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How the chromatin landscape
influences nuclear morphology

Sourabh Sengupta1*†, Haritha Prabha2† and Daniel L. Levy2*
1Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United
States, 2Department of Molecular Biology, University of Wyoming, Laramie, WY, United States

Nuclear morphology is a defining cellular feature, differing based on cell type,
tissue type, and species. In healthy cells, nuclear morphology is generally tightly
regulated and maintained; however, dynamic changes in nuclear morphology
are observed under certain conditions, for instance in early embryos and in
some immune cells. Deviations in normal nuclear morphology are linked to
numerous diseases, including most cancers and premature aging syndromes.
Many regulators of nuclear morphology have been identified, encompassing
both intranuclear, cytoplasmic, and extracellular factors. Of note, recent
studies have converged on chromatin and chromatin-associated proteins
as key determinants of nuclear morphology and dynamics. In this review
we discuss how the chromatin landscape regulates nuclear morphology in
both normal and diseased cellular states. Additionally, we highlight emerging
technologies that promise to bridge critical gaps in our understanding of nuclear
morphology, including new approaches to probe nuclear structure and the use
of synthetic cells.
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1 Introduction

Cells vary substantially in size and morphology, ranging from yeast cells, which have
a diameter of 3 μm, to nerve cells in the neck of the giraffe, which can be 3 m in
length. A fundamental question is how organelle size and shape are tuned to support
the structure and function of such diverse cell types. The regulation of nuclear size and
shape is one area of particular interest (Marshall, 2002; Levy and Heald, 2012; Edens and
Levy, 2014; Jevtic et al., 2015).

In eukaryotic cells, the nucleus is comprised of a double-membrane nuclear envelope
(NE) that encloses the DNA and is often continuous with the endoplasmic reticulum.
Nucleoporins are the proteins that make up nuclear pore complexes (NPCs) which span
the NE, traversing through the inner and outer nuclear membranes (Alber et al., 2007;
Fernandez-Martinez and Rout, 2009). Selective transport of molecules occurs through
these NPCs (D'Angelo and Hetzer, 2008; Lin and Hoelz, 2019). The nuclear lamina is a
meshwork that lines the nucleoplasmic face of the inner nuclearmembrane and is composed
of intermediate filament lamin proteins and additional interacting proteins, providing
mechanical support and structural organization (Figure 1).

The maintenance of organelle shape and size is likely critical for cellular function.
Under physiological conditions, nuclear sizes typically scale with cell sizeto maintain a
constant nuclear-to-cytoplasmic ratio (Conklin, 1912; Gregory, 2005; Jorgensen et al., 2007;
Neumann and Nurse, 2007; Hara and Kimura, 2009; Jevtic and Levy, 2015; Vukovic et al.,
2016; Cantwell and Nurse, 2019; Sengupta et al., 2025). With respect to shape, nuclei
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FIGURE 1
Nuclear structure and known regulators of nuclear morphology. NPC, nuclear pore complex.

are generally roughly spherical, although there are variations based
on cell type, species, and differentiation status. Important questions
in cell biology relate to the mechanisms responsible for the
regulation of nuclear morphology.

Human granulocytes exhibit multi-lobed nuclei, connected
by short channels of nucleoplasm (Skinner and Johnson, 2017).
Spindly-shaped or fusiform nuclei are commonly seen in human
fibrocytes and syncytial endosperm of flowering plants like
Arabidopsis thaliana (Skinner and Johnson, 2017). Pathological
conditions, such as cancers and laminopathies, are associated
with significant alterations in nuclear morphology. Mutations
in lamin A are known to cause Hutchinson-Gilford progeria
syndrome, which is characterized by dysmorphic nuclei (Scaffidi
and Misteli, 2006). Enlarged nuclei are observed in various forms
of cancer. Furthermore, lobulated nuclei are characteristic of
adenocarcinomas, and nuclei with grooves and clefts are seen in
thyroid cancers (Zink et al., 2004). These anomalies in nuclear
morphologies are often used by clinicians for diagnostic purposes.
Nuclear inclusions and abnormal nuclei are also associated with
neurodegenerative disease (Woulfe, 2008). Importantly, biological
processes, including gene expression and cell migration, can
be influenced by nuclear morphology. For example, preventing
dynamic changes in nuclear morphology impedes the transition
of cells to S phase (Aureille et al., 2019). Cells with altered
nuclear elasticity due to changes in lamin A/C levels exhibit altered
migration capabilities (Bell and Lammerding, 2016).

In eukaryotes, genomic DNA is wrapped around histone
octamers, comprising two copies each of the core histones H2A,
H2B, H3, and H4, along with the linker histone H1. This facilitates

the formation of highly condensed chromatin which, along with
RNAs and other proteins, enables the packaging of DNA within
the nucleus (Luger et al., 2012). Chromatin structure can be
broadly divided into two types: heterochromatin which is more
condensed and inhibitory for DNA metabolic processes and
euchromatin which is more open and accessible to DNA-binding
factors. The dynamism between euchromatin and heterochromatin
is regulated by ATP-dependent chromatin remodelers, post-
translational histone modifications like methylation, acetylation,
and phosphorylation, and direct DNA methylation (Suganuma and
Workman, 2011; Nodelman and Bowman, 2021; Mattei et al., 2022)
(Figure 2). Of note, aberrations in these processes are the etiology
of several diseases and disorders. Altered promoter methylation
leads to aberrant gene expression in neurodevelopmental disorders
like Parkinson’s, Alzheimer’s, and Huntington’s disease (Lu et al.,
2013). Gain and loss of function mutations in histone modifiers
are observed in various forms of cancer, such as lung squamous
cell carcinoma (Brennan et al., 2017; Papillon-Cavanagh et al.,
2017; Farhangdoost et al., 2021), clear cell renal carcinoma
(Abuzeid et al., 1987), myeloid neoplasms, breast and prostate
cancer (Varambally et al., 2002), and others (Janssen and
Lorincz, 2022). Chromatin is the major occupant of the nucleus
and, as such, it is perhaps not surprising that the chromatin
landscape can modulate nuclear morphology. In this review,
we first provide a broad overview of known regulators of
nuclear morphology and then focus on more recent studies
that highlight the roles of chromatin structure and factors
in regulating nuclear morphology and, in turn, cellular and
nuclear function.
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FIGURE 2
Example epigenetic modifications and their impact on nuclear morphology. (A) Nuclear softening and blebs caused by increased histone acetylation
are reversed by (B) increased histone methylation (Stephens et al., 2018). (C) Increased DNA methylation is associated with irregularly shaped nuclei
(de Capoa et al., 1996; Rougier et al., 1998).

2 Regulators of nuclear morphology

An important determinant of nuclear morphology is the nuclear
lamina (Figure 1). The nuclear lamina contributes to the ability
of the nucleus to respond to mechanical forces and to withstand
intracellular and extracellular forces to avoid catastrophe (Swift et al.,
2013; Swift and Discher, 2014; Morival et al., 2025). Lamin A/C
restricts nuclear deformation while facilitating movement through
narrow channels with smooth surfaces. Experiments with fibroblasts
cultured on arrays of fibronectin-coated micropost barriers that
mimic collagen fiber bundles showed that lamin A/C facilitates
nuclear passage between slender obstacles. Nuclei containing lamin
A/C preserve their oval shape despite local indentations. Conversely,
nuclei deficient in lamin A/C experience severe distortion and
become entangled around obstacles, impeding movement. This
supports a model where the nucleus deforms like a droplet,
with lamin A/C providing surface tension that allows for local
invaginations that enable forward movement while maintaining
overall shape (Katiyar et al., 2022).

Nuclei formed in Xenopus laevis egg extracts in the presence of
dynamic F-actin exhibit a bilobed shape, with distinct membrane
compositions in each lobe and F-actin concentrated at the inner
nuclear envelope (Figure 1). Adding laminA, not present inXenopus
eggs, results in more spherical nuclei. This indicates that a balance
of forces exerted by nuclear F-actin and lamin A influences
nuclear shape. Nuclear F-actin filaments, nucleated by formins,
are thought to exert outward forces that alter nuclear morphology
unless counterbalanced by lamin A (Mishra and Levy, 2022a).
Microtubules can also influence nuclear morphology, for instance
short term proteasome inhibition causes microtubule-mediated NE
deformation independently of nuclear import (Sengupta et al.,
2025). Nuclear lamin concentration can influence nuclear growth

and size, with low and high levels leading to increased and decreased
nuclear size, respectively, regardless of the type of lamin expressed
(Jevtic et al., 2015). The phosphorylation of lamin B3 by protein
kinase C plays a role in controlling nuclear size during early X.
laevis development and in mammalian cells, indicating that this
mechanism of nuclear size regulation is conserved (Edens and
Levy, 2014; Edens et al., 2017).

Nucleocytoplasmic transport is crucial for nuclear size
regulation, as increased nuclear influx and inhibited efflux are
associated with nuclear volume expansion and blebbing. In
fission yeast, excessive accumulation of mRNA and protein
within the nucleus results in enlarged nuclear size (Kume et al.,
2017). Factors that regulate nuclear import, such as Importin
alpha and Nuclear Transport Factor 2 (NTF2), play a more
significant role in determining nuclear size than the amount of
DNA (Figure 1), perhaps by regulating the amount of nuclear
lamins that are imported (Levy and Heald, 2010). Radial growth
phase primary melanoma cells exhibit larger nuclei than normal
melanocytes, in particular when NTF2 levels are reduced. In
patient-derived melanoma cells, increasing NTF2 expression leads
to reduced nuclear size, decreased cell motility and proliferation,
and enhanced apoptosis, implicating NTF2 as a melanoma tumor
suppressor (Vukovic et al., 2021).

The nucleoporin ELYS plays a vital role in the assembly of the
NPC following mitosis. In mammalian cells, a reduction in ELYS
levels results in fewer NPCs, impaired nuclear import, diminished
localization of nuclear lamin B2, and smaller nuclei. Some of these
effects can be rescued by enhancing nuclear import through the
overexpression of Importin alpha. Conversely, ELYS overexpression
leads to a higher density of NPCs, increased import of nuclear lamin
B2, and larger nuclei (Jevtic et al., 2019). In other work, mutations
that lead to the clustering and/or misplacement of NPCs result in
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changes to the shape of the nucleus (Cohen et al., 2003; Tamura
and Hara-Nishimura, 2011; Joseph-Strauss et al., 2012). While these
experiments show a correlation between NPC number/distribution
and nuclear size, other studies suggest that NPC assembly and
nuclear expansion are independently regulated (Ryan et al., 2003;
Doucet et al., 2010; Titus et al., 2010; McCloskey et al., 2018).

3 Chromatin and epigenetics as
regulators of nuclear morphology

In the following sections, we discuss how chromatin structure
and epigenetic determinants affect nuclear morphology and, if
known, cell and organismal function.

3.1 Epigenetic factors, histones, and
nuclear lamins

Epigenetic regulators affect nuclear dimensions and are linked
to abnormal nuclear shape (Imbalzano et al., 2013; Furusawa et al.,
2015; Schreiner et al., 2015; Stephens et al., 2017; Senigagliesi et al.,
2019; Stephens et al., 2019a). For instance, overexpression of the
histone acetyltransferase BRD4 leads to enlarged nuclei in HeLa
cells (Devaiah et al., 2016), and various chromatin components,
including core histones, impact nuclear shape in MCF10A cells
(Tamashunas et al., 2020). Depletion of the linker histone H1.0 was
found to alter nuclear shape as measured using the elliptical Fourier
coefficient ratio (Tamashunas et al., 2020). In hTERT-immortalized
fibroblasts, expression of disease-relevant histone H3.3 mutations
(e.g., K9M, K27M, K36M) caused nuclear shape abnormalities,
including reduced nuclear size, decreased nuclear circularity, and
a general increase in nuclear morphology variability across cells.
These observed effects were not due to changes in cell number,
toxicity, or lamin A localization (Schibler et al., 2023).

Interactions between chromatin and lamins further shape
nuclear architecture (Karoutas et al., 2019; Stephens et al., 2019a).
Studies of nuclear mechanics showed that chromatin mediates
responses to minor deformations whereas lamin A/C responds
to greater forces (Stephens et al., 2017). Modifying the levels
of euchromatin and heterochromatin influences nuclear structure
and stiffness (Stephens et al., 2018; Stephens et al., 2019a),
with increased heterochromatin reducing nuclear blebbing in
compromised nuclei (Stephens et al., 2019a; Stephens et al., 2019b).
The absence of the acetyltransferase MOF or its binding partners
alters nuclear mechanics, associated with reduced lamin acetylation
and epigenetic changes (Karoutas et al., 2019). These observations
highlight that nuclear size and shape are the result of intricate
interactions between chromatin and nuclear structural proteins.

3.2 Lamin-independent effects

Chromatin is critical for the ability of the nucleus to
withstand and respond to mechanical force (Reddy et al., 2008;
Stephens et al., 2019a). Histone modifications are known to
influence chromatin structure and nuclear morphology (Figure 2).
Treating mammalian cells with histone deacetylase inhibitors to

enhance euchromatin softens the nucleus, increasing blebbing
(Stephens et al., 2018; Kalinin et al., 2021). Conversely, histone
demethylase inhibitors that increase the amount of heterochromatin
stiffen the nucleus, reducing blebbing (Stephens et al., 2018). In both
scenarios, nuclear morphological changes occur independently of
lamin alterations.

Although lamin disruptions are typically associated with
nuclear blebbing (i.e., protrusions larger than 1 µm), changes
in chromatin alone can lead to bleb formation without altered
lamin levels. Mouse embryonic fibroblasts (MEFs) treated with
a histone deacetylase inhibitor showed increased euchromatic
H3K9ac and nuclear blebbing while lamin B1 and A/C levels
remained unchanged (Stephens et al., 2017). Thus, chromatin
decompaction alone can trigger nuclear blebbing without lamin
depletion (Stephens et al., 2018). Contrary to studies linking
nuclear blebbing with lamin B absence (Shimi et al., 2008), blebs
induced with valproic acid (VPA) retained lamin B1 and A/C
in 50% of treated MEF cells and 30% of treated HT1080 cells.
Similar lamin B1 retention was observed in nuclear blebs when
cells were treated with trichostatin A or 3-Deazaneplanocin A
(DZNep) (Miranda et al., 2009; Stephens et al., 2017; Stephens et al.,
2018; Stephens et al., 2019b; Esmaeili et al., 2020), suggesting
nuclear blebbing can occur as a result of chromatin-mediated
reductions in nuclear rigidity without nuclear lamina disruptions
(Stephens et al., 2018).

3.3 Chromatin structure and DNA amount

An emerging viewpoint is that mechanical properties of the
nucleus can influence nuclear morphology (Dahl et al., 2008;
Stephens et al., 2019b). Alterations in chromatin modifications
and spatial arrangement are linked to changes in nuclear shape
(Stephens et al., 2018; Stephens et al., 2019a; Heijo et al., 2020;
Flores et al., 2021). Elevating heterochromatin levels with histone
demethylase inhibitors leads to increased chromatin stiffness that
can rectify abnormal nuclear shapes (Stephens et al., 2018). As
the nucleus expands, condensing chromatin takes up a smaller
fraction of the nuclear space and increasing nuclear histone
levels through the histone chaperone Npm2 further encourages
nuclear enlargement (Chen et al., 2019). Conversely, supplementing
Xenopus egg extract with the histone methyltransferase Set9 (Batista
andHelguero, 2018) orDNAmethyltransferase inhibitor Zebularine
(Yoo et al., 2004) increased the proportion of nuclear space filled by
chromatin, with Set9 elevating H3K4me1 and Zebularine reducing
5-methylcytosine levels. These nuclei showed diminished growth
and smaller final sizes, further highlighting how chromatin structure
can affect nuclear size (Chen et al., 2024).

Nuclei formed inXenopus egg extract almost completely stopped
growing when treated with DNA degrading benzonase, regardless
of the nuclear size when treatment was initiated (Chen et al.,
2024). Nuclear F-actin plays a role in the expansion of the nucleus
(Baarlink et al., 2017; Huang et al., 2022) but benzonase-treated
nuclei formed in extracts with intact actin still failed to expand.
These findings suggest that DNA is crucial for nuclear growth,
even in the presence of F-actin (Chen et al., 2024). Massive
increases in DNA content can affect nuclear size as nuclei assembled
in X. laevis egg extract using axolotl sperm chromatin, which
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contains 20-fold more DNA than Xenopus, exhibited a doubling
in nuclear cross-sectional area (Chen et al., 2024). This indicates
that nuclear size can be responsive to DNA quantity (Levy and
Heald, 2010; Heijo et al., 2020). When transcriptionally inert
Xenopus egg extracts were treated with VPA to increase H3K9ac
or DZNep to decrease H3K27me3, nuclei were smaller without any
change in nuclear import rate. Conversely, increasing H3K27me3
with the histone demethylase inhibitor Methylstat or increasing
5-methylcytosine levels with the DNA methylator NDMA led to
significant nuclear enlargement. This study showed that even with
similar nuclear import rates, altered chromatin structure can reduce
or increase nuclear growth in a transcription-independent manner
(Chen et al., 2024).

3.4 Cellular mechanics and
mechanosensation

The intermediate filament protein Keratin 17 can be found
within the nucleus, interacting with proteins that play a role in
organizing chromatin. Keratin 17 knockout in tumor-derived HeLa
and A431 cell lines leads to a decrease in histone methylation and
acetylation with a concomitant increase in nuclear size (Jacob et al.,
2020). Fibroblasts, the predominant cells within connective tissues,
are subjected to substantial compressive forces from the surrounding
extracellular matrix and fluid during activities like walking, sitting,
and sleeping. Applying a static compressive force to cultured
mouse fibroblasts increases nuclear levels of histone deacetylase
3, which promotes heterochromatin formation. Upon removal of
the compressive force, the cells revert to their original chromatin
condensation state (Damodaran et al., 2018). Whether nuclear
morphology is affected under these conditions is an interesting area
for future study.

Cell stretching activates mechanosensitive channels, triggering
transient calcium influx (Kim et al., 2015) and increased chromatin
compaction (Heo et al., 2015; Heo et al., 2016; Le et al., 2016).
Mechano-transduction mediated by these channels can protect
against abnormal nuclear morphology. For example, in VPA-
treated MEFs that exhibit chromatin decompaction, increasing
the extracellular concentration of magnesium chloride induced
heterochromatin formation through histone methyltransferases,
leading to a reduction in nuclear blebbing. These cells also
showed increased short-extension nuclear spring constants with
no change in long-extension stiffness (Stephens et al., 2019b).
Interestingly, MEF cells co-treated with VPA and the transcription
inhibitor alpha-amanitin also exhibited reduced nuclear blebbing
(Berg et al., 2023). Treating SKOV3 cells with trichostatin A
to increase histone acetylation led to chromatin decompaction
and a reduction in extracellular vesicle production upon cellular
compression (Toth et al., 2004).

3.5 DNA damage and nuclear blebs

One of the hallmarks of many human diseases is DNA
damage. MEFs and HT1080 cells treated with the DNA damaging
agents cisplatin and bleomycin exhibited increased nuclear
blebbing independently of passage through mitosis. Furthermore,

DNA damage-induced nuclear blebs proceeded to rupture at a
>90% frequency (Stephens et al., 2019b; Eskndir et al., 2025).
Disrupting DNA damage response pathways, including p53, Rb,
and BRCA2, can also increase the frequency of nuclear rupture
(Yang et al., 2017; Kovacs et al., 2023). Micromanipulation force
measurements of isolated vimentin-null MEF nuclei revealed
that DNA damage significantly reduces chromatin-based nuclear
stiffness (Stephens et al., 2017; Dos Santos et al., 2021; Currey et al.,
2022). Heterochromatin was reduced in response to DNA
damage through activation of Ataxia-telangiectasia Mutated kinase
(ATM), leading to chromatin softening, reduced nuclear rigidity,
and increased nuclear blebbing and rupture (Ziv et al., 2006;
Ayrapetov et al., 2014; Eskndir et al., 2025). Inhibiting ATM
during DNA damage treatment rescued heterochromatin levels and
restored nuclear mechanics, shape, and integrity (Eskndir et al.,
2025). Defects in nuclear morphology and integrity caused by
DNA damage exacerbate a cycle of nuclear dysfunction in both
confined and unconfined cells (Chen et al., 2018; Xia et al., 2018;
Stephens et al., 2019b; Pho et al., 2024). Furthermore, inhibition
of actin contractions can rescue DNA damage-induced changes in
nuclear morphology (Pho et al., 2024).

Nuclear blebs often exhibit a unique chromatin signature. In
MEFs, HT1080 fibrosarcoma, and PC3 prostate cancer cell lines it
was recently discovered that nuclear blebs tend to exhibit reduced
DNA density but that bleb formation does not correlate with lamin
B1 levels (Bunner et al., 2025). Interestingly, increased DNA damage
in such blebbed nuclei was independent of rupture (Chu et al., 2025).
Disrupted nuclear morphology, including blebs, is associated with
multiple disorders, and chromatin structure within nuclear blebs is
often altered (Pujadas Liwag et al., 2025). There is direct evidence
that the chromatin methylation status affects nuclear morphology.
Loss of H3K9me3 increases nuclear blebbing and rupture due
to decreased nuclear rigidity, while loss of H3K9me2 decreases
nuclear blebbing and rupture accompanied by increased nuclear
rigidity and more compact chromocenters (Manning et al., 2025).
Biological processes like transcription can also regulate nuclear
morphology, for instance chemical inhibition of transcription can
suppress nuclear bleb formation and rupture (Berg et al., 2023).
Taken together, DNA damage and chromatin status are important
determinants of nuclear blebbing and rupture.

3.6 Cell migration, differentiation, and
senescence

Alterations in chromatin structure and nuclear shape contribute
to cell migration. In tenocytes, mechanical stretch caused reduced
levels of H3K27me3 and increased levels of H3K9ac and H3K27ac,
which in turn led to changes in nuclear morphology independently
of lamin A/C, promoting tenocyte migration (Xu et al., 2023).
Additionally, inhibiting histone methyltransferases with small
molecule inhibitors affected nuclear morphology and integrity,
diminished wound closure efficiency, and impeded cellular
migration (Forman et al., 2024). In chicken primordial germ cells,
disruption of the transcription factor Oct4 led to a reduction in
H3K27ac modifications on active chromatin regions and altered cell
migration (Meng et al., 2022).

Frontiers in Cell and Developmental Biology 05 frontiersin.org

https://doi.org/10.3389/fcell.2025.1634252
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Sengupta et al. 10.3389/fcell.2025.1634252

TABLE 1 An outline of diseases that are associated with epigenetic alterations.

Disease Epigenetic changes References

COVID-19 DNA methylation, histone acetylation Pinto et al. (2020), Vodovotz et al. (2020),
Foolchand et al. (2022)

Breast cancer DNA methylation, histone acetylation, histone
methylation

Serrano-Gomez et al. (2016), Xu et al. (2020)

Glioblastoma multiforme DNA hypermethylation Horiguchi et al. (2003), Gotze et al. (2010),
Lambiv et al. (2011)

Type II diabetes DNA hypermethylation Ling et al. (2008), Barres et al. (2009), Yang et al.
(2012), Hall et al. (2013)

Schimke immune-osseous dysplasia Mutated chromatin remodeler SMARCAL1 Boerkoel et al. (2002)

Pediatric glioblastoma multiforme, pediatric adreno
cortical tumor

Mutation in chromatin remodeler ATRX1 Liu et al. (2012), Schwartzentruber et al. (2012),
Dyer et al. (2017)

Alzheimer’s disease DNA methylation Bijarnia-Mahay et al. (2014), Santana et al. (2023)

The human immune system depends on a variety of cell types
to establish and maintain its surveillance capabilities. Nuclear
lobulation, a characteristic of many human immune cells, is a
result of increased NE deformability and increased chromatin-
NE interactions (Olins et al., 2001). Neutrophils adopt malleable
polymorphonuclear structures by halting chromatin loop extrusion,
thus enabling them to migrate through narrow interstitial spaces
(Patta et al., 2024). Short range genome reorganization favors
neutrophil migration such that the nucleus can alter its shape
without causing chromatin damage (Jacobson et al., 2018).

Cell differentiation is often associated with changes in nuclear
stiffness and morphology. For example, nuclei in embryonic
stem cells are deformable and become six times stiffer in
their terminal stages of differentiation (Pajerowski et al., 2007).
Furthermore, increases in cell size have been shown to contribute
to cellular senescence through genome dilution (Neurohr et al.,
2019; Lanz et al., 2022; Lanz et al., 2024). Given that nuclear size
typically scales with cell size, an interesting area for future study is
whether increased nuclear size might also contribute to the onset of
senescence.

3.7 Epigenetics and disease

Epigenetic modifications profoundly affect gene expression,
and aberrant modifications have been linked to various diseases
like cancer, neurological disorders, cardiovascular diseases, and
more recently COVID-19 syndrome (Table 1) (Vodovotz et al.,
2020). How epigenetic changes give rise to disease is a broad
topic that has been extensively reviewed (Gasser and Li, 2011;
Cavalli and Heard, 2019; Lopez-Lopez, 2023; McCulley, 2024;
Tollefsbol, 2024). Here we will only touch on a few illustrative
examples. In cancers, extensive DNA methylation and histone
deacetylation occur within tumor suppressor genes, which results
in their silencing and ultimately exacerbates disease. Aberrant
DNA methylation and histone demethylation have been shown
to promote the epithelial-to-mesenchymal transition in breast

cancer cells, causing the cancer to proliferate and metastasize
(Serrano-Gomez et al., 2016). Breast tumors defective for
ARID1A, a component of the chromatin remodeling complex
involved in nucleosome sliding, exhibit altered recruitment of
histone deacetylase 2 and uncontrolled cell growth (Xu et al.,
2020). Aberrations in epigenetic mechanisms are not limited to
breast cancer. In glioblastoma multiforme, a rare and incurable
adult brain tumor, hypermethylation of DNA is found in
genes that regulate the WNT, Frizzled, and Ras pathways
(Horiguchi et al., 2003; Gotze et al., 2010; Lambiv et al.,
2011), contributing to cell proliferation. Mutations in ATP-
dependent chromatin modifiers, including SMARCB1, BRG1,
and BRM, have been identified in primary tumors and tumor-
derived cell lines, including rhabdoid tumors, chronic myeloid
leukemia, lung cancer, and prostate cancer (Salvatore and
Vandenplas, 2003; Cho et al., 2004).

Altered epigenetics are associatedwith other diseases in addition
to cancer. Hutchinson-Gilford progeria syndrome is characterized
by abnormal nuclear shape, and increasing heterochromatin can
restore normal nuclear morphology in cell lines that model the
disease and in patient-derived cells (Scaffidi and Misteli, 2005).
Altered DNA methylation patterns are observed in pancreatic
islets and adipose and muscle tissues of type 2 diabetic mice and
patients (Ling et al., 2008; Barres et al., 2009). In pancreatic islets,
hypermethylated DNA can be detected in genes that regulate insulin
secretion (Yang et al., 2012; Hall et al., 2013). In Alzheimer’s,
altered DNA methylation is observed in disease-associated genes
like amyloid precursor protein, Apolipoprotein E, and Ankyrin
1 (Bijarnia-Mahay et al., 2014; Santana et al., 2023). Mutations
in the ATRX chromatin remodeling complex cause several X-
linked syndromes thatmanifest with facial dysmorphism, urogenital
defects, and α-thalassemia (Gibbons and Higgs, 2000). Mutations in
the chromatin remodeler SMARCAL1 are a known cause of Schimke
immuno-osseous dysplasia, an autosomal recessive disorder
associated with T-cell immunodeficiency, spondyloepiphyseal
dysplasia, renal failure, and other symptoms (Boerkoel et al., 2002).
Thus, normal cellular physiology depends on precise regulation of
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the epigenetic state of chromatin and proper function of chromatin-
associated molecules including histones and chromatin modifiers.
Open questions relate to whether epigenetics influence disease
phenotypes through altered nuclear morphology.

4 Emerging techniques and models in
the field of nuclear morphology

Over the past 150 years, there have been significant advancements
since Sir Lionel Beale first observed alterations in typical nuclear
structures in various diseases, including cancer. To this day, the Pap
smear, introduced by George Papanicolaou, remains a diagnostic tool
for detecting abnormal nuclear structures in cervical tissue samples
(Flores et al., 2021). Microscopy serves as an essential means of
examining the nuclear condition of cells, offering crucial insights
into nuclear shape, nuclear mechanics, protein distribution, and
genome arrangement (Kim and Lakadamyali, 2024). Researchers
are beginning to elucidate the connections between mechanics and
morphology by integrating atomic force microscopy with side-view
light sheet microscopy. Offering high spatiotemporal resolution,
this approach has been used to observe cells during compression,
leading to empirical models for nuclear deformation applicable to
atypical nuclear shapes (Hobson et al., 2020; Hobson and Stephens,
2020). RD-SPRITE explores the interactions between chromatin and
RNA (Quinodoz et al., 2021). Spatial multi-omics, which combines
FISH and immunofluorescence techniques, have been used to chart
nuclear architecture, and in situ genome sequencing facilitates the
simultaneous visualization and sequencing of the genome at the
nucleotide level (Palihati and Saitoh, 2024). Microfluidic devices
constructed from polydimethylsiloxane can be used to replicate
physiological conditions for the study of intracellular mechanics and
dynamics, mimicking conditions relevant to cancer cell invasion and
immune cell recruitment (Davidson et al., 2015).

The intricate nature of cells and their organelles poses
challenges in studying fundamental molecular processes within
living organisms. One approach to addressing this issue is bottom-
up synthetic biology, which involves creating life-like systems from
molecular components (Blain and Szostak, 2014; Auslander et al.,
2017; Gopfrich et al., 2018).Thismultidisciplinary area incorporates
chemistry, biology, and engineering (Sismour and Benner, 2005).
One of the challenges in bottom-up synthetic biology is to develop
systems that mimic life and sustain physiochemical balance using a
minimal set of components (Smigiel et al., 2019). A model system
commonly used to study organelle size, morphology, and function
is cell-free Xenopus egg extract. Nuclei assembled inXenopus extract
exhibit the typical structures and activities of nuclei found in
living cells (Chen and Levy, 2018; Mishra and Levy, 2022b). The
open biochemical nature of the system allows for the addition
of recombinant proteins and removal of endogenous proteins by
immunodepletion, as well as exogenous addition of small molecule
inhibitors or activators without pleiotropic effects on transcription,
translation, and cell cycle progression (Sengupta et al., 2025).
Furthermore, fluorescently labeled proteins allow for live time-
lapse microscopy of organelle dynamics (Jevtic and Levy, 2018).
Lastly, high-throughput imaging for siRNA screening represents an
effective approach to identify regulators of nuclear architecture in
an unbiased manner (Schibler et al., 2023). Interestingly, this latter

study identified a number of nuclear morphology effectors in two
different cell types but there was very little overlap in the hits,
highlighting unresolved questions about the complexity of nuclear
morphology control.

5 Conclusion

How nuclearmorphology is regulated is a fundamental question
of cell biology which remains to be understood completely.
This regulation is critical as numerous diseases present with
abnormal nuclear phenotypes that are often used by clinicians
for diagnostic purposes. Several factors have been identified as
contributors to this regulation; however important knowledge gaps
still exist. In this review, we have discussed some of the known
regulators of nuclear morphology, with a particular focus on
how chromatin influences the regulation of nuclear structure and
function. Aberrations in epigeneticmodifications are the underlying
cause for numerous diseases (Farsetti et al., 2023). At the same time,
changes in the epigenetic landscape also impact nuclearmorphology
and function. To what extent aberrant nuclear morphology, altered
epigenetic status, and disease phenotype are linked is a critical open
question. Simplified model systems like Xenopus egg extract and
novel approaches like hydrogel chambers are being increasingly
used to mimic physiological cellular conditions and advance our
knowledge of fundamental processes like the regulation of nuclear
morphology. At the same time, advanced microscopy techniques
have improved our ability to visualize component molecules and
structures relevant to epigenetics and nuclear morphology. The next
decade promises to answer key questions at the intersection of
chromatin biology, nuclear morphology, and disease.
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