
 

TYPE Review
PUBLISHED 05 September 2025
DOI 10.3389/fcell.2025.1638964

OPEN ACCESS

EDITED BY

Tanay Thakar,
Broad Institute, United States

REVIEWED BY

Nataša Lisica-Šikić,
Sveuciliste u Zadru Odjel za zdravstvene 
studije, Croatia
Nikolaos Gavalas,
National and Kapodistrian University of 
Athens, Greece

*CORRESPONDENCE

Stephanie Lheureux,
 stephanie.lheureux@uhn.ca

RECEIVED 31 May 2025
ACCEPTED 18 August 2025
PUBLISHED 05 September 2025

CITATION

Venegas L and Lheureux S (2025) Interplay of 
replication stress response and immune 
microenvironment in high-grade serous 
ovarian cancer.
Front. Cell Dev. Biol. 13:1638964.
doi: 10.3389/fcell.2025.1638964

COPYRIGHT

© 2025 Venegas and Lheureux. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with 
these terms.

Interplay of replication stress 
response and immune 
microenvironment in high-grade 
serous ovarian cancer

Laura Venegas �  and  Stephanie Lheureux � *
Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health 
Network, Toronto, ON, Canada

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological 
malignancy. Therapeutic options remain limited for patients lacking predictive 
biomarkers, particularly those with BRCA wild-type tumors or those who have 
acquired resistance to both PARP inhibitors and platinum-based chemotherapy. 
Replication stress, TP53 mutations, and genomic instability characterize HGSOC. 
The cellular response to replication stress is primarily mediated by checkpoint 
kinases; however, this mechanism is frequently impaired in tumor cells. 
Consequently, cancer cells become increasingly dependent on the replication 
stress response (RSR) pathway for survival, and susceptible to therapies targeting 
the ATR-CHK1-WEE1 axis—a key regulator of genomic integrity. Inhibition 
of these checkpoint kinases can disrupt cell cycle control, inducing mitotic 
catastrophe and subsequent cancer cell death. Another defining feature of 
HGSOC is its immunosuppressive tumor microenvironment (TME), which has 
limited the efficacy of immune checkpoint inhibitors. Emerging evidence 
suggests that inhibition of the RSR pathway may not only exploit intrinsic 
tumor vulnerabilities but also modulate the TME to enhance anti-tumor immune 
responses. This provides rationale for combination approaches integrating RSR 
pathway inhibitors with innovative immune checkpoint blockade (ICB). This 
review examines the mechanistic rationale and therapeutic potential of such 
combinations, drawing on both preclinical and clinical data.

KEYWORDS

TME (tumor microenvironment), replication stress, HGSOC, Wee1, Chk1, ATR, 
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 1 Introduction

DNA damage induces replicative stress, a critical cellular alteration that can arise from 
exogenous agents—such as cytotoxic chemotherapies (e.g., gemcitabine, 5-fluorouracil, 
cisplatin)—or endogenous factors, including misincorporation of ribonucleotides or 
mutations in tumor suppressor genes (Zeman and Cimprich, 2014). The cellular 
response to replicative stress is a regulated mechanism that ensures accurate DNA 
replication and genome integrity (Saxena and Zou, 2022). In tumor cells, this 
response becomes essential for survival; when compromised, tumor cell proliferation
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is impaired (Schoonen et al., 2019).
Ovarian cancer is the most lethal gynecologic malignancy, 

responsible for approximately 207,000 deaths worldwide each year 
(Huang et al., 2022). HGSOC is the most common histology 
subtype and is characterized by genomic instability, universal TP53 
mutations, and profound copy number changes (Hillmann et al., 
2025; Cancer Genome Atlas Research Network, 2011). The loss of 
the tumor suppressor gene p53 promotes a sequential pattern 
of genomic instability as tumors evolve. This progression begins 
with the accumulation of deletions, particularly in p53, and copy 
number alterations, followed by genome doubling and subclonal 
expansion, leading to intratumoral heterogeneity that contributes to 
poor prognosis and treatment resistance (Baslan et al., 2022). In a 
preclinical model using cell lines derived from non-ciliated fallopian 
tube epithelial cells, TP53 mutation appears to act as an initiating 
event, while subsequent BRCA1 loss further increases chromosomal 
instability (CIN) (Bronder et al., 2021). These molecular alterations 
coincide with progressive changes in the TME, transitioning from 
immune surveillance in early serous tubal intraepithelial carcinomas 
(STICs) to immune suppression in advanced STICs and cancer 
(Kader et al., 2024). The loss of p53 also upregulates repetitive 
elements, triggering an antiviral immune response known as 
viral mimicry; however, in premalignant lesions, this response 
becomes progressively suppressed, contributing to the development 
of immune tolerance (Ishak et al., 2025). Another contributor to 
the progressive cascade of events is the amplification of Cyclin 
E1 (CCNE1), which accelerates the transition into synthesis 
phase (S phase), increases cellular proliferation, and exacerbates 
replication stress (Aziz et al., 2019).

A major therapeutic discovery in HGSOC has been the 
introduction of Poly(ADP-ribose) polymerase 1/2 inhibitors 
(PARPi), which have shown clinical benefit predominantly in 
patients with defects in DNA damage repair pathways based 
on the concept of synthetic lethality (Farmer et al., 2005; 
Konstantinopoulos et al., 2015). More recently, the inhibition 
of cell cycle–regulating kinases has emerged as an interesting 
treatment strategy. These agents are currently under investigation 
and have demonstrated encouraging activity, particularly in a 
selective group of patients, including CCNE1 amplified tumors 
(Xu et al., 2024). However, patients with no identified biomarker, 
such as BRCA mutation, homologous recombination deficiency 
(HRD) phenotype, or CCNE1 amplification, face a biological 
challenge with limited therapeutic options, representing a significant 
unmet need (Wang YW. et al., 2025). This underscores the 
importance of identifying novel target therapies or rational 
combination strategies for this population beyond genomic 
alterations. Efforts to improve clinical outcomes using anti-PD(L)1 
therapies—either as monotherapies or in combination with PARPi 
or chemotherapy—have mainly failed, demonstrating limited 
efficacy across multiple clinical trials. (Ghisoni et al., 2024). 
Emerging evidence suggests that modulation of the TME and 
inhibition of kinases involved in the replicative stress process could 
enhance therapeutic efficacy (Hardaker et al., 2024a). However, 
a deeper mechanistic understanding of these interactions is still 
needed. This review explores the interaction between replicative 
stress and the TME and summarizes current preclinical and clinical 
evidence supporting the combination of cell cycle checkpoint 
inhibitors with anti-PD(L)1 therapy in HGSOC. Our literature 

review is narrative in nature rather than a systematic review, we 
included preclinical original research, and clinical trials relevant for 
the topic, non-english publications or non-peer-reviewed materials 
were excluded. 

2 Intercommunication between 
replication stress and the immune 
microenvironment

DNA replication, under normal conditions, occurs in an 
organized and coordinated manner, ensuring that DNA is replicated 
only once and is equally distributed to the daughter cells (Sørensen 
and Syljuåsen, 2012). However, various factors can disrupt this 
delicate process, leading to replication stress. Some causes of 
replication stress include the release of reactive oxygen species 
(ROS), incorrect incorporation of ribonucleotides, alterations 
in DNA structure, or collisions between the transcription and 
replication machinery (Zeman and Cimprich, 2014). In response 
to this stress, a cascade of proteins is activated (Figure 1), starting 
with the replication protein A (RPA), the initial sensor that binds 
to single-stranded DNA (ssDNA) at the stalled replication fork 
and recruits ATR kinase. Subsequently, ATR kinase collaborates 
with Interacting Protein (ATRIP), activated by Topoisomerase II 
Binding Protein 1 (TopBP1). Once activated, ATR phosphorylates 
Checkpoint kinase 1 (Chk1), which induces cell cycle arrest at the 
S-G2 phase, providing time for DNA repair mechanisms to act, 
including homologous recombination (HRR) and non-homologous 
end joining (NHEJ) pathways. In addition, Chk1 regulates the G2-M 
transition by reducing cyclin-dependent kinase 2 (CDK2), slowing 
replication in the S phase. Chk1 also phosphorylates and activates 
WEE1, which negatively regulates cyclin-dependent kinase 1 
(CDK1), also known as CDC2, resulting in cell cycle arrest, which is 
essential for entry into mitosis. WEE1 also stabilizes the replication 
fork by inhibiting nucleases and preventing DNA degradation 
(Domínguez-Kelly et al., 2011). Other participants in the DNA 
damage response (DDR) include BRCA2; Its function is to protect 
the replication fork from degradation by MRE11 nuclease (Oh and 
Symington, 2018).

In cancer, replication stress is particularly prevalent due to the 
loss of function of tumor suppressor genes like TP53, RB1, and NF1 
(Khamidullina et al., 2024). HGSOC exhibits genomic complexity, 
and analysis of copy number alterations has identified seven 
signatures. Signature 1 is associated with breakage–fusion–bridge 
(BFB) cycles and active RAS signaling; Signature 4 correlates with 
whole-genome doubling and amplification of CCNE1 and MYC; and 
Signature 6 is characterized by aberrant G1/S cell cycle checkpoint 
control (Macintyre et al., 2018). In response to the replication stress 
induced by DNA damage, the ATR-CHK1-WEE1 axis is crucial 
for the survival and proliferation of cancer cells (Gaillard et al., 
2015). However, in tumor cells, cell cycle regulation is abnormal, 
and the cell may proceed to mitosis with unrepaired DNA damage, 
ultimately leading to mitotic catastrophe, cell death, and micronuclei 
formation (Dobbelstein et al., 2015; Zhang et al., 2022; Kwon et al., 
2020). These DNA fragments are released into the cytoplasm, where 
the cyclic GMP-AMP synthase (cGAS) sensor recognizes the self-
derived DNA in the cytosol, leading to the production of cyclic 
guanosine monophosphate–adenosine monophosphate (cGAMP), 
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FIGURE 1
Cellular Response to Replication Stress and Immune Activation. RPA binds to ssDNA at the stalled fork and recruits ATR kinase through its partner 
ATRIP. ATR activation is facilitated by TopBP1 and leads to Chk1 phosphorylation (Saldivar et al., 2017). Activated Chk1 induces cell cycle arrest at the 
S-G2 phase by downregulating CDK2 and delaying S-phase progression. Chk1 also activates WEE1, which inhibits CDK1, enforcing G2-M arrest and 
stabilizing the replication fork by preventing nuclease-mediated degradation (Saxena and Zou, 2022). BRCA2 plays a critical role in protecting stalled 
forks from degradation by the MRE11 nuclease (Oh and Symington, 2018). In the absence of efficient checkpoint signaling, cells may enter mitosis 
prematurely, resulting in micronuclei formation. DNA fragments within the cytoplasm activate the cGAS-STING pathway, leading to transcription of 
type I interferon genes and PDL1 overexpression (Tong et al., 2024; Sato et al., 2017). ssDNA – Single-stranded DNA, ATR – Ataxia telangiectasia and 
Rad3-related protein, ATRIP – ATR Interacting Protein, TopBP1 – Topoisomerase II Binding Protein 1, Chk1 – Checkpoint kinase 1, CDK2 – 
Cyclin-dependent kinase 2, S-G2 phase – Synthesis to Gap 2 phase of the cell cycle, WEE1 – WEE1 G2 checkpoint kinase, CDK1 – Cyclin-dependent 
kinase 1, BRCA2 – Breast Cancer gene 2, MRE11 – Meiotic recombination 11 homolog, cGAS – Cyclic GMP-AMP synthase, STING – Stimulator of 
interferon genes, PDL1 (or PD-L1) – Programmed death-ligand 1. Created in BioRender. venegas, l. (2025) https://.BioRender.com/58mfsso.

a second messenger, which activates stimulator of interferon genes 
(STING) and triggers the transcription of type 1 interferon-
related genes. This pro-inflammatory signal promotes an anti-tumor 
immune response and upregulates programmed cell death ligand 1 
(PD-L1) expression (Tong et al., 2024; Sato et al., 2017). 

3 Targeting replication stress in 
ovarian cancer

Numerous clinical trials have investigated the potential of 
inhibiting kinases involved in replication stress, such as ATR, Chk1, 
and WEE1, in HGSOC. However, efficacy was modest as a single 
agent in not selected patients, with objective response rates (ORR) in 
platinum-resistant ovarian cancer (PROC), ranging from 5% to 15% 
and 20%–25% in selected patients with sensitive alterations, such 
as ataxia telangiectasia (ATM) mutations and CCNE1 amplification. 
Response rates tend to improve when combined with chemotherapy 
or PARPi; however, hematologic toxicity remains a major limitation 
(Supplementary Table S1) (Yap et al., 2024; Tan et al., 2022; Yap et al., 
2023; Shah et al., 2021; Simpkins et al., 2024; Mahdi et al., 
2021; Konstantinopoulos et al., 2024; Konstantinopoulos et al., 
2022; Giudice et al., 2024a; Kristeleit et al., 2023; Jones et al., 
2023; Miller et al., 2022; Fu et al., 2023; Westin et al., 2021; 

Lheureux et al., 2021; Moore et al., 2022; Leijen et al., 2016; 
Au-Yeung et al., 2022; Oza et al., 2020; Liu et al., 2023; 
Gelderblom et al., 2023; Schram et al., 2025). 

4 PARP inhibition and immune 
regulation

The interaction between PARP1/2 inhibition and the cGAS-
STING pathway has driven clinical trials investigating the use 
of PARPi and anti-PD-(L)1 therapies in HGSOC (Ghisoni et al., 
2024). PARP inhibition leads to the accumulation of cytosolic 
DNA, which is recognized by cGAS. This recognition activates the 
STING pathway in the endoplasmic reticulum. Upon activation, 
STING recruits TANK-binding kinase 1 (TBK1), which activates 
transcription factors such as interferon regulatory factor 3 (IRF3) 
and nuclear factor kappa B (NF-κB). These factors translocate to the 
nucleus and induce the expression of genes involved in modulating 
the immune response (Figure 2) (Zhu et al., 2021; Dunphy et al., 
2018; Shen et al.).

Additional mechanisms of interaction of PARP inhibition with 
the TME have been studied in preclinical models. However, further 
clinical validation is needed. PARP1/2 inhibition activates signal 
transducer and activator of transcription 3 (STAT3), a key factor 
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FIGURE 2
Multifaceted role of PARP1. After DNA damage, PARP1 binds to SSBs. In cells with HRD, PARP1/2 inhibition leads to DSBs. DNA fragments are then 
released into the cytoplasm and recognized by the cGAS sensor, activating the cGAS–STING pathway. This triggers IRF3 translocation to the nucleus 
and activates the IFN response. In addition, PARP1 modulates STAT3 through PARylation, promoting an immunosuppressive TME. Inhibition of STAT3 or 
PARG can shift the TME towards an immune-active state (Zhu et al., 2021; Dunphy et al., 2018; Shen et al.; Yue et al., 2012; Z et al., 2025; 
Martincuks et al., 2021a; Yu et al., 2007; Ding et al., 2019; Houl et al., 2019; Martincuks et al., 2024). PARP1/2: Poly (ADP-ribose) polymerase 1 and 2, 
SSBs: Single-Strand Breaks, HRD: Homologous Recombination Deficiency, DSBs: Double-Strand Breaks, cGAS: cyclic GMP-AMP synthase, STING: 
Stimulator of Interferon Genes, IRF3: Interferon Regulatory Factor 3, IFN: Interferon, STAT3: Signal Transducer and Activator of Transcription 3, TME: 
Tumor Microenvironment, PARG: Poly (ADP-ribose) glycohydrolase. Created in BioRender. venegas, l. (2025) https://BioRender.com/p3z3594.

implicated in immune evasion and treatment resistance (Yue et al., 
2012; Z et al., 2025), by inhibiting TH1-type immune responses 
and promoting the overexpression of IL-6, IL-10, and VEGF, which 
contributes to an immunosuppressive TME (Martincuks et al., 
2021a). Poly (ADP-ribose) glycohydrolase (PARG) is an enzyme
that counteracts PARP by reversing the PARylation process 
(Houl et al., 2019). PARG inhibition decreased pSTAT3 levels in 
vitro and promoted antitumor immunity in vivo by increasing 
interferon-gamma expression, activating CD8+ T cells, and reducing 
the population of regulatory T cells (Martincuks et al., 2024). Despite 
the preclinical rationale, this has not yet been translated into the 
clinic. One limitation is the lack of models that accurately replicate 
the dynamic interactions between the tumor and the immune 
microenvironment, reflecting the evolving genomic and immune 
landscape (Stur et al., 2025).

Clinical trial results combining anti-PD(L)1 and PARP1/2i 
are inconsistent, and to date, none of these combinations have 
been approved for clinical practice in HGSOC (Ghisoni et al., 
2024). While the triple combination of durvalumab, olaparib, 
and cediranib did not improve progression-free survival (PFS) 
(Lee et al., 2025), the combination of olaparib, durvalumab, and 
bevacizumab demonstrated encouraging results in patients without 
BRCA mutations (Drew et al., 2024). Therefore, the prolonged 
response observed in some patients warrants further investigation to 
better understand the interactions between the TME and the DNA 
repair pathways (Fu et al., 2023).

Resistance to PARP1/2 inhibitors is frequent (Soberanis P et al., 
2023), and preclinical studies have shown that these inhibitors 
can interact differently with replication stress (Shih et al., 2024). 
Replication stress kinase inhibition have been explored in clinical 
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FIGURE 3
ATR-CHK1-WEE1 pathway and immune interaction. DSBs activate the ATR–Chk1 pathway, which subsequently phosphorylates STAT1 and STAT3, 
leading to the overexpression of PD-L1. In parallel, the cGAS–STING pathway promotes the transcription of type I interferon genes in response to 
cytosolic DNA. WEE1 kinase modulates interferon gene expression through recognition of ERVs and regulation of chromatin. An intermittent dosing 
schedule of ATR, Chk1, and WEE1 inhibitors allows immune cell recovery, enhances immune cell infiltration, and promotes activation of anti-tumor 
immune responses (Sato et al., 2017; Carlsen and El-Deiry, 2022; Iwai et al., 2017). DNA: Deoxyribonucleic Acid, DSBs: Double-Strand Breaks, ATR: 
Ataxia Telangiectasia and Rad3-related protein, Chk1: Checkpoint kinase 1, STAT1: Signal Transducer and Activator of Transcription 1, STAT3: Signal 
Transducer and Activator of Transcription 3, PD-L1: Programmed Death-Ligand 1, cGAS: Cyclic GMP-AMP Synthase, STING: Stimulator of Interferon 
Genes, WEE1: WEE1 G2 Checkpoint Kinase, ERVs: Endogenous Retroviral Elements. Created in BioRender. venegas, l. (2025) https://BioRender.
com/kedtvdt.

trials, either as monotherapy or in combination with PARP1/2i, as 
a strategy to overcome resistance; however, modest response rates 
emphasize the need for novel therapeutic combinations (Stur et al., 
2025). The contribution of tumor-extrinsic factors, particularly 
the role of TME, to acquired therapeutic resistance represents an 
important area of investigation. 

5 Modulating immune response 
through replication stress kinase 
inhibition

Preclinical evidence has shown that inhibiting kinases 
involved in replication stress can modulate the immune response 
(Figure 3) (Taniguchi et al., 2024).

In an in vivo colorectal cancer mice model, the ATR inhibitor 
M6620 (VX-970), when combined with cisplatin, carboplatin, or 
irinotecan and the anti–PD-L1 antibody avelumab, demonstrated 
significant anti-tumor activity; similarly, in the MB49 urothelial 
tumor model, the combination of carboplatin and avelumab also 
exhibited therapeutic efficacy (Alimzhanov et al., 2020).

An intermittent schedule, in a colorectal cancer mice model, 
ceralasertib 7 days on, 7 days off, combined with the anti-PD-
L1 antibody durvalumab, significantly improved survival through 
a CD8+ T-cell-dependent mechanism. The intermittent schedule 

led to superior tumor control compared to continuous treatment. 
CyTOF and scRNAseq analysis of the TME revealed that ceralasertib 
reshapes the TME by decreasing the exhausted CD8+ T-cell 
phenotype and reducing monocytic myeloid derived suppressor 
cells (M-MDSCs) and tumor-associated macrophages (TAMs). 
Additionally, ceralasertib increased the presence of CD11c+ MHC 
II + dendritic cells (DCs). While low-dose ceralasertib showed 
minimal or no anti-tumor effect in vitro or in vivo when used 
alone, its combination with PD-L1 blockade resulted in significant 
anti-tumor activity (Hardaker et al., 2024b).

The Chk1 inhibitor prexasertib (12 mg/kg, BID, 2/7 days) 
elicited a immune-mediated anti-tumor response in both in 
vitro and in vivo in Small Cell Lung Cancer (SCLC) models. 
Treatment with prexasertib induced dynamic remodeling of the 
TME, characterized by increased infiltration of CD3+ total T cells 
and CD8+ cytotoxic T cells, and reduction in exhausted T cells by day 
7. When combined with anti–PD-L1 therapy (300 μg, administered 
once weekly on day 3), prexasertib significantly enhanced 
therapeutic efficacy. Mechanistically, this immune activation 
was associated with activation of the cGAS–STING–TBK1–IRF3 
signaling axis, leading to induction of type I interferon responses, 
upregulation of PD-L1 expression, and CXCL10 and CCL5 
cytokines (Sen et al., 2019a).

The combination of the Chk1 inhibitor SRA737, anti-PD-
L1, and low-dose gemcitabine (LDG) was assessed in a SCLC 
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model. While no significant anti-tumor activity was observed 
with any of the single-agent treatments, the combination led 
to substantial tumor regressions. Flow cytometry analysis 
demonstrated a significant increase in CD3+ and CD8+ T-cell 
infiltration compared to vehicle or single-agent treatments, and 
a reduction in CD4+ helper T-cells, regulatory T-cells, and 
exhausted CD8+ T-cells. The combination therapy increased 
M1 macrophage populations and DCs, while decreasing M2 
macrophages and MDSCs (Sen et al., 2019b).

In ovarian cancer cell lines, the WEE1 inhibitor AZD1775 
modulates the immune response by inducing expression of 
endogenous retroviral elements (ERVs), which produces double-
stranded RNA (dsRNA), activating IFN-mediated anti-tumor 
signaling and upregulating PD-L1. This effect was driven by 
downregulation of the histone H3K9me3. In vivo, STING-deficient 
ID8 ovarian cancer mice model, AZD1775 (5 days on, 2 days off) 
combined with anti–PD-L1 antibody significantly enhanced anti-
tumor efficacy (Guo et al., 2022).

In a phase I clinical trial involving patients with advanced 
solid tumors, Prexasertib, in combination with the PD-L1 inhibitor 
LY3300054, exploratory analysis of immune cell samples collected 
before and after treatment revealed significant increases in activated 
CD8+ T cells and natural killer T cells following treatment. Of the 17 
patients enrolled, 10 had high-grade serous cancer. The majority of 
patients exhibited notable signs of T-cell activation (Do et al., 2021).

In a Phase II clinical trial of prexasertib monotherapy in 
BRCAwt, platinum-resistant HGSOC, exploratory analysis of 
immune cell subsets revealed that patients with non-clinical benefit 
exhibited an increase in M-MDSCs, while patients with clinical 
benefit showed decreased expression of immune suppressive marker 
TIM-3 on CD8+ Tregs (Giudice et al., 2024b).

These findings are primarily based on non-ovarian models 
across various solid tumors, where the TME differs from that of 
HGSOC. Clinical evidence is limited, as the interaction between 
CHK1 inhibition and TME modulation is derived from a single 
phase 1 clinical trial. These results require further validation through 
dedicated models in ovarian cancer. 

6 Inhibition of replication stress 
kinases and anti-PD(L)1

Most clinical trials investigating PD-(L)1 inhibitors combined 
with ATR, WEE1, or Chk1 inhibitors have been performed in 
non-ovarian cancers, which have different TME (Kim et al., 2022; 
Besse et al., 2024; Kwon et al., 2022; Brond et al., 2021). These 
studies have focused on tumor types with established sensitivity 
to immune checkpoint blockade, such as melanoma and small cell 
lung cancer. Supplementary Table S2 summarizes ongoing clinical 
trials evaluating the combination of ATR inhibitors and immune 
checkpoint inhibitors across multiple tumor types, many of which 
are still actively enrolling participants, highlighting sustained 
interest in this therapeutic strategy.

To date, results have been reported from four trials (Table 1). 
Two of these specifically investigated the potential of ATR 
inhibitors to overcome resistance to ICB, and one study included 
patients with HGSOC (Kim et al., 2022; Besse et al., 2024; 
Kwon et al., 2022; Brond et al., 2021).

In a Phase II study of 30 patients with metastatic melanoma 
who had progressed on prior anti–PD-1 therapy, the combination 
of ceralasertib and durvalumab demonstrated an ORR of 31% 
(95% CI, 13.6%–46.4%), a median PFS of 7.1 months (range, 
3.8–11.7) and a median overall survival (OS) of 14.2 months (95% 
CI, 9.3–19.1); 44.4% patients with primary resistance achieved 
a response. Exploratory biomarker analyses demonstrated that 
patients with an immune-enriched TME or alterations in the DDR 
pathway derived the greatest benefit. Responders exhibited a higher 
expression of major histocompatibility complex class I (MHC-I) and 
interferon-related gene signatures (Kim et al., 2022). Similarly, in the 
phase 2 HUDSON umbrella study in patients with NSCLC post anti-
PD-L1 and platinum-doublet therapy, durvalumab–ceralasertib 
combination demonstrated superior efficacy compared to other 
regimens; responses were particularly pronounced in patients 
with ATM alterations, correlative biomarker analyses revealed 
downregulation of monocyte, CD8+ T cell, and exhaustion-
associated gene signatures along with upregulation of TNF-α, 
interferon-γ, and interferon-α pathways (Besse et al., 2024). Based 
on these findings, LATIFY (NCT05450692) is an ongoing phase III, 
open-label, randomized, multicenter trial evaluating the efficacy and 
safety of ceralasertib plus durvalumab versus docetaxel in patients 
with locally advanced or metastatic NSCLC who have progressed 
after anti–PD-(L)1 therapy and a platinum-based doublet.

In a phase II study, patients with advanced gastric cancer 
treated with ceralasertib and durvalumab demonstrated an ORR of 
22.6%, mPFS of 3.0 months, and mOS of 6.7 months; only 6.5% 
have received prior anti-PD1 therapy. Whole-exome sequencing of 
pretreatment tumor biopsies revealed enrichment of mutations in 
DDR pathway genes among patients who achieved partial responses, 
and HRD was associated with prolonged PFS. Correlative analyses 
showed that responders exhibited an increase in intratumoral 
lymphocyte infiltration and expansion of circulating tumor-reactive 
CD8+ T-cell clones. In contrast, treatment resistance was associated 
with enriched tumor vasculature signatures and decreased T-cell 
receptor (TCR) clonality (Kwon et al., 2022).

Prexasertib, a Chk1 inhibitor, and anti-PD-L1 LY3300054 
were evaluated in a Phase I study, anti-PD-L1 monotherapy, 
or combination. The study included 14 patients with recurrent 
ovarian cancer. The most common histology was HGSOC. 
CCNE1 amplification was present in six patients, 50% 
achieved PR (Do et al., 2021). 

7 Discussion

We summarize how the ATR-CHK1-WEE1 signaling axis is 
critical for maintaining genomic stability and how cancer cells often 
rely on this pathway for survival. Therefore, the development of 
drugs targeting these cell cycle checkpoint kinases is of interest and 
has shown some encouraging results in cancer treatment. While 
the molecular mechanisms of this pathway are well understood, 
its connection to the TME remains poorly characterized. Emerging 
evidence suggests that modulation of the immune response through 
inhibition of these kinases, particularly via the cGAS-STING 
pathway and STAT1/STAT3 transcription factors, which activate 
a type I interferon response and upregulate PD-L1, contributes 
to anti-tumor immunity (Sato et al., 2017; Taniguchi et al., 

Frontiers in Cell and Developmental Biology 06 frontiersin.org

https://doi.org/10.3389/fcell.2025.1638964
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Venegas and Lheureux 10.3389/fcell.2025.1638964

TABLE 1  Reported clinical trials investigating ATR or Chk1 inhibition and anti-PDL1 therapy in solid tumors.

Study Population Treatment ORR Median PFS 
(months)

Median OS 
(months)

Exploratory 
correlatives

Phase 2 metastatic 
melanoma79

N = 30 prior 
anti-PD-1

Ceralasertib + 
Durvalumab

31% 7.1 14.2 Better outcomes in 
immune-enriched 
TME & DDR 
alterations; trend for 
improved PFS in 
HRD tumors (HR 
0.17; P = 0.064). 
Responders showed 
higher MHC-I, Treg, 
IFN signatures

Phase 2 HUDSON 
NSCLC umbrella 
study80

N = 268 NSCLC 
patients post 
anti-PD-(L)1 & 
platinum

Durvalumab + 
Ceralasertib (n = 79) 
vs. other regimens 
(n = 189)

13.9% vs. 2.6% 5.8 vs. 2.7 17.4 vs. 9.4 ATM alterations: 
ORR 26.1%, PFS 8.4 
mo, OS 22.8 mo. 
CDKN2A alterations 
linked to shorter 
PFS. Biomarker data 
showed enhanced 
TCR diversity post 
durvalumab and 
ceralacertib

Phase 2 advanced 
gastric cancer74

N = 31 Ceralasertib + 
Durvalumab

22.60% 3 6.7 DDR gene 
mutations enriched 
in responders (p = 
0.022); HRD 
associated with 
prolonged PFS (HR 
0.13; p = 0.0002), 
especially with ATM 
loss/high HRD score

Phase 1 advanced 
solid tumors81

N = 17 patients (14 
ovarian cancer)

Prexasertib (CHK1i) 
monotherapy, and 
LY3300054 
(anti-PD-L1) 
combination

Partial responses in 
50% 
CCNE1-amplified 
HGSOC patients

NA NA CCNE1 
amplification in 6 
patients; 3 had PRs 
(response durations 
7, 13, 20 mo), 1 had 
durable SD > 12 mo. 
Increased activated 
CD8+ T cells 
(CD71+)

NSCLC: Non-Small Cell Lung Cancer, HGSOC: High-Grade Serous Ovarian Cancer, PD-(L)1: Programmed Death-(Ligand) 1, TME: tumor microenvironment, DDR: DNA, damage response, 
HRD: homologous recombination deficiency, MHC-I: Major Histocompatibility Complex Class I, Treg: Regulatory T Cell, IFN: interferon, TCR: T Cell Receptor, SD: stable disease, PR: partial 
response, OS: overall survival, PFS: Progression-Free Survival, ORR: objective response rate, CI: confidence interval, HR: hazard ratio, mo: months, ATM: ataxia telangiectasia mutated, 
CDKN2A: Cyclin Dependent Kinase Inhibitor 2A, CCNE1: Cyclin E; EOC: Epithelial ovarian cancer.

2024). However, other players, such as PARG and epigenetic 
regulators (Martincuks et al., 2024), may also be involved.

Chromosomal instability in HGSOC arises from cumulative 
alterations in cell cycle regulators, rather than from a single genetic 
alteration or mutation, which accumulates over time (Brond et al., 
2021). Supporting this, retrospective genomic analysis of tumor 
samples from patients with stage I–II versus stage III–IV HGSOC 
revealed a higher frequency of whole-genome duplication in late-
stage tumors compared to early-stage tumors (Cheng et al., 2022). 
Interestingly, copy number signatures appeared largely stable over 
time, from initial diagnosis through relapse or progression. These 
findings raise important questions about whether the TME differs 
in these patients. For example, patients with primary platinum 
resistance exhibited higher rates of CCNE1 and KRAS amplification 

at diagnosis, along with increased exposure to copy number 
signature 1 that is linked to a type of DNA instability known as 
breakage-fusion-bridge, which was negatively correlated with CD3 
and CD8 expression (Smith et al., 2023).

This review highlights that targeting the replication stress 
response may induce a favorable shift in the TME. Serial tumor 
biopsies and paired peripheral blood mononuclear cell (PBMC) 
sampling can capture temporal tumor heterogeneity. To address 
this gap, patient-derived organoid cultures may serve as functional 
assays and facilitate the study of tumor–TME interactions. In 
preclinical models, fiber assays in organoids have been used to assess 
replication fork instability and predict sensitivity to prexasertib (a 
CHEK1 inhibitor) and VE-822 (an ATR inhibitor) (Hill et al., 2018); 
however, their reproducibility in clinical settings remains limited. 
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Future studies should aim to develop tools capable of simultaneously 
evaluating replication stress and immune modulation in FFPE 
tissue or plasma.

The TME in HGSOC is particularly complex and unique; 
the peritoneal cavity provides a permissive niche for tumor 
dissemination through intricate interactions between metastatic 
tumor cells and TME components (Tan et al., 2006). Key cellular 
contributors include TAMs, cancer-associated adipocytes (CAAs), 
cancer-associated fibroblasts (CAFs), and cancer-associated 
mesothelial cells (CAMs), all of which play roles in promoting 
immune evasion (Tan et al., 2006). Additionally, a recently 
identified HGSOC subtype—C2 IGF2+ tumors—has been shown 
to engage fibroblasts via paracrine signaling, facilitating their 
transition into CAFs. This subtype is associated with stromal 
remodeling, genomic instability, stem-like features, and more 
advanced disease (Zhao et al., 2025).

A key area of investigation is how the TME may change in 
response to PARP or replication stress kinase inhibition, and 
the development of secondary resistance, and whether those 
changes promote immunosuppression through mechanisms such 
as senescence and activation of the STAT3 pathway, which 
increases expression of VEGF (Kamii et al., 2025; Zh et al., 2025; 
Martincuks et al., 2021b; Sumimoto et al., 2006). In addition to 
the immune microenvironment, angiogenesis is critical for tumor 
survival in hypoxic conditions, as high levels of VEGF promote 
the formation of abnormal vasculature that delivers oxygen and 
nutrients to cancer cells (Zhou et al., 2024). This pro-angiogenic 
TME has been associated with resistance to combinations of 
ATR inhibitors and anti–PD-L1 therapies (Kwon et al., 2022). 
Notably, triple therapy combining PARP inhibition, anti–PD-
(L)1, and antiangiogenic agents has demonstrated clinical 
benefit in some clinical trials (Lee et al., 2025; Drew et al., 
2024). However, whether this strategy can be extended to 
combinations involving ATR, CHK1, or WEE1 inhibitors remains
unexplored.

The conventional on-and-off administration of replication stress 
kinase inhibitors may represent an interesting strategy to modulate 
the TME. Intermittent dosing enables active T cells to exert an anti-
tumor response during the ‘off ’ days, while selectively depleting 
exhausted T cells during the ‘on’ days; this approach could sensitize 
the cell to immunotherapies (Hardaker et al., 2024b).

Predictive biomarkers of response to replication stress 
kinase inhibitors and anti-PD-(L)1 therapies remain limited, 
in part due to the heterogeneity in HGSOC (Stur et al., 2025; 
Parvathareddy et al., 2021). However, studies have suggested that 
tumor immune infiltration and the expansion of CD8+ T cells may 
be associated with response to the combination of ceralasertib 
and durvalumab (Hardaker et al., 2024b). Interestingly, WEE1 
inhibition has been shown to induce the recognition of endogenous 
retroviral RNA, leading to activation of interferon-stimulated genes 
(Brond et al., 2021). The presence of endogenous retrotransposable 
elements has been identified as a predictive biomarker of 
response to ICB in melanoma and non-small cell lung cancer
(Herrera et al., 2025).

Our review aims to generate hypotheses and stimulate future 
research in HGSOC before immediate clinical application, given 
the initial disappointment of PD-1/PDL-1 in this disease. The dual-

targeting approach focusing on replication stress response inhibition 
and anti–PD-(L)1 therapy—is based on mechanistic rationale and 
supported by emerging early-phase clinical trials in other tumor 
types. We acknowledge the limited availability of preclinical and 
clinical data specific to HGSOC and emphasize the need for the 
development of more representative preclinical models and clinical 
trial designs capable of capturing the dynamic changes in the tumor 
microenvironment, which could lead to the development of more 
effective treatment strategies.
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Glossary

ATM Ataxia telangiectasia mutated

ATR Ataxia telangiectasia and Rad3-related protein

ATRIP ATR Interacting Protein

BID Twice a day (bis in die)

BFB Breakage–fusion–bridge

BRCA Breast Cancer gene (1 or 2)

CAAs Cancer-associated adipocytes

CAFs Cancer-associated fibroblasts

CAMs Cancer-associated mesothelial cells

CB Clinical benefit

CD8+ T cells Cytotoxic T lymphocytes expressing CD8

CDK1/CDC2 Cyclin-dependent kinase 1
CDK2 Cyclin-dependent kinase 2
CCL5 C-C motif chemokine ligand 5
CCNE1 Cyclin E1

CIN Chromosomal instability

cGAMP Cyclic guanosine monophosphate–adenosine monophosphate

cGAS Cyclic GMP-AMP synthase

CyTOF Cytometry by Time Of Flight

DCs Dendritic cells

DDR DNA Damage Response

DNA Deoxyribonucleic acid

ERVs Endogenous retroviral elements

FFPE Formalin-Fixed, Paraffin-Embedded

G1/S Gap 1/Synthesis phase transition of the cell cycle

H3K9me3 Histone 3 lysine 9 trimethylation

HGSOC High-grade serous ovarian cancer

HRD Homologous recombination deficiency

HRR Homologous recombination repair

IFN-I Type I interferon

IL-6 Interleukin 6
IL-10 Interleukin 10

ID8 Mouse ovarian cancer cell line/model

ICB Immune checkpoint blockade

IRF3 Interferon regulatory factor 3
LDG Low-dose gemcitabine

MB49 Murine bladder carcinoma cell line/model

MHC I Major histocompatibility complex class I
MHC II Major histocompatibility complex class II

M-MDSCs Monocytic myeloid-derived suppressor cells

MOS Median overall survival

mPFS Median progression-free survival

MYC MYC proto-oncogene

NHEJ Non-homologous end joining

NF1 Neurofibromin 1
NF-κB Nuclear factor kappa B
ORR Objective response rate

PARP Poly (ADP-ribose) polymerase

PARPi Poly (ADP-ribose) polymerase 1 and 2 inhibitors

PARG Poly (ADP-ribose) glycohydrolase

PBMC Peripheral blood mononuclear cell

PD-(L)1 Programmed death-(ligand) 1
PROC Platinum-resistant ovarian cancer

RAS Rat sarcoma (family of related GTPases; commonly 

mutated in cancer)

RB1 Retinoblastoma 1
RPA Replication protein A
ROS Reactive oxygen species

RSR Replication stress response

S phase Synthesis phase

scRNAseq Single-cell RNA sequencing

siRNA Small interfering RNA

SCLC Small cell lung cancer

STAT3 Signal transducer and activator of transcription 3
STIC Serous tubal intraepithelial carcinoma

STING Stimulator of interferon genes

TBK1 TANK-binding kinase 1
TH1 T-helper 1 (immune response type)

TIM3 T-cell immunoglobulin and mucin-domain containing-3

TCR T-cell receptor

TME Tumor microenvironment

TP53 Tumor protein p53 (commonly abbreviated as p53)

Tregs Regulatory T cells

TopBP1 Topoisomerase II Binding Protein 1
VEGF Vascular endothelial growth factor

WEE1 WEE1 G2 checkpoint kinase
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