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Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid
cancer, yet its cellular heterogeneity and prognostic determinants remain
poorly defined. Here, we integrate two single-cell RNA sequencing datasets
comprising 20 human thyroid samples to construct a high-resolution cellular
atlas of PTC. We identify 29 distinct cellular subpopulations and delineate
their composition, dynamics, and interactions in healthy versus tumor tissues.
Notably, epithelial and monocyte populations were markedly expanded in PTC,
whereas adaptive immune subsets such as B and T cells were diminished.
Cell-cell communication analysis revealed enhanced intercellular signaling in
the tumor microenvironment, with epithelial and endothelial cells receiving
the strongest inputs. Among monocyte-specific transcriptional signatures, we
identified 65 prognostic genes via univariate Cox analysis. A LASSO-derived
14-gene risk score robustly stratified patient outcomes, with CSGALNACT1
emerging as a key epithelial-specific, independent prognostic gene. Pseudotime
analysis further supported its role in epithelial cell differentiation. Functional
validation demonstrated that CSGALNACT1 promotes proliferation in PTC cell
lines, suggesting a potential oncogenic function. Immune deconvolution across
risk groups revealed substantial divergence in innate and adaptive immune
infiltration, indicating a close interplay between tumor-intrinsic transcriptional
programs and immune microenvironment remodeling. Collectively, our
study provides a comprehensive single-cell framework for PTC, identifies
a clinically relevant risk model, and highlights CSGALNACT1 as a potential
therapeutic target.

papillary thyroid carcinoma, ScRNA-seq, bulk RNA-seq, immune infiltration, cell
proliferation

1 Introduction

Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid
malignancy, characterized by a generally indolent course but marked heterogeneity
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in clinical behavior and risk of recurrence (Boucai et al., 2024).
Although most patients respond well to surgery and radioactive
iodine therapy, a small percentage of patients develop aggressive
disease characterized by local invasion or distant metastasis
(Wang et al., 2024a). Despite advances in genomics and therapeutic
drug development, the molecular mechanisms driving PTC tumor
progression and heterogeneity remain incompletely elucidated
(Song and Park, 2019; Sun and Liao, 2024).

With the development of omics assays and their reduced
cost, more and more tumor genetic programs and tumor
microenvironments have been revealed (Galassi et al, 2024;
Yang et al., 2023). For PTC-related studies, bulk transcriptome
analyses have obtained valuable prognostic features; however,
they lack cellular resolution and may obscure the role of cell
type-specific drivers (Amanullah et al., 2023; Zhao et al., 2024).
Single-cell RNA sequencing (scRNA-seq) provides a powerful
strategy to resolve tumor heterogeneity, track lineage trajectories,
and identify cell type-specific and functionally relevant molecular
markers (Yan et al., 2024; Hou et al., 2024). Therefore, combining
the two and validating them through functional experiments can
provide favorable support for the study of molecular mechanisms
and prognostic markers of PTC.

This study integrated bulk and single-cell transcriptome
data from two independent papillary carcinoma (PTC) cohorts,
constructed a robust prognostic model, and identified key epithelial-
specific regulators of tumor progression. Among the six independent
prognostic genes, we focused on CSGALNACT1, which showed
high specificity in epithelial cells and was highly consistent
with pseudo-time-derived differentiation trajectories. Functional
analysis showed that CSGALNACT1 promoted tumor cell
proliferation, suggesting that it may have a previously unrecognized
oncogenic role.

2 Methods
2.1 Data sources

The study design and analysis workflow are illustrated in
Figure 1. Single-cell RNA sequencing (scRNA-seq) data were
obtained by integrating two independent cohorts: GSE191288 (1
control, 6 tumor) and GSE193581 (6 control, 7 tumor), resulting
in a total of 48,531 cells and 38,224 gene expression features after
quality control and data integration (Jin et al., 2021; Lu et al., 2023).
Bulk RNA-seq data and corresponding clinical information were
retrieved from the TCGA-THCA cohort.

2.2 Single-cell transcriptomic analysis

Quality control, normalization, dimensionality reduction, and
clustering of the scRNA-seq data were performed using the
Seurat package. Principal component analysis (PCA) and t-
distributed stochastic neighbor embedding (t-SNE) were applied
for dimensionality reduction (Satija et al., 2015). Differentially
expressed genes (DEGs) between groups were identified using the
“FindMarkers” function in Seurat with default parameters and
statistical significance assessed by Wilcoxon rank-sum test (adjusted
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P <0.05). Cell types were annotated using the SingleR package based
on reference transcriptomic profiles to identify cell-type-specific
marker genes (Aran et al., 2019).

2.3 Cell-cell communication and
pseudotime trajectory analysis

Cell-cell communication networks were inferred using the
CellChat package by analyzing ligand-receptor interactions among
different cell subsets (Jin et al, 2021). Pseudotime trajectory
analysis was conducted using Monocle 3, an unsupervised
algorithm that reconstructs developmental trajectories and
orders cells along differentiation processes relevant to biological

progression (Cao et al., 2019).

2.4 Construction of the prognostic risk
score

Multivariate Cox regression analysis was performed using the
survival R package to identify independent prognostic factors.
A prognostic risk score model was then constructed based on
LASSO-Cox regression using the TCGA-THCA dataset. To enhance
predictive accuracy and clinical utility, a nomogram was generated
by integrating the risk score with clinical parameters. Patients were
stratified into high- and low-risk groups according to the median
risk score. Kaplan-Meier survival analysis was used to evaluate
overall survival (OS), and time-dependent receiver operating
characteristic (ROC) curves were employed to assess the predictive
performance of the model.

2.5 Assessment of immune cell infiltration

Immune cell infiltration and immune-related scores in the
TCGA-THCA cohort were estimated using six computational
algorithms: ESTIMATE, TIMER, MCP-counter, CIBERSORT, EPIC,
and quanTIseq (Li et al, 2017; Chen et al, 2018; Racle and
Gfeller, 2020; Finotello et al., 2019). The association between
immune scores and the risk score was assessed using Spearman’s
rank correlation. Differences in the proportions of immune cell
subtypes between high- and low-risk groups were evaluated using
the Wilcoxon rank-sum test.

2.6 Plasmid construction and cell
culture/transfection

The full-length coding sequence of human CSGALNACTI
(NM_001130518.2) was amplified by PCR and cloned into the
CMV-FLAG expression vector, as previously described'®. The
human papillary thyroid carcinoma cell lines IHH-4 and TPC-
1 were kindly provided by Prof. Yan Yang (Zunyi Medical
University, China). Cells were maintained in Dulbecco’s Modified
Eagle Medium (DMEM; Gibco, Cat# 11965092) supplemented
with 10% fetal bovine serum (FBS; Gibco, Cat# 10099141) and
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FIGURE 1
Working mode.

1% penicillin-streptomycin (Gibco, Cat# 15140122) at 37 °C in a
humidified incubator with 5% CO, (Zeng et al., 2018).

For overexpression experiments, cells were transfected with
either empty CMV-FLAG vector or FLAG-tagged CSGALNACT1
using Neofect™ DNA transfection reagent (Neofect Biotech,
Beijing, China) according to the manufacturer’s protocol. For
gene knockdown, three small interfering RNAs (siRNAs) targeting
CSGALNACT1 were designed and synthesized (GenePharma,
China). The target sequences were as follows:

si-CSGALNACT1#1-F: 5'-GGUAGUUUAUGAAAUUUAAUU-
3,

si-CSGALNACT1#1-R: 5'-UUAAAUUUCAUAAACUACCAG-
3/

si-CSGALNACT1#2-F: 5'-GAUUUGUACUGGUAGUUUAUG-
3,
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si-CSGALNACT1#2-R: 5'-UAAACUACCAGUACAAAUCAA-
3/

si-CSGALNACT1#3-F: 5'-GGAAUGGUUUGUACUAAUACA-
3,

si-CSGALNACT1#3-R: 5'-UAUUAGUACAAACCAUUCCUU-
3[

2.7 Western blotting and quantitative
real-time PCR

Forty-eight hours after transfection with control or
FLAG-CSGALNACT1 plasmids (Neofect™ DNA transfection
reagent, Neofect Biotech, China), cells were lysed in 1% SDS buffer
supplemented with protease and phosphatase inhibitors (Apexbio,
Cat# A601668). Protein concentrations were quantified using a
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BCA assay (Thermo Scientific, Cat# 23227). Equal amounts of
total protein were separated by SDS-PAGE and transferred to
PVDF membranes (Millipore, Cat# IPVH00010). Membranes
were probed with primary antibodies against CSGALNACT1
(1:1,000; Novus Biologicals, Cat# NBP2-59219), FLAG (1:5,000;
Proteintech, Cat# 20543-1-AP), and B-actin (1:5,000; Proteintech,
Cat# 66009-1-Ig), followed by incubation with HRP-conjugated
secondary antibodies (CWBIO, CW0103S (Anti-Rabbit), CW0102S
(Anti-Mouse), 1:3000). Signal detection was performed using an
enhanced chemiluminescence (ECL) reagent (Smart-Lifesciences,
Cat# SL-ECL002).

For quantitative real-time PCR (qRT-PCR), total RNA was
extracted using Trizol reagent (Invitrogen, Cat# 15596026) and
reverse-transcribed with a cDNA synthesis kit (Vazyme, Cat# R223-
01). Expression levels were normalized to 185 rRNA using the
AACt method. qPCR was performed using gene-specific primers
and SYBR Green Master Mix (Takara, Cat# RR820A) and quantified
by CFX96 real-time PCR detection (CFX96; Bio-Rad, United States)
systems. Primer sequences were as follows:

CSGALNACTI1-F: 5 -TGGACAAGGCAGAGGTGAAT-3'

CSGALNACT1-R: 5'-TCTCTGCAGGACTGTTCAGG-3'

18S-F: 5'-GTAACCCGTTGAACCCCATT-3’

18S-R: 5'-CCATCCAATCGGTAGTAGCG-3’

2.8 Cell proliferation assay

Cell proliferation was evaluated using MTT (Sigma-Aldrich,
Cat# M2128), CCK-8 (Dojindo Laboratories, Cat# CK04), and
colony formation assays. For the MTT assay, IHH-4, TPC-1 and
B-CPAP cells were counted using a Neubauer hemocytometer and
seeded into 96-well plates at a density of 2,000 cells per well. After
48 h of incubation, 20 pL of MTT solution (5 mg/mL in PBS) was
added to each well and incubated for an additional 4h at 37 °C
in a humidified incubator with 5% CO,. Subsequently, 150 pL
of dimethyl sulfoxide (DMSO; Sigma-Aldrich, Cat# D2650) was
added to each well to dissolve the formazan crystals. The plates
were gently shaken for 10 min, and absorbance was measured at
490 nm using a microplate reader (EnSpire 2300, PerkinElmer,
United States). CCK-8 and clonogenic assays were performed as
described previously (Zhao et al., 2025).

2.9 Statistical analysis
Group differences were assessed using the Wilcoxon test, and
associations were analyzed using Spearman rank correlation. All

statistical tests were two-sided, with significance defined at P < 0.05.
Statistical analyses were performed using R software (version 4.2.2).

3 Result

3.1 Single-cell characteristics of papillary
thyroid carcinoma

By integrating datasets GSE191288 and GSE193581, we
obtained a total of 7 control and 13 papillary thyroid carcinoma
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(PTC) samples. Following rigorous quality control, 48,531
cells with 38,224 transcriptomic features were retained for
downstream analyses (Figures 2A-C). Using the Seurat package,
we identified 3,000 highly variable genes across the dataset,
which were subsequently used for cell clustering and annotation
(Figure 2D). At an optimized resolution, 29 distinct cellular
clusters were identified and automatically annotated using the
SingleR algorithm (Figures 2E,F). Based on canonical marker
genes and prior literature, these clusters were further classified
into 10 major cell types: adipocytes, B cells, CD4" T cells, CD8" T
cells, epithelial cells, endothelial cells, fibroblasts, macrophages,
monocytes, and natural killer (NK) cells (Figures 2G,H). Notably,
compared with controls, PTC samples exhibited a marked
increase in macrophages, accompanied by a reduction in other
cells, including CD4" T cells, CD8" T cells, and NK cells
(Figures 2L]).

3.2 Enhanced cell-cell communication in
papillary thyroid carcinoma

Cell-cell communication patterns in control and papillary
thyroid carcinoma (PTC) samples were inferred using the CellChat
R package. Overall, strong intercellular signaling was observed
among endothelial cells, epithelial cells, fibroblasts, and adipocytes
in both control and disease groups (Figures 3A,B). Notably, the
total number and strength of cell-cell interactions were markedly
increased in the PTC group compared to controls (Figures 3A,B).
Specifically, endothelial cells and fibroblasts exhibited the strongest
outgoing signals, whereas CD8" T cells received the most
robust incoming signals (Figures3C,D). In contrast, CD4" T
cells and B cells showed relatively weak signaling activities,
both in terms of sending and receiving signals (Figures 3C,D).
Of particular interest, the incoming signals to epithelial and
endothelial cells were significantly enhanced in the PTC group
(Figures 3C,D).

Monocytes displayed diverse changes in communication
patterns depending on the ligand-receptor pairs and interacting
cell types (Figures3E,;F). Among these, the most prominent
interactions occurred between monocytes and CD8" T cells,
primarily mediated by CD8A and HLA family molecules
(Figures 3E,F). This was followed by strong signaling between
monocytes and macrophages, as well as autocrine communication
among monocytes, with CD4-HLA interactions being the dominant
signaling route (Figures 3E,F).

3.3 Construction of a monocyte-derived
prognostic risk score

A total of 503 highly variable genes were extracted from the
monocyte cluster based on criteria of log, fold change >1 and
false discovery rate (FDR) < 0.05. These genes were subjected to
univariate Cox regression analysis, yielding 65 genes significantly
associated with patient prognosis (Figures 4A,B). To construct an
optimal prognostic model, we applied the LASSO-Cox regression
algorithm (A = 0.02), which identified a 14-gene signature used to
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calculate a monocyte-derived risk score (Figures 4C,D).

RiskScore = 0.8998"FCAR + 0.5334" CD300E + 0.3896“FPR2
+0.4386" AC005392.2 + 0.1090*"MOB3B
+0.5997* AL590666.1 + 0.0989* CSGALNACT1
+0.1551*ALPL - 0.03101* APOE + 0.0345*ID3
—0.0443*LINC01871 — 0.2477*FOLR2
+0.0347*NFE2 - 0.1597*TCIM

This risk score, along with the expression levels of its component
genes, was strongly correlated with overall survival (Figure 4E).
Patients stratified into the high-risk group exhibited significantly
poorer survival outcomes, with a lower median survival time
(Figure 4F). The area under the curve (AUC) values for 3-, 5-, and
8-year survival prediction were 0.92, 0.92, and 0.93, respectively,
indicating high diagnostic accuracy (Figure 4G). To enhance clinical
applicability, we integrated the risk score with key clinical variables
(age, sex, TNM stage, and tumor stage) to construct a nomogram
(Figure 4H), which further improved prognostic discrimination
(Figures 41,]). However, it is noteworthy that the nomogram tended
to underestimate patient survival, particularly at 3, 5, and 8 years,
suggesting a conservative bias in survival prediction (Figure 4K).

3.4 Immune landscape differences
between risk groups

To investigate immune status across risk groups, six
computational algorithms were applied to evaluate overall immune
scores and immune cell infiltration patterns. While the three
immune scores derived from the ESTIMATE algorithm showed no
significant correlation with the risk score, other methods revealed
marked differences in immune cell infiltration between high- and
low-risk groups (Figures 5A-C). Specifically, the TIMER algorithm
indicated that high-risk patients exhibited elevated infiltration of
CD8" T cells, neutrophils, and macrophages (Figure 5D). The EPIC
algorithm further suggested increased infiltration of CD4" T cells,
endothelial cells, macrophages, and natural killer (NK) cells in
the high-risk group (Figure 5E). According to the MCP-counter
analysis, significant differences were observed in 8 of the 10
assessed immune cell types, with the exception of NK cells and
fibroblasts (Figure 5F). These differences included higher levels
of T cells, macrophages, and neutrophils in the high-risk group.
Similarly, the quanTTIseq algorithm identified differential infiltration
of seven immune cell types, including B cells, M1 macrophages,
neutrophils, and NK cells (Figure 5G). Finally, CIBERSORT
analysis, which evaluates 22 immune cell populations, revealed
additional differences, including altered infiltration of plasma cells,
dendritic cells, and eosinophils (Figure 5H).

3.5 Epithelial-specific expression of the
independent prognostic gene
CSGALNACT1

Multivariate Cox regression analysis of the 14 genes comprising
the risk score identified six independent prognostic factors:
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CD300E, CSGALNACT1, AC005392.2, FOLR2, ALPL, and TCIM
(Figure 6A). Among these, all but AC005392.2 demonstrated
prognostic relevance based on transcriptional expression levels
(Figure 6B). Given that papillary thyroid carcinoma originates
from epithelial cells, we focused on genes with epithelial-specific
expression. Single-cell transcriptomic analysis revealed that
CSGALNACT1 and TCIM were predominantly expressed in
epithelial cells, in contrast to the other candidate genes (Figure 6C).
To further characterize their dynamic expression patterns,
pseudotime trajectory analysis was performed on all samples
(Figure 6D), followed by developmental trajectory modeling
specifically within epithelial cells (Figure 6E). Notably, among
the six prognostic genes, CSGALNACT1 and TCIM showed
expression trends that closely aligned with the inferred epithelial
cell differentiation trajectory (Figure 6F).

3.6 CSGALNACT1 promotes cell
proliferation in papillary thyroid cancer

CSGALNACTT1 (also known as CHGN) encodes a 532-amino
acid protein with a predicted molecular weight of 61.3 kDa
(Figure 7A). Immunofluorescence data from the Human Protein
Atlas (HPA) revealed that CHGN is primarily localized to the
cytoplasm and Golgi apparatus (Figures 7B,C). To investigate its
role in cell proliferation, we performed both knockdown and
overexpression experiments. The efficiency of CHGN silencing
was validated by qRT-PCR and Western blotting, with si-CHGN#3
exhibiting the most effective knockdown and thus selected
for subsequent experiments (Figures 7D-H). Overexpression
of CHGN using a Flag-tagged construct was confirmed in
ITHH-4 cells via Western blotting (Figure 7I). Functional assays,
including MTT, CCK-8, and colony formation, demonstrated
that CHGN overexpression significantly promoted proliferation
in IHH-4 and TPC-1 cells (Figures 7]-0O), consistent with results
observed in B-CPAP cells (Figures 7P-R). Conversely, CHGN
knockdown markedly suppressed cell proliferation in both
IHH-4, TPC-1 and B-CPAP cells, as validated across all three
proliferation assays (Figures 7S-AA).

4 Discussion

In this study, we systematically integrated single-cell and
bulk transcriptomic data to construct a prognostic model for
papillary thyroid carcinoma (PTC) and identified CSGALNACT1
as a novel epithelial-specific oncogenic regulator. Single-cell
RNA sequencing revealed that CSGALNACT1 is predominantly
expressed in epithelial tumor cells and closely associated with
epithelial differentiation trajectories, suggesting a lineage-specific
role in PTC progression. Functional assays confirmed that
CSGALNACT1 promotes cell proliferation in vitro, establishing
it as both a prognostic biomarker and a potential therapeutic target.

To ensure robustness and reproducibility, we analyzed two
independent single-cell PTC datasets, a strategy increasingly
adopted in cancer single-cell transcriptomic studies (Zhang et al.,
2025). Cell-cell communication analysis highlighted monocyte-
associated signaling—particularly involving CD8, CD4, and HLA
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FIGURE 7

CSGALNACT1 promotes cell proliferation in papillary thyroid cancer. (A) Protein structure of CSGALNACTL. (B) Cellular sublocalization of

CSGALNACTY, cell immunofluorescence staining from HPA database. (C) Cellular sublocalization pattern of CSGALNACTL. (D-F) Real-time
fluorescence quantitative PCR to verify the inhibition efficiency of siRNA in IHH-4 (D), TPC-1 (E), and B-CPAP (F) cell line. (G,H) Immunoblotting to
verify the inhibition efficiency of siRNA in IHH-4, TPC-1, and B-CPAP cell line (G), and quantitative analysis was performed (H). (I) Immunoblotting to
verify the overexpression of Flag-CSGALNACT1 in IHH-4, TPC-1, and B-CPAP cell line. (J—L) MTT (J), CCK8 (K), and clone formation assay (L) to detect
the proliferation ability of IHH-4 cells in the control group and the group overexpressing CSGALNACTL. (M—0O) MTT (M), CCK8 (N), and clone
formation assay (O) to detect the proliferation ability of TPC1 cells in the control group and the group overexpressing CSGALNACTL. (P—R) MTT (P),
CCK8 (Q), and clone formation assay (R) to detect the proliferation ability of B-CPAP cells in the control group and the group overexpressing
CSGALNACT1L. (S=U) MTT (S), CCK8 (T), and clone formation assay (U) were used to detect the proliferation ability of IHH-4 cells in the control group
and the si-CSGALNACT1#3 group. (V=X) MTT (V), CCK8 (W), and clone formation assay (X) were used to detect the proliferation ability of TPC1 cells in
the control group and the si-CSGALNACT1#3 group. (Y-AA) MTT (Y), CCK8 (Z), and clone formation assay (AA) were used to detect the proliferation
ability of B-CPAP cells in the control group and the si-CSGALNACT1#3 group.
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molecules—as the most perturbed in PTC. These findings are
consistent with previous reports linking monocyte-attracting
chemokines to lymph node metastasis and tumor recurrence
in PTC (Tanaka et al, 2009). Notably, CD8" T cells have also
been proposed as prognostic markers for PTC recurrence
(Chen et al, 2022), potentially through the activation of the
DPP4-IL13-IL13RA2 axis (Jing et al., 2025), further underscoring
the immune microenvironment’s role in PTC biology.

Our risk score model, derived from LASSO-Cox regression
and integrated with clinical parameters into a nomogram,
achieved excellent predictive performance (AUC >0.90). While
this performance is comparable to recent studies (Zhao et al.,
2024; Liang et al, 2024), it may be partly attributable to the
generally indolent nature of PTC and the use of a single-cohort
design. Notably, calibration curves indicate a conservative bias in
survival prediction, wherein the model tends to underestimate
patient survival. Mathematically, this bias may arise from
class imbalance in outcome events within the training cohort.
Clinically, such bias could lead to overtreatment, as the model
overestimates mortality risk. However, current clinical consensus
is shifting away from aggressive interventions toward active
surveillance for low-risk thyroid cancers. Evidence suggests that
active surveillance does not compromise prognosis in these
patients (Levyn et al, 2024; Walgama et al., 2020). Therefore,
before clinical application, the model requires further refinement
incorporating additional modalities such as proteomic data, non-
coding RNA profiles, and radiomic features (Wang et al., 2024b;
Zhu et al., 2024; Cao et al., 2024).

Importantly, immune infiltration analysis revealed that high-
risk patients exhibited elevated infiltration of immunosuppressive
cells and higher stromal scores, suggesting an immune-evasive
tumor microenvironment. These results suggest that intrinsic tumor
features, such as CSGALNACT 1 overexpression, may contribute not
only to increased proliferation but also to immune remodeling. This
dual role provides a compelling rationale for combinatorial therapies
targeting both tumor-intrinsic pathways and the surrounding
immune contexture (Wu et al., 2024; Li et al., 2025).

CSGALNACT1 encodes a critical glycosyltransferase previously
implicated in neuronal and skeletal development (Meyer et al,
2019; Igarashi et al., 2018). Our study functionally validated its
pro-proliferative role in PTC, as demonstrated through gain-
and loss-of-function experiments in two independent cell lines.
Subcellular localization analysis showed that the CSGALNACT1
protein product, CHGN, is mainly distributed in the cytoplasm
and Golgi apparatus, consistent with its predicted function in
glycosylation and growth regulation (Marsico et al., 2018). Together,
these findings highlight CSGALNACT1 as a key regulator of
tumor cell proliferation and a potential driver of malignant
phenotypes (Shimbo et al., 2017).

In conclusion, we identify CSGALNACTI1 as an actionable
molecular node with potential therapeutic relevance in PTC.
Its epithelial specificity may reduce systemic toxicity in targeted
interventions. While our findings provide new insights into
the molecular pathology of PTC, further studies are warranted
to elucidate the mechanistic links between CSGALNACTI,
tumorigenesis, and immune evasion, and to explore its value in
therapeutic stratification.
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5 Conclusion

This study identifies CSGALNACT1 as an epithelial-
specific gene with independent prognostic significance
in papillary thyroid carcinoma. Single-cell transcriptomic

analyses reveal its alignment with epithelial differentiation
trajectories, while functional assays demonstrate its role in
promoting tumour cell proliferation. These findings position
CSGALNACTT1 as a potential biomarker and therapeutic target in
thyroid cancer.
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