsu et al., 2014; Nakamura-Ishizu and Suda, 2014).
This Foxc1 deletion model illustrates how increased marrow
fat can directly displace hematopoiesis. Metabolic changes in
the marrow may also play a role—impaired lipid handling in
the HSC niche (e.g., deficient cholesterol efflux) has a negative
impact on HSC function. Notably, efficient cholesterol efflux via
transporters ABCA1/G1 and high-density lipoprotein is necessary
to restrain HSC proliferation; disruptions in these pathways can
lead to aberrant HSC expansion or exhaustion (Aar et al., 2022;
Yvan-Charvet et al., 2010). It is not yet clear if the presence of
excess BM adipocytes directly drives such metabolic perturbations
or if they arise from parallel age-related changes in the niche.
Another BMA-related alteration in HSC biology involves the
plasticity of marrow adipocytes themselves. Recent studies show
that, following irradiation or chemotherapy, BMAs emerges and
upregulates SCF, thereby accelerating endothelial repair and
facilitating HSC re-engraftment (Hirakawa et al., 2023; Zhou et al.,
2017). Lineage-tracing experiments further demonstrate that
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mature BMAs can dedifferentiate into LepR+ cells, revealing a BMA-
to-LepR+ cells plasticity that is indispensable for haematopoietic
recovery; conversely, genetic blockade of adipocyte lipolysis (Atgl
deletion) abolishes this dedifferentiation and dramatically impairs
haematopoietic regeneration (Hirakawa et al., 2023). Collectively,
these findings expand the functional repertoire of BMAs—from
passive energy reservoirs to reversible niche cells that actively
coordinate vascular and haematopoietic repair under stress.

BMAs in aging

Aging is associated with increased risk of many chronic
diseases (e.g., cardiovascular disease, diabetes, osteoporosis) due
to cellular senescence, mitochondrial dysfunction, oxidative stress,
and chronic inflammation (Blume and Curtis, 2011; Chen et al.,
2021). One hallmark of aging is reduced regenerative capacity
of tissues caused by a decline in stem cell function. In bone
marrow, aging leads to a progressive accumulation of BMAs at
the expense of osteogenesis, as MSCs increasingly differentiate
into adipocytes rather than osteoblasts (Liu ZZ. et al., 2021).
This expansion of BM fat is associated with disruption of the
bone marrow microenvironment, impairing both MSCs and
HSCs function and disturbing the delicate balance between
adipogenesis and osteogenesis (Alt et al., 2012) (Figure 1). Age-
related deterioration of the marrow niche also involves vascular
changes, including a decline in type-H endosteal blood vessels
that normally support osteogenesis and hematopoiesis . Loss
of these vessels exacerbates local hypoxia and oxidative stress,
further damaging ECs and osteoprogenitors (Kusumbe et al.,
2014; Wang et al., 2017a). Consequently, aged bone marrow ECs
produce lower levels of HSC-supportive factors (e.g., CXCL12, SCF,
and Notch ligands). These changes contribute to hematopoietic
imbalance, immune dysregulation, and bone loss with age
(Poulos et al., 2017; Kusumbe et al., 2016).

MSCs in aged bone marrow undergo a functional decline
characterized by reduced proliferation and a diminished capacity
to form bone, coupled with an enhanced propensity to form fat.
This age-induced shift in lineage commitment—often termed the
adipogenic switch—results in a gradual “yellowing” of the marrow
as adipocytes accumulate at the expense of osteoblasts. Aged
MSCs show molecular signs of senescence, including increased
ROS and upregulation of cell-cycle inhibitors (p53, p21, p16INK4a),
leading to proliferation arrest. Accumulation of advanced glycation
end-products in the bone matrix further drives this process by
inducing oxidative stress and apoptosis in MSCs (Wan et al.,
2023). In addition, aged MSCs accrue DNA damage (e.g., telomere
shortening and epigenetic alterations), which undermines their
regenerative potential (Zheng et al., 2013; Zhang et al., 2011;
Kornicka et al., 2015; Ju et al., 2007). These intrinsic changes bias
MSC differentiation toward adipogenesis over osteogenesis, thereby
promoting BMA expansion in the aging marrow.

In addition to intrinsic changes in aged MSCs, extrinsic
factors in the aging niche also enforce the adipogenic switch.
For example, age-related increases in Wnt pathway inhibitors
like Dickkopf-1 (DKK1) and sclerostin lead to reduced Wnt
signaling, which impairs osteoblast differentiation and favors
adipocyte formation (Colditz et al., 2020; Fairfield et al., 2018;

Himburg et al., 2017). Chronic inflammation in aging bone
marrow elevates cytokines that suppress osteopontin (OPN)
expression in MSCs. Since OPN normally inhibits adipogenesis
(Scutera et al., 2018), its reduction removes a brake on fat
formation, further skewing MSCs toward the adipocyte lineage
(Chen et al., 2014). In peripheral adipose tissue, OPN deficiency
is associated with reduced adipose tissue macrophages (ATMs),
which regulate norepinephrine-driven lipolysis; whether a similar
OPN–ATM–lipolysis axis exists in bone-marrow adipose tissue
remains to be established (Camell et al., 2017; Guidi et al., 2017).

In addition, several key molecular regulators become
dysregulated in aged MSCs, tipping the balance toward
adipogenesis. The transcription factor FOXP1, which normally
interacts with C/EBPβ/δ and Notch signaling to promote
osteogenesis and restrain adipogenesis, is reduced with aging
(Li et al., 2017). In mice, loss of FOXP1 causes an osteoporosis-
like phenotype with increased BMAT, lower bone mass, and
impaired MSC self-renewal (Li et al., 2017). MicroRNAs are
another regulatory layer: miR-188, for instance, is upregulated in
aged MSCs and drives adipocyte differentiation while suppressing
osteoblast formation, contributing to bone loss (Li et al., 2015).
Conversely, miR-130a levels decline with age, leading to elevated
PPARγ (a master adipogenic factor) activity and further promotion
of adipogenesis at the expense of osteogenesis (Lin et al., 2019).
Aging is also accompanied by the decline of supportive niche cells
and signals that normally help maintain the osteogenic capacity of
the bone marrow (Omatsu et al., 2014; Galan-Diez and Kousteni,
2018). Perivascular MSC populations (such as those lining blood
vessel walls) and CAR cells decrease in number with age. These
stromal cells produce factors like CXCL12, SCF, and Foxc1 that
support HSC maintenance while simultaneously suppressing
adipocyte differentiation. With advanced age, the loss of bone
marrow pericytes (particularly those associated with type-H vessels)
leads to reduced levels of quiescence-promoting signals (CXCL12,
PDGF-β, SCF), undermining the HSC niche and allowing more
adipogenic differentiation ofMSCs (Singh et al., 2019; Supakul et al.,
2019). The loss of perivascular PDGF-β signaling disrupts the bone
marrow niche, facilitating the proliferation of disseminated tumor
cells while promoting adipogenic differentiation at the expense of
osteogenesis (Glatt et al., 2007; Justesen et al., 2004). Similarly, aging
marrow exhibits diminished Notch signaling; normally, marrow
ECs present high levels of Notch ligand 2 to nearby stromal cells to
promote osteogenesis, but this signal wanes with age, tilting MSC
fate toward adipogenesis (Guo et al., 2017; Sacma et al., 2019; Bi et al.,
2016). Together, these intrinsic and extrinsic age-related changes
orchestrate a shift toward greater marrow fat deposition and fewer
bone-forming cells.

Hematopoiesis changes

BMAs play a context-dependent role in hematopoiesis: they
are important supportive cells in normal BM physiology, but in
aging, their proliferation and secretory profile shift in ways that
are associated with impaired hematopoiesis and may contribute
to hematopoietic disorders. The expansion of BM adipocytes with
age has profound effects on hematopoiesis. Elderly individuals
commonly experience hematopoietic dysfunction, such as anemia
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and weaker immune responses. Studies show that increased BMAT
is associated with a decline in both the number and functional
capacity of HSCs, contributing to impaired blood cell production
in aging marrow (Veldhuis-Vlug and Rosen, 2018; Mendelson
and Frenette, 2014; Ho and Mendez-Ferrer, 2020). In normal
(young) bone marrow, a baseline level of BM adipocytes supports
hematopoiesis by secreting key factors. One crucial adipocyte-
derived factor is SCF: BMAs secrete SCF, which binds to c-Kit
on HSCs to promote HSC survival and proliferation (Zhou et al.,
2017). Consistently, Adipoq-Cre–mediated deletion of Scf—which
removes SCF from both BMAs and other Adipoq+ stromal
populations such as LepR+/CXCL12high CAR cells—results in a
marked reduction in HSC numbers and myeloid progenitors
in middle-aged mice (Zhang et al., 2019; Jeffery et al., 2022).
These findings confirm that BMAT-derived SCF is essential for
maintaining steady-state hematopoiesis and is crucial for supporting
HSC function under metabolic stress during aging.

A hallmark of aged HSCs is a bias toward myeloid lineage
output at the expense of lymphoid lineages (Geiger et al., 2013).
In other words, aging skews blood production toward neutrophils
and monocytes rather than B and T lymphocytes. Chronic low-
grade inflammation in the aged marrow niche appears to drive this
myeloid skewing; for instance, the pro-inflammatory chemokine
CCL5 is elevated in aging and pushes HSC differentiation toward
myeloid cells. CCL5 also affects the bonemarrowmicroenvironment
by influencing bone remodeling and HSC niche signaling, linking
inflammatory changes toHSC fate decisions (Aar et al., 2022;Ho and
Mendez-Ferrer, 2020; Budamagunta et al., 2021). Vascular ageing
and reduced endothelial nitric oxide synthase (eNOS/NOS3) activity
remodel the BM vasculature and are accompanied by myeloid-
skewed hematopoiesis, recapitulating an ageing-like niche (Ho et al.,
2019). Aging is associated with alterations in adrenergic receptor
(AR) signaling, where β2-AR activity, unlike β3-AR, plays a role
in promoting myeloid skewing. The loss of β3-AR activity disrupts
endosteal niches, leading to a reduction in osteoblast-supportive
regions, which puts HSCs in further proximity from the endosteum
and induces myeloid bias over lymphopoiesis (Ho et al., 2019). The
accumulation of agedHSCs and increased β2-AR activity contribute
to the expansion of central bone marrow capillaries, myeloid cells,
and megakaryocytes (Ho and Mendez-Ferrer, 2020). Consistent
with these changes, aged bonemarrow shows an expansion of central
marrow blood vessels, myeloid cells, and megakaryocytes.

BMAs phenotypic changes

While some studies have focused on endosteal and vascular
niche factors, others have investigated the molecular mechanisms
underlying BMAT regulation during aging. Compared with
peripheral white fat, BMAT expresses lower levels of mature
adipocyte markers (PPARγ, FABP4, PLIN1, adipsin) yet retains
relatively high transcripts of early adipogenic regulators, including
C/EBPβ and RGS2. This pattern reflects an immature, stress-
adapted phenotype. BMAT expresses IL-6 and GPR109A more
strongly than WAT at baseline, yet both transcripts decline as
animals age (Liu et al., 2011; Liu et al., 2013). Analysis of bone and
adipose tissues in lipodystrophic “fat-free” mice during aging has
revealed a novel secondary adipogenesis pathway that is activated

under metabolic stress and aging conditions. This process involves
the recruitment of adiponectin-negative stromal progenitors,
which differentiate into BMAs independent of traditional PPARγ-
driven pathways. This BMAT exhibits impaired lipid mobilization
and altered cytokine expression within hematopoietic regions.
Notably, it is characterized by low levels of adiponectin and
CXCL12 and demonstrates resistance to lipolytic stimuli. These
findings provide new insights into the mechanisms underlying
BMAT adaptation and its potential impact on the bone marrow
microenvironment (Matsushita et al., 2022b).

Notably, some interventions can counteract the adipogenic
shift in aged marrow. Supplementation with nicotinamide
mononucleotide activates SIRT1-dependent pathways in MSCs,
which promotes osteogenic differentiation while suppressing
adipocyte formation (Song et al., 2019). Enhancing autophagy
in MSCs via the receptor optineurin has also been shown to
reduce adipogenesis by clearing pro-adipogenic factors like FABP3
(Liu ZZ. et al., 2021). Even the pharmacological reduction of
BMAT is possible: for example, dipeptidyl peptidase-4 (DPP4)
inhibitors were found to reverse BMAT-induced suppression of
bone healing (Ambrosi et al., 2017). These findings underscore that
age-related marrow fat accumulation is not irrevocable and can be
therapeutically targeted to improve bone formation in the elderly.

Impact of BMAs on osteogenesis and bone
health

Age-related BMA accumulation not only impairs blood
formation but also undermines bone formation. The presence of
excessive adipocytes in marrow alters the niche in ways that inhibit
osteoblast function and bone regeneration (Ambrosi et al., 2017).
One contributing factor is the dysregulation of Wnt signaling:
as mentioned above, aged marrow fat cells produce factors that
antagonize Wnt, a pathway crucial for osteoblast maturation.
Elevated levels of pro-inflammatory cytokines from BMAs can also
suppress osteoblast activity, leading to reduced bone formation
and accelerated bone loss (Clabaut et al., 2021). Studies have
shown that adipocyte-secreted factors directly downregulate
osteogenic gene expression in osteoblasts while upregulating
adipogenic genes, effectively pushing bone cells toward a more
fat-like phenotype (Clabaut et al., 2010). In fact, transcriptomic
analyses of bone cells in aged individuals revealed that osteoblasts
begin to express adipocyte-specific markers, suggesting a possible
transdifferentiation or lineage switching in the bone marrow niche.
This phenomenon is associated with changes in DNA methylation
and is thought to contribute to the age-related decline in bone
mass. The presence of adipogenic markers in osteoblasts from
elderly subjects supports the idea that some bone-forming cells may
convert to fat-storing cells over time, exacerbating osteoporosis risk
(Clabaut et al., 2021). Compounding this problem, BM adipocytes
in the aged niche secrete high levels of RANKL while expressing low
levels of its decoy receptor osteoprotegerin (OPG). The resulting
increase in osteoclast activity leads to greater bone resorption,
thereby weakening bone structure. Collectively, these mechanisms
help explain why most clinical studies associate high marrow fat
with lower bone-mineral density and higher fragility-fracture risk
in the elderly (Ho and Mendez-Ferrer, 2020).
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Inflammatory and metabolic alterations
with BMAT expansion

BMAs are not merely passive fat storage cells; they actively
secrete cytokines and adipokines that influence the bone marrow
milieu and systemic metabolism. Aging is associated with chronic
low-grade inflammation, and indeed pro-inflammatory cytokines
increase in the bone marrow with age. This inflammatory
shift can disrupt normal hematopoietic support and bone
remodeling (Pritz et al., 2014). On the other hand, BMAs produce
several anti-inflammatory and regulatory adipokines whose levels
change with age, affecting both local and systemic physiology.

Adiponectin: Adiponectin is one of the most abundant anti-
inflammatory adipokines in BMAT and plays beneficial roles in
enhancing insulin sensitivity and glucosemetabolism (Scherer et al.,
1995; Pajvani et al., 2004). It also dampens inflammation by
blocking NF-κB signaling, which reduces production of IL-6, IL-
18, and TNFα. In aging bone marrow, adiponectin levels remain
high (Chandrasekar et al., 2008; Yamaguchi et al., 2005); BMAT
exhibits high expression of RANKL, regulated by C/EBPβ and
C/EBPα, alongside the downregulation of OPG, a key inhibitor
of osteoclast differentiation (Hu et al., 2021). While this may
help counteract inflammation and metabolic dysregulation,
paradoxically higher adiponectin in the elderly is also associated
with reduced muscle mass and physical frailty (Karvonen-
Gutierrez et al., 2016; Kizer et al., 2010).Thus, the role of adiponectin
in ageing is complex: it confers metabolic benefits, but its elevated
levels might reflect or contribute to age-related frailty.

SFRP5: Secreted frizzled-related protein 5 (SFRP5) is an
adipokine that increases in aged BMAT. SFRP5 promotes
adipogenesis and modulates Wnt signaling, but it also exerts
anti-inflammatory effects by suppressing NF-κB activation and
downregulating pro-inflammatory cytokines such as TNFα, IL-
1β, and CCL2. Elevated SFRP5 in old age may thus help offset
some inflammatory processes even as it encourages fat deposition
(Song et al., 2013; Li et al., 2012; Xu et al., 2009; Fujimaki et al., 2001).

Omentin-1: Omentin-1, an adipokine associated with insulin
sensitization, is found to increase with age and is linked tometabolic
disturbances like obesity and diabetes. Higher omentin-1 inmarrow
fat may indicate a response to systemic metabolic stress in aging,
although its direct effects on marrow cells remain to be fully
understood (Watanabe et al., 2017; de Souza Batista et al., 2007).

C1q/TNF-Related Proteins (CTRPs): Several members of
the CTRP family (e.g., CTRP1, CTRP3, CTRP9, CTRP12) are
upregulated in aging adipose tissue and bone marrow. These
adipokines generally enhance insulin sensitivity and glucose uptake,
and some have specific anti-inflammatory actions (Kon et al.,
2019; Liu et al., 2017). For instance, CTRP3 can inhibit TLR4-
mediated inflammation, thereby reducing inflammatory cytokine
production (Hofmann et al., 2011). In parallel, CTRP1, CTRP9,
and CTRP12 improve insulin signaling and metabolic homeostasis
(Peterson et al., 2012; Enomoto et al., 2011). While the increase
of such adipokines in aged BMAT might mitigate chronic
inflammation to a degree, their net impact on metabolism can
be double-edged. Differential effects of various CTRPs and
other adipokines on insulin signaling and lipid metabolism may
contribute to paradoxical outcomes, potentially exacerbating
conditions like obesity or diabetes in some contexts.

In summary, the accumulation of BMAT during aging has far-
reaching consequences on the bone marrow ecosystem. Expanded
BMAs in the elderly disrupt the equilibrium of MSC and
HSC functions, altering both blood cell production and bone
maintenance. Through a combination of altered cell-intrinsic
pathways and changed secretory profiles (cytokines and adipokines),
BMAs contribute to the immunosenescence and bone loss observed
in older individuals. Importantly, the magnitude of these effects
may vary depending on an individual’s health status. The molecular
changes in the aged bone marrow niche, driven in part by BMAs,
also have practical implications–for instance, they can influence
immune reconstitution and hematopoietic recovery after bone
marrow transplantation in elderly patients.

BMAs in diseases

Historically, most research on adipocytes in chronic and acute
diseases has focused onWAT.However, growing evidence highlights
the critical role of BMAT in maintaining bone marrow homeostasis
and systemic metabolic regulation. Dysregulation of BMAT has
been implicated in various pathological conditions, and conversely,
systemic diseases can alter BMATcomposition and function. Studies
have explored the relationship between BMAT and diseases such
as diabetes, obesity, cancer, cardiovascular disorders, hematologic
disorders, and inflammatory conditions. This section of the review
aims to provide a comprehensive understanding of the molecular
and cellular mechanisms linking BMAT to these diseases (Figure 2).

Diabetes and obesity

BMAT is increased in T2DMpatients, who have increased blood
glucose levels due to insulin resistance (Zhu et al., 2019; Sheu et al.,
2017). Elevated glucose and reactive oxygen species (ROS) favour
adipogenesis over osteogenesis by activating PPARγ and C/EBPα,
thereby promoting marrow adipocyte differentiation (Rharass
and Lucas, 2019). Elevated glucose levels induce excessive ROS
production, contributing to insulin resistance and altered adipokine
secretion (Rharass and Lucas, 2019). Additionally, adiponectin is
downregulated in T2DM, impairing both BMAT function and
glucose homeostasis, whereas leptin expression shows variable
patterns depending on metabolic status (Rharass and Lucas, 2019).
T2DM impairs bone marrow-derived PCs, which are critical for
vascular stability and regeneration. Hyperglycemia and metabolic
dysfunction reduce pericyte proliferation, viability, migration,
and angiogenic capacity. These impairments are associated with
the downregulation of key signaling pathways, including the
AKT pathway, C-X-C motif chemokine ligand 2 (CXCL2), and
angiopoietin-2, leading to compromised vascular integrity and
impaired tissue repair (Mangialardi et al., 2019). The reduction of
BM-derived PCs may influence BM adipogenesis. In type 1 diabetes
mellitus (T1DM), the impact of BMAT appears to be less significant.
While studies in mouse models have demonstrated a correlation
between T1DM and BMAT, this association has not been observed
in humans with T1DM (Carvalho et al., 2019; Botolin and McCabe,
2007). In a clinical study, thirty female patientswith T1DM,matched
for age and weight, showed no significant difference in vertebral
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FIGURE 2
Overview of BMAs in disease pathology. (1) Hematopoietic diseases: BMAs enhance adipogenesis (regulated by GATA2, AdipoQ, PPAR-γ), remodel the
microenvironment via GDF15 and CXCL12, and secrete FFAs and leptin, driving disease progression. (2) Bone malignancies: Adipocytes recruit
tumor-associated macrophages via CCL2 and engage in bidirectional crosstalk with cancer cells through metabolites, adipokines, and cytokines,
promoting proliferation, invasion, and chemoresistance. (3) Endocrine disorders and anorexia nervosa: Pituitary dysfunction reduces GH and estrogen,
impairing BMA function. Anorexia nervosa upregulates Pref-1 and downregulates IGF-I, contributing to metabolic dysregulation. (4) Cardiovascular
diseases: Myocardial ischemia decreases adiponectin and SFRP5, altering adipocyte function. BMAs also influence atherosclerosis through adipokine
secretion (adiponectin, omentin) and cholesterol metabolism. (5) Diabetes: ROS-induced mesenchymal stem cell senescence disrupts adipogenesis
and osteogenesis, while glucose and AGEs promote MCP-1 secretion, affecting bone homeostasis. (6) Obesity: BMAs drive mesenchymal stem cell
senescence via SASP factors, promote adipogenesis, recruit monocytes, and secrete RANKL, enhancing osteoclast differentiation and bone resorption.
(7) Autoimmune diseases: BMAs interact with immune cells by responding to IL-17 from CD4+ T cells, recruiting myeloid-derived suppressor cells via
CCL2, and releasing DAMPs that modulate IL-1β production, contributing to immune dysregulation. GATA2: GATA-binding factor 2; AdipoQ:
Adiponectin; PPAR: Peroxisome Proliferator-Activated Receptor; FFA: Free Fatty Acids; GDF15: Growth Differentiation Factor 15; CXCL12: C-X-C Motif
Chemokine Ligand 12; GH: Growth Hormone; Pref-1: Preadipocyte Factor-1; IGF-1: Insulin-like Growth Factor 1; SFRP5: Secreted Frizzled-Related
Protein 5; AGEs: Advanced Glycation End Products; MCP-1: Monocyte Chemoattractant Protein-1; SASP: Senescence-Associated Secretory
Phenotype; RANKL: Receptor Activator of NF-kappa B Ligand; DAMPs: Damage-Associated Molecular Patterns; CCL2: C-C Motif Chemokine Ligand 2;
MDSC: Myeloid-Derived Suppressor Cells.

BMAT compared to the control group (Abdalrahaman et al., 2015).
Another study indicated that BMAT accumulation was associated
with serum lipid levels rather than T1DM, highlighting the potential
role of lipid homeostasis and adipogenic differentiation pathways in
BMAT regulation (Slade et al., 2012).

While a reduction in adiponectin is linked to insulin resistance
and T2DM, adipsin secreted by BMAT plays a crucial role
in maintaining metabolic homeostasis. Adipsin enhances insulin
secretion by pancreatic beta cells and protects them from apoptosis.
A study demonstrated that adipsin preserves beta-cell function
in diabetic mice, suggesting its therapeutic potential in diabetes
management (Gomez-Banoy et al., 2019). This finding is promising,
as most treatments for T2DM primarily target insulin resistance
or enhance insulin production (Gomez-Banoy et al., 2019).
Expanding therapeutic approaches to include factors related to
BMATmay offer new strategies for diabetesmanagement.Monocyte
chemoattractant protein-1 (MCP-1), which is upregulated in
the bone marrow of individuals with T2DM, promotes the

differentiation of BM MSCs into the adipogenic lineage (Wan et al.,
2023; Ferland-McCollough et al., 2018). Diabetic patients may
receive insulin-sensitizing drugs such as TZDs, which target
PPARγ, a key transcription factor regulating BMAT formation
(Chen et al., 2017). In the skeletal system, DPP4 influences fracture
healing by modulating osteoblast and osteoclast activity. RANKL,
another BMAT-derived factor, promotes osteoclastogenesis and
bone resorption, contributing to systemic inflammation and
insulin resistance, which are implicated in T2DM pathogenesis
(Kiechl et al., 2013; Ambrosi et al., 2017; Lamers et al., 2011).
Intermittent PTH therapy indirectly inhibits RANKL signalling
by activating PTH1R in BMAT, reducing marrow adiposity and
limiting bone resorption, with potential benefits for insulin
sensitivity (Fan et al., 2017). Furthermore, C1q/tumor necrosis
factor-related proteins (CTRPs), particularly CTRP13, function as
anti-inflammatory adipokines that enhance insulin sensitivity.

Furthermore, obesity is a complex metabolic disorder driven
by genetic predisposition, environmental influences, and lifestyle
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factors (C et al., 2021). BMAT expands in obesity and is
associated with osteoporosis and increased fracture risk, likely
due to its influence on bone remodeling and metabolic regulation
(Ambrosi et al., 2017; Styner et al., 2014). Deacetylation of PPARγ
reduces its transcriptional activity, suppressing adipogenesis and
improving insulin sensitivity and mitigating metabolic dysfunction
in HFD-induced obese mice (Kraakman et al., 2018). As a result,
BMAT increases, contributing to enhanced protection against
TZDs-induced bone loss (Kraakman et al., 2018). PPARγ also
upregulates FGF21, a metabolic regulator with potential therapeutic
applications for obesity and diabetes. In turn, FGF21 positively
regulates PPARγ activity and enhances the efficacy of TZDs-based
anti-diabetic drugs (Dutchak et al., 2012). During obesity, BMAs
secrete plasminogen activator inhibitor-1 (PAI-1), a key regulator of
fibrinolysis and vascular function. High PAI-1 levels contribute to
endothelial dysfunction and a pro-thrombotic state, linking BMAT
expansion to cardiovascular risk factors. In the marrow, excess PAI-
1 and similar factors can impair the microcirculation and nutrient
supply, further stressing the bone niche.

Animal models have been instrumental in dissecting the
relationship between obesity and BMAT. Studies utilizing HFD
mouse models to investigate the relationship between BMAT
and obesity further validate the effectiveness of this model.
For example, in DKK1 knockout mice, HFD-induced BMAT
expansion is reduced, suggesting that DKK1—normally upregulated
in obesity—plays a role in BMAT regulation and metabolic
dysfunction (Colditz et al., 2020). Additionally, HFD exposure
leads to significant alterations in BMAT-associated gene expression,
further highlighting themolecular adaptations of BMAT in response
to obesity (Liu et al., 2013). For example, the expression of Krüppel-
like factors 4 and 2 was upregulated, while coagulation factor
II receptor-like 2 (F2RL2) and polo-like kinase 2 (PLK2) were
downregulated. These gene expression changes suggest a shift in
BMAT-associated regulatory pathways in response to metabolic
alterations. In addition to HFD models, a lipodystrophic (fat-
free) mouse model has been utilized to investigate the origins of
BMAT in metabolic disorders such as diabetes (Zhang X. et al.,
2021). This is a novel genetic congenital generalized lipodystrophy
(CGL) model, in which CGL is a disorder characterized by
complete loss of peripheral adipose tissue and is associated with
diabetes, insulin resistance, hyperglyceridemia, and osteosclerosis
(Zou et al., 2019; Fiorenza et al., 2011). They identified a secondary
adipogenesis pathway that becomes activated with aging, driven
by the recruitment of adiponectin-negative stromal progenitors.
This shift results in BMAT with an enhanced capacity for lipid
storage but a reduced ability to express key cytokines, including
Cxcl12, adiponectin, Retn, and adipsin, which are crucial for
maintaining bone andmetabolic homeostasis (Zhang X. et al., 2021).
Adiponectin is reduced in obesity and T2DM and increased in
T1DM and during calorie restriction (Mancuso, 2016; Combs et al.,
2003). The latter is linked to increased BMAT in obese and
diabetic individuals (Miggitsch et al., 2019). For example, BMAT
upregulates the expression of leptin, a pro-inflammatory adipokine
that modulates immune responses, and promotes the recruitment
of Ly6Chigh monocytes, which contribute to systemic inflammation
and insulin resistance during obesity (Boroumand et al., 2022;
Mancuso and Bouchard, 2019). Leptin resistance is a hallmark of
obesity. During obesity, B lymphopoiesis is suppressed due to a

reduction in IL-7 levels within the BM (Adler et al., 2014). It can
also disturb lipid draft/TGF-β, which maintains HSCs, in the BM
of mice (Hermetet et al., 2019). Some studies have reported that
HFD-induced obesity does not significantly alter the release of
inflammatory cytokines from BMAT. For instance, levels of IL-1β
andCCL2 remained unchanged (Hermetet et al., 2019; Nielsen et al.,
2008). Additionally, another study found no evidence of HFD-
induced BMAT inflammation but reported that non-obese mice
exhibited higher mRNA expression of pro-inflammatory genes such
as TNFα, IL-1β, and LCN2 (Tencerova et al., 2018). The findings
in this section provide evidence that obesity and diabetes are
associated with increased BMAT, potentially driven by dysregulated
cellular and molecular mechanisms. However, further research is
needed to elucidate the specific pathways linking BMAT expansion
to metabolic dysfunction. Therefore, distinguishing the molecular
signatures between these conditions is essential for understanding
BMAT-related pathophysiology.

Autoimmune diseases

Unlike obesity, which is characterized by low-grade chronic
inflammation, high-grade inflammatory autoimmune diseases
exhibit a stronger association with BMAT-related inflammatory
factors. One such common inflammatory autoimmune disease is
rheumatoid arthritis (RA) (Castro et al., 2017). BMAT-derived
MSCs exhibit functional defects in RA patients. Specifically,
these MSCs show a weaker ability to inhibit CD25 expression
on autologous CD4+ and CD8+ T cells compared to allogeneic T
cells (Kuca-Warnawin et al., 2020; Krajewska-Wlodarczyk et al.,
2017). Another chronic inflammatory disease, spondyloarthritis, is
associated with reduced BMAT levels inmousemodels (Furesi et al.,
2021). In the BM, neutrophils and IL-7-producing CD4+ T
cells are increased, while erythroblasts are decreased. Among
these immune cells and cytokines, IL-7 has been identified as a
key regulator inhibiting adipogenesis in the BM(155). Beyond
its effects on T cells, BMAT also inhibits B lymphopoiesis by
promoting the differentiation of myeloid cells that produce IL-
1β(17). This suppression of lymphopoiesis is associated with an
increase in BMAT, IL-1β, and S100A9 expression by myeloid
cells (Furesi et al., 2021). Additionally, BMAT upregulates several
cytokines, including IL-10, IL-8, IL-6, TNFα, CCL2, CCRL2, and
CXCL1 (Miggitsch et al., 2019). Nevertheless, BMAT produces anti-
inflammatory adipokines (Mancuso, 2016; Mancuso and Bouchard,
2019). Among these, adiponectin activates AMPK in immune cells,
potentially inhibiting inflammation by suppressing NF-κB signaling
and reducing the production of pro-inflammatory cytokines such as
TNFα, IL-6, and IL-8 (Mancuso, 2016). Conversely, adiponectin
can promote COX-2 expression and enhance PGE2 synthesis
in arthritic joints, thereby exacerbating inflammation and pain
(Mancuso, 2016). Omentin inhibits TNFα-induced EC activation
and, unlike adiponectin, suppresses COX-2 expression. SFRP5
reduces macrophage-derived TNFα, IL-1β, and CCL2/MCP-1
production (Guan et al., 2021). Given that BMAT influences both
pro- and anti-inflammatory adipokines, it plays a crucial role in
modulating immune and inflammatory responses associated with
these signaling molecules. The studies discussed in this paragraph,
along with findings from other sections, highlight the significant
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role of BMAT in both promoting and suppressing inflammatory
cytokines.

Endocrine diseases and anorexia nervosa

BMAT accumulation is tightly regulated by endocrine signaling,
particularly through GH, estrogens, and glucocorticoids. Pituitary
dysfunction disrupts the secretion of these hormones, leading to
alterations in BMAT homeostasis. In hypophysectomized rats, the
loss of pituitary-derived GH results in increased BMAT, likely due
to impaired lipolysis and adipocyte differentiation. These findings
underscore the essential role of GH-mediated molecular pathways
in maintaining BMAT balance. Other endocrine factors, including
thyroxine, cortisone and IGF-1, failed to reverse BMAT expansion
(Menagh et al., 2010). Conversely, BMAT itself may modulate
endocrine homeostasis through molecular signaling pathways. For
instance, during caloric restriction, increased BMAT accumulation
correlates with elevated glucocorticoid levels (Piotrowska and
Tarnowski, 2021; Polineni et al., 2020). This suggests a bidirectional
regulatory mechanism between BMAT and systemic endocrine
responses.

Endocrine factors may also influence BMAT dynamics in
diseases such as anorexia nervosa. In premenopausal women with
anorexia nervosa, BMAT decreases following transdermal estrogen
treatment. This reduction is associated with an increase in red
blood cell count and hematocrit levels, suggesting a potential link
between estrogen signaling, BMAT regulation, and hematopoiesis
(Polineni et al., 2020). Previous studies have demonstrated
that BMAT is increased in patients with anorexia nervosa
(Doucette et al., 2015). This increase may be partially explained
by elevated levels of DLK1 observed in women with anorexia
(Piotrowska and Tarnowski, 2021; Devlin and Rosen, 2015).
Supporting this, DLK1 levels decline during anorexia treatment,
coinciding with reductions in BMAT and bone loss (Fazeli et al.,
2012). Moreover, unlike obesity and T2DM, anorexia nervosa is
associated with elevated adiponectin levels (Cawthorn et al., 2014).
As BMAT is an endocrine organ, further research is needed to
elucidate the molecular mechanisms linking BMAT to endocrine
disorders and metabolic adaptations in anorexia nervosa.

Cardiovascular diseases

Unlike in some other disorders, BMAT-derived adipokines
may exert a protective role in cardiovascular disease. Additionally,
given that adiponectin plays a key role in metabolic regulation,
it may also influence cardiovascular pathology, provides a
possibility for it to affect cardiovascular disorders. For example,
adiponectin, similar to SFRP5, has a protective role in myocardial
ischemia by reducing cellular infiltration and modulating
inflammatory responses (Nakamura et al., 2016; Shibata et al., 2005).
Additionally, adiponectin may protect against aortic aneurysm by
attenuating vascular inflammation (Yoshida et al., 2014). Omentin,
another adipokine, plays a protective role in vascular health. It
mitigates vascular inflammation associated with atherosclerosis by

downregulating the expression of intracellular adhesion molecule-
1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-
1). Additionally, cholesterol is another crucial factor in the
development and progression of atherosclerosis. BMAT increases
during cholesterol metabolism, characterized by elevated free
cholesterol levels and reduced expression of proteins associated with
lipolysis. This alteration suggests that BMAT may contribute to the
development of atherosclerosis (Attané et al., 2019). In contrast
to other adipokines, adipsin does not influence atherosclerosis
development in LDL receptor-knockout mice. However, its effects
in humans may differ (Liu L. et al., 2021). The impact of BMAT on
cardiovascular disorders varies among adipokines, highlighting the
need for further research to establish clearer correlations.

Osteoporosis

Osteoporosis is a skeletal and metabolic disorder
characterized by reduced bone mass and disruption of the
bone microenvironment, primarily driven by an imbalance
between osteoblast-mediated bone formation and osteoclast-
driven bone resorption (Langdahl, 2021). One of the most
common forms is glucocorticoid-induced osteoporosis (GIOP)
(Kusumbe et al., 2016). Given that BM adipocytes and osteoblasts
share a common progenitor lineage, BMAT is implicated in
osteoporosis. Recent studies have shown that osteoporosis is
associated with a shift in BMAT lipid composition, characterized
by a reduction in unsaturated lipids and an increase in
saturated lipids (Bao et al., 2023).

Overall, it remains unclear whether increased BMAT directly
contributes to bone loss, occurs as a consequence of bone loss
(Ambrosi et al., 2017). Some studies have indicated that an
increase in BMAT is associated with reduced BMD in both
aged humans and animals (Schwartz et al., 2013; Duque et al.,
2009). Other studies have reported that in mice, BMAT expansion
occurs later in life, around 2 months after the onset of bone
loss, suggesting a temporal relationship between these processes
(Glatt et al., 2007; Lazarenko et al., 2007). Moreover, a study
reported increased bone loss without changes in BMAT in mice
deficient in 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)
(Justesen et al., 2004). Elevated BMAT has been observed in
postmenopausal osteoporosis, further highlighting its potential role
in bone metabolism (Li J. et al., 2020).

Furthermore, osteoporosis treatment strategies can target
factors that promoteBMATexpansion and suppress bone formation.
For example, sclerostin, a key inhibitor of the Wnt signaling
pathway, can be neutralized by the humanizedmonoclonal antibody
Romosozumab, which enhances bone formation and reduces bone
resorption (McClung et al., 2014). Similarly, antibodies targeting
DKK1, another Wnt pathway inhibitor, have been shown to increase
bone mass and facilitate bone fracture repair (Florio et al., 2016).
The treatment of osteoporosis has its disadvantages too. For
example, glucocorticoid exposure induces GIOP can have side
effects such as bone loss and fracture, which occurs in about
30%–50% of GIOP patients (Florio et al., 2016). Another potential
therapeutic approach involves promoting vascular formation, as
impaired angiogenesis has been linked to osteoporosis and reduced
bone regeneration. Therefore, desferrioxamine, when administered
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to osteoporotic mice, has been shown to increase H-type vessel
formation and prevent bone loss (Wang et al., 2017b). Another
key factor is βII-spectrin (SPTBN1), which enhances the expression
of VEGF, a key regulator of angiogenesis, thereby promoting both
bone formation and blood vessel development in osteoporotic
conditions (Xu et al., 2021). Lifelong osteoporosis treatment can
be costly, particularly when the condition arises as a consequence
of irradiation or chemotherapy for solid or hematopoietic tumor
treatment (Devlin and Rosen, 2015). A promising approach involves
altering the irradiated BMAT lineage to favor osteogenesis over
adipogenesis, potentially improving bone regeneration (Devlin and
Rosen, 2015). However, the development of more cost-effective and
safer therapeutic strategies with fewer side effects remains crucial.
Given the significant role of BMAT in the onset and progression
of postmenopausal osteoporosis, targeting BMAT-associated factors
presents a promising avenue for future osteoporosis treatments.

Hematopoietic diseases

BMAT plays a crucial role in regulating the hematopoietic
microenvironment. Dysregulation of BMAT may contribute to
the progression of hematopoietic malignancies, such as acute
myeloid leukemia (AML) and multiple myeloma (MM). Notably, an
increased presence of small BM adipocytes has been observed in
AML patients, which may serve as a potential biomarker for poor
prognosis in AML (Lu et al., 2018a; Feldman et al., 2006). BMAT
has been found to secrete FFAs, which are transported to AML
cells following BMAT-induced lipolysis via FABP4 (Shafat et al.,
2017; Lu et al., 2018a; Feldman et al., 2006; Cuminetti and
Arranz, 2019). Various therapeutic strategies have been explored
to target AML, including the inhibition of FABP4 and carnitine
palmitoyltransferase 1a (CPT1a), an enzyme responsible for lipid
transport into mitochondria for β-oxidation. Blocking FABP4 and
CPT1a disrupts AML cell lipid metabolism, ultimately leading to
AML cell death (R et al., 2015). BMAT is implicated in leukemia
progression through multiple signaling pathways. These cells, in
turn, express leptin receptors, which are highly upregulated in
primary acute promyelocytic leukemia (APL) (Tabe et al., 2004;
Konopleva et al., 1999). This cell-cell interaction facilitates APL
progression by promoting leukemic cell survival and proliferation.
Additionally, BMAT secretes CXCL12, thereby supporting their
migration, survival, and drug resistance (Cho et al., 2017).Therefore,
inhibiting CXCL12/CXCR4 is a potential therapy way for AML.

Just as BMAT influences AML progression, AML cells can
also impact adipogenesis. AML cells secrete growth differentiation
factor 15 (GDF15), which reduces BMAT volume and adipocyte
size (Lu et al., 2018b). This disruption contributes to impaired
myelo-erythroid maturation, further compromising hematopoietic
homeostasis (Wang et al., 2018). While targeting CXCL12 and
FABP4 has emerged as a promising therapeutic strategy against
AML, some treatments have limitations concerning BMAT. For
instance, dexamethasone resistance can develop in lymphocytic
leukemia, potentially reducing treatment efficacy and complicating
disease management (Tung et al., 2013).

Moreover, BMAT plays a key role in promoting the growth
and survival of MM cells, a malignancy of plasma cells, a subset
of white blood cells. BMAT-derived leptin enhances MM cell

proliferation; however, this effect diminishes with treatment
(Fotiou and Katodritou, 2025). Interestingly, this process can be
hindered by drug resistance. BMAT contributes to MM drug
resistance by creating a supportivemicroenvironment that enhances
tumor cell survival, ultimately reducing treatment efficacy and
facilitating disease progression (Fotiou and Katodritou, 2025).
Leptin upregulate autophagic proteins in MM cells, contributing
to chemotherapy resistance (Liu et al., 2015). Resistance can be
mitigated by alternative therapeutic strategies, such as inhibiting
fatty acid-binding proteins (FABPs) in MM cells. Targeting
FABPs disrupts lipid metabolism, thereby reducing MM cell
proliferation and enhancing treatment responsiveness (Fotiou
and Katodritou, 2025). Other BMAT-derived factors, such as
MCP-1/CCL2 and stromal cell-derived factor-1α, function as
chemotactic agents for multiple myeloma cells (Fairfield et al.,
2021). Similar to its role in leukemia, dexamethasone is also utilized
in the treatment of multiple myeloma. Furthermore, while BMAT
influences MM, MM cells, in turn, modulate BMAT adipogenesis
(Fairfield et al., 2021; Fairfield et al., 2020).

Aplastic anemia, a hematopoietic disorder characterized by
bone marrow failure and reduced hematopoiesis, is associated
with increased BMAT (Tripathy et al., 2014). At the cellular
level, bone marrow stromal cells (BMSCs) in aplastic anemia
exhibit a skewed differentiation towards adipogenesis over
osteogenesis, contributing to impaired hematopoietic support.
Molecularly, this shift is driven by dysregulated signaling pathways.
GATA2, a transcription factor critical for HSCs maintenance,
functions as a BMAT suppressor by inhibiting PPARγ-mediated
adipogenesis. In aplastic anemia, reduced GATA2 expression leads
to dysregulated MSCs differentiation, favoring adipocyte formation
over osteoblast lineage commitment. This reduction enhances
adipogenic pathways, contributing to excessive BMATaccumulation
(Xu et al., 2009; Fujimaki et al., 2001). Therefore, therapeutic
strategies aimed at enhancing GATA2 expression may help mitigate
BMAT expansion in these patients.

Collectively, these studies highlight the critical role of
BMAT-derived factors in influencing various diseases, while also
demonstrating how these diseases, in turn, modulate BMAT
composition. The most affected conditions are those associated
with disruptions in the bone marrow microenvironment. However,
due to the heterogeneity of BMAT in metabolic and hematopoietic
disorders, further research is needed to establish a more precise
understanding of the correlations between BMAT, its secreted
factors, and disease pathophysiology.

Bone malignancy

The preceding discussion underscores the ability of BMAT to
interact with tumor cells through its role as an endocrine regulator of
the skeletal and bone marrow microenvironments (Cawthorn et al.,
2014; Morris and Edwards, 2016). Maintaining homeostasis
in the bone microenvironment requires a tightly regulated
balance between angiogenesis, adipogenesis, and osteogenesis.
Dysregulation of these pathways can lead to pathological
remodeling, promoting tumor cell survival and disease progression.
This microenvironment facilitates the metastasis of breast cancer,
prostate cancer, and MM, as well as the progression of primary bone
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cancers (Guerra et al., 2018). Additionally, the bonemarrow vascular
niches play a crucial role in supporting tumor growth by enabling
extensive crosstalk between cancer cells and various cellular
components within the bone marrow (Godavarthy et al., 2020).

The structural and functional characteristics of bone marrow
vasculature, including its large-diameter sinusoidal vessels and
sluggish blood flow, contribute to cancer therapy resistance by
limiting drug perfusion and immune cell infiltration. Although
primary bone cancer is rare, accounting for only 1% of all cancers,
it is one of the most painful malignancies. Its morbidity is more
prevalent among children and young adults compared to the elderly
(Marengo et al., 2011). Bone cancer encompasses various types,
including osteosarcoma, Ewing sarcoma, chondrosarcoma, and
chordoma, with osteosarcoma being the most common primary
malignant bone tumor (Obmolova et al., 2012). However, bone
malignancies can also arise from metastatic spread of other cancers,
particularly hematopoietic malignancies originating in the bone
marrow, such as lymphoma, leukemia, or MM.

Most studies exploring the link between bone cancer and
adipocytes have focused on WAT rather than BMAT, partly due
to the technical challenges of isolating and culturing BMAT.
Consequently, BM-MSCs are commonly used as a model to induce
BMAT differentiation. BMAT is known to have some differences in
gene expression of lipid synthesis, signaling pathways, and proteins
compared to other types of adipocytes, but also a lot of similarities
(Ferguson and Turner, 2018). For example, PPARγ signaling is
upregulated in BMAT, similar to WAT (Beekman et al., 2019a). This
suggests that BMATmay influence bone cancer progression through
some mechanisms shared with WAT, such as modulation of tumor
growth, metastasis, and drug resistance, while also exerting unique
marrow-specific effects.

Bone cancer secretes various factors and cytokines that influence
the surrounding microenvironment, modulating the activity of
osteoblasts, osteoclasts, and BMAT. In response, BMAT may
contribute to the progression of bone malignancies. BMAT
releases several adipokines, which have pro-tumorigenic effects by
promoting cancer cell proliferation, survival, and metastasis. For
example, IL-6 promotes tumor cell survival and facilitatesmetastasis
(Reagan et al., 2021; Walter et al., 2009). Leptin enhances cancer
cell colonization, autophagy, and chemoresistance by activating
the JAK2/STAT3 and RAS signaling pathways, creating a feedback
loop that further supports tumor survival (Yue et al., 2016;
Dirat et al., 2011). Additionally, BMAT-derived cyclooxygenase-2
(COX-2) and PGE2 contribute to tumor progression by inducing
angiogenesis, facilitating immune evasion, and promoting tumor-
associated bone degradation. BMAT increases the release of FFAs,
which activate the PI3K/AKT and NF-κB signaling pathways,
driving tumor proliferation and upregulating COX-2 expression,
leading to increased PGE2 synthesis (Cha and Koo, 2019; Ye et al.,
2016). Additionally, BMAT secretes CCL2, which binds to its
receptorCCR2onmonocytes andECs, stimulating angiogenesis and
tumor-associatedmacrophage recruitment (Luo et al., 2018). BMAT
also secretes RANKL, which is known to support osteosarcoma
and chondrosarcoma (Beekman et al., 2019b; Herroon et al., 2013;
Evola et al., 2017;Marley et al., 2015). Furthermore, BMATenhances
tumor growth in bones through the FABP4 pathway, which also
promotes adipogenesis in a reciprocal manner (Arendt et al.,
2013). High expression of FABP4, along with CD36 and perilipin

2, facilitates lipid transfer from BMAT to tumor cells. BMAT-
derived FFAs are transported via CD36 into the cytosol and
subsequently shuttled by FABP4 to the mitochondria, where
they undergo β-oxidation. This process is regulated by carnitine
palmitoyltransferase-1A (CPT1A), driving ATP production to fuel
tumor cell metabolism and proliferation (Shafat et al., 2017;
Pascual et al., 2017; Tirode et al., 2007). Besides, FFAs can be
transported to the nucleus by FABP4, where they act as ligands
for the nuclear receptor PPARγ. This activation leads to the
upregulation of anti-apoptotic factors such as Bcl-2, promoting
tumor cell survival and resistance to apoptosis (Herroon et al.,
2013). In turn, tumor cells also promote adipogenesis by stimulating
LEPR+/Sca-1+ BMSCs to differentiate into adipocytes. A notable
example of a bone tumor associated with this mechanism is Ewing
sarcoma, the second most common primary bone cancer. In Ewing
sarcoma, suppression of the FLI1 gene leads to a moderate increase
in FABP4 expression, potentially influencing tumormetabolism and
microenvironment interactions (Takeshita et al., 2014).

Given the tumor-supporting role of BMAT in bone cancer,
it provides a potential therapeutic target for treatment. The
differentiation preference of BMSCs in the bone cancer
microenvironment can be modulated by targeting key regulators
such as PPARγ, glucocorticoids, and TZDs. Additionally, targeting
protein kinase C has been shown to enhance osteogenesis while
exhibiting anti-tumor effects, making it a promising strategy for
bone cancer therapy (David et al., 2011). Another therapeutic
approach involves targeting lipid metabolism, which plays a
crucial role in supporting cancer cell survival. Inhibiting fatty
acid synthesis and uptake, as well as key enzymes involved
in lipid metabolism—such as fatty acid synthase, acetyl-CoA
carboxylase, and ATP-citrate lyase—can impair tumor cell
survival and proliferation by disrupting energy production and
membrane biosynthesis. In contrary, certain cancer therapies,
such as dexamethasone and irradiation, have been shown to
increase BMAT levels (Hess et al., 2006). Fasudil, an inhibitor
of Rho-associated coiled-coil containing protein kinase (ROCK),
promotes terminal adipocyte differentiation while suppressing in
vivo tumorigenesis in chemoresistant osteosarcoma cells (Tabe et al.,
2017). Fasudil exerts its effects by inhibiting megakaryoblastic
leukemia 1 (MKL1), thereby preventing MKL1-mediated
suppression of PPARγ, which leads to enhanced adipogenesis in
osteosarcoma cells (Tabe et al., 2017; Rosenwald et al., 2017). Other
drugs, such as TZDs—including rosiglitazone, troglitazone, and
pioglitazone—modulate PPARγ activity, enhance adipogenesis, and
exhibit anti-tumor effects (Takahashi et al., 2019; Yousefnia et al.,
2018). However, despite their therapeutic potential, TZDs have been
associated with adverse effects, including weight gain and bone loss,
which may limit their clinical application (Wagner et al., 2010).

Overall, despite the recognized importance of BMAT in the
tumor microenvironment, relatively few studies have specifically
examined its correlation with bone cancer. Most existing research
focuses either on other adipocyte types, such asWAT, or on different
cancers, including MM, leukemia, and breast cancer. Although
current studies highlight the potential role of BMAT in bone cancer
progression and treatment, further research is needed to elucidate
the specific contributions of BMAT-derived factors in bone cancer
pathophysiology.
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Lymphatic–adipocyte crosstalk in the bone
marrow microenvironment

Recent identification of lymphatic endothelial cells (LECs) in
bone has opened new avenues for understanding their interactions
with bone marrow adipocytes and adipocyte progenitors
(Biswas et al., 2023; Liu et al., 2025b). LECs secrete molecular
mediators that modulate immune cell trafficking and may influence
adipogenic niches by shaping the local cytokine and chemokine
environment. Conversely, adipocytes and their precursors produce
adipokines—including leptin and adiponectin—as well as pro-
inflammatory cytokines like TNF-α and IL-6, which can regulate
lymphangiogenic signaling and lymphatic remodeling (Li et al.,
2025). In the bone marrow, this bidirectional crosstalk may impact
osteoimmune regulation, lipid metabolism, and skeletal integrity.
While such interactions are well-characterized in peripheral adipose
depots, their specific roles within the bone microenvironment
remain largely uncharacterized. Further mechanistic studies are
needed to delineate how LECs and adipogenic cells co-regulate
bone physiology under conditions such as ageing, obesity, and
inflammation.

Conclusion and future perspective

In conclusion, recent studies have provided greater insights
into the physiological and pathophysiological functions of BMAT.
The bone marrow is a critical organ involved in metabolic,
hematopoietic, immune, skeletal, and nervous system regulation.
Given that BMAT constitutes approximately 70% of the bone
marrow’s volume, it plays a significant role in maintaining systemic
homeostasis. However, despite these advancements, research on
BMAT has also raised new questions, highlighting the need for
further investigation into its precise functions and interactions
within the bone marrow microenvironment. These questions
primarily pertain to the role of BMAT in disease pathology rather
than its contribution to systemic homeostasis. Notably, species-
specific differences in BMAT function have been observed, with
murine BMAT secreting distinct factors compared to human
BMAT, suggesting variations in adipokine signaling and metabolic
regulation. For example, the correlation between T1DM and
BMAT has been established in murine models but remains
unclear in humans, possibly due to differences in insulin signaling,
inflammatory cytokine profiles, or adipocyte differentiation
pathways. Given the challenges of directly studying human BMAT,
future research should leverage advanced humanized models,
such as organ-on-a-chip systems and BM-MSC differentiation
platforms, to better elucidate the cellular andmolecularmechanisms
governing BMAT function in disease progression. Further research
is needed to characterize BMAT-specific factors, as many cytokines
and adipokines secreted by BMAT, such as leptin, adiponectin,
and IL-6, are also produced by other adipose tissue types,
complicating their functional distinction. Additionally, aging,
chronic diseases, and metabolic dysregulation alter the crosstalk
between BMAT, vascular niches, and hematopoietic or MSCs-
derived populations in the bone marrow microenvironment. These
disruptions influence key signaling pathways, such as PI3K/AKT,
NF-κB, and CXCL12/CXCR4, leading to impaired hematopoiesis,

immune dysfunction, and enhanced tumor progression. Distinct
molecular differences between BMAT and other adipose tissue
types highlight the need for further investigation into BMAT-
specific factors and their role in disease progression. Future
research should focus on the molecular crosstalk between BMAT
and vascular niches, particularly the influence of BMAT-derived
cytokines (e.g., IL-6, CXCL12) and adipokines (e.g., leptin,
adiponectin) on endothelial function, hematopoiesis, and tumor-
stroma interactions. Understanding these interactions at a cellular
and molecular level will provide new insights into BMAT’s
contribution to bone marrow-associated disorders and potential
therapeutic targets.

Currently, the assessment of human BMAT primarily
relies on magnetic resonance spectroscopy imaging techniques
and histological analysis. However, these methods face
several key limitations: (1) Spatial resolution constraints: 1H-
Magnetic Resonance Spectroscopy, the gold standard for BMAT
quantification, is restricted to single-voxel analysis, inadequately
capturing heterogeneous BMAT distribution in metabolically active
regions (Singhal and Bredella, 2019). (2) Protocol variability:
Despite standardization efforts by the bone marrow adiposity
society, inconsistencies in water-fat imaging parameters hinder
cross-study comparability (Jarraya and Bredella, 2021). (3)
Reductionist approaches: Most studies fail to integrate BMAT
secretory profiles (e.g., osteocalcin, adiponectin) with systemic
biomarkers, limiting insights into the metabolic-bone-vascular axis.

As a result, BMAT quantification remains challenging in
clinical settings, highlighting the urgent need for the development
and validation of novel non-invasive imaging modalities that
can accurately assess BMAT volume and distribution in human
patients. Advancements in imaging technologies may facilitate
research on how BMAT correlates with key physiological and
pathological parameters, including inflammation, insulin sensitivity,
bone density, endothelial function, arterial stiffness, and systemic
atherosclerosis. Given the observed increase in BMAT in aging-
related diseases such as obesity and diabetes, investigating the
relationship between BMAT quantification and inflammatory
biomarkers in these patients would be particularly valuable.
Future studies focusing on these associations could deepen our
understanding of the role of BMAT in both health and disease.
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Glossary

AML Acute myeloid leukemia

AR Adrenergic receptor

APL Acute promyelocytic leukemia

BAT Brown adipose tissue

BM Bone marrow

BMA Bone marrow adipocyte

BMAL1 Brain and muscle ARNT-like protein 1

BMAT Bone marrow adipose tissue

BMD Bone mineral density

BMSC Bone marrow stromal cell

CAR CXCL12-abundant reticular

CGL Congenital generalized lipodystrophy

CPT1a Carnitine palmitoyltransferase 1a

DKK1 Dickkopf-related protein 1

DPP4 Dipeptidyl peptidase-4

EC Endothelial cell

HSC Hematopoietic stem cell

FFAs Free fatty acids

FABP4 Fatty acid-binding protein 4

IGF-1 Insulin-like growth factor 1

LEPR Leptin receptor

MAT Marrow adipose tissue

MCP Monocyte chemoattractant protein

MM Multiple myeloma

MSC Mesenchymal stem cell

OPG Osteoprotegerin

OPN Osteopontin

PPAR Peroxisome proliferator-activated receptor

PTH Parathyroid hormone

RA Rheumatoid arthritis

RANKL Receptor activator of NF-kappa B ligand

SCF Stem cell factor

TNF Tumor necrosis factor

VEGF Vascular endothelial growth factor

WAT White adipose tissue
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