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RNA signaling in skeletal muscle:
the central role of microRNAs
and exosomal microRNAs

Shunshun Liu and Huan Dong*

School of Physical Education, Zaozhuang University, Zaozhuang, China

Skeletal muscle development and adaptation are governed by complex
regulatory networks that coordinate gene expression, signaling pathways,
and intercellular communication. Among the emerging key regulators are
microRNAs (miRNAs) and exosomal microRNAs, which function as critical
modulators of skeletal muscle growth, differentiation, regeneration, and
metabolic adaptation. The review explores the acknowledged contributions
of miRNAs, both intracellular and those encapsulated within exosomes, to
the regulation of skeletal muscle physiology. We highlight their involvement
in major molecular pathways, including PI3K/Akt/mTOR, TGF-β/Smad, Wnt/β-
catenin, and AMPK signaling, and their impact on processes such asmyogenesis,
hypertrophy, atrophy, and mitochondrial function. Emphasis is placed on the
critical role of exosomal miRNAs in orchestrating signaling pathways that enable
communication among cells in the muscle milieu and with peripheral tissues.
Ultimately, the review addresses the clinical relevance of miRNAs, including
those derived from exosomes, emphasizing their prospective roles as diagnostic
tools and intervention points in muscle-related conditions. In sum, the review
elucidates the broad landscape of RNA-related regulatory processes in skeletal
muscle and projects forward-looking strategies for translational exploration in
this rapidly developing scientific domain.
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Introduction

Making up close to 40% of human body mass, skeletal muscle is integral to locomotor
activity, postural control, and the orchestration of metabolic functions at the systemic
level (Ju et al., 2015). Skeletal muscle, while primarily mechanical in function, also
displays exceptional adaptive capacity, permitting structural, functional, and dimensional
remodeling when exposed to influences such as physical training, dietary modulation,
and pathological conditions (Güller and Russell, 2010; Matsakas and Patel, 2009). The
modulation of gene expression driving this plasticity is managed by elaborate molecular
systems, among which microRNAs (miRNAs), a class of non-coding RNAs, have been
identified as crucial regulators (Ju et al., 2015; Velez, 2023; Prabhakaran et al., 2024).

MicroRNAs, characterized by their endogenous origin and short length of around
22 nucleotides, modulate gene expression by targeting mRNAs and influencing their
post-transcriptional fate (Kirby et al., 2015). By targeting the 3′untranslated region
(UTR) of messenger RNAs (mRNAs), microRNAs facilitate post-transcriptional gene
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silencing through mechanisms that either hinder translation
or accelerate mRNA degradation (Kirby et al., 2015; Mayr,
2017). This mode of regulation permits miRNAs to delicately
control the expression levels of many genes, influencing extensive
biological activities across both normal physiology and pathological
conditions (Kirby et al., 2015; Schratt, 2009).

Recent advances have underscored not only the role of
intracellular miRNAs but also the importance of exosomal
microRNAs, which represent a unique subclass of miRNAs
encapsulated within extracellular vesicles. These vesicles, primarily
exosomes, facilitate intercellular communication by delivering
miRNA cargo from donor to recipient cells, influencing gene
expression at a distance (Valadi et al., 2007; Fatima and Nawaz,
2017). In the context of skeletal muscle, exosomal miRNAs are
secreted both constitutively and in response to stimuli such
as exercise, injury, or disease, thereby participating in tissue
remodeling, inflammation, regeneration, and systemic signaling
(Wang et al., 2025; Magliulo et al., 2022; Fleshner and Crane,
2017). By incorporating both intracellular and exosomal pathways,
miRNAs contribute to a complex, multilayered network of
regulatory control that orchestrates skeletal muscle development,
adaptation, and pathology.

Introducing greater complexity to gene regulation is the finding
of exosome-associated miRNAs. Exosomes consist of nanosized,
membrane-enclosed vesicles secreted by cells into the extracellular
compartmen (Aoi, 2015). These vesicles act as mediators of
intercellular communication, transporting a variety of biomolecules,
including miRNAs, between neighboring or distant cells and even
across different organs (Aoi, 2015; Liu and Wang, 2023; Fabbri,
2018). The incorporation of miRNAs into exosomes enhances
their stability outside the cell and facilitates their conveyance
to recipient cells, allowing them to modulate cellular processes
(Aoi, 2015; Sohel, 2016).

A detailed knowledge of the contributions of miRNAs and
exosomal miRNAs to skeletal muscle growth and adaptation is
pivotal for interpreting the molecular frameworks that underlie
muscle physiology in both healthy and diseased states (Güller and
Russell, 2010; Eisenberg et al., 2009).

Skeletal muscle disorders represent a significant and growing
global health concern. Sarcopenia, characterized by the progressive
loss of muscle mass and function with age, affects up to 10%–20% of
individuals over 60 years old and more than 50% of those over 80,
posing a major threat to functional independence and quality of life
(Cruz-Jentoft and Sayer, 2019; von Haehling et al., 2010; Ardeljan
and Hurezeanu, 2020). Similarly, cachexia, commonly associated
with chronic conditions such as cancer, heart failure, and chronic
kidney disease, contributes to increased morbidity and mortality
in millions of patients worldwide (Rogers et al., 2023; Ferrer et al.,
2023). Collectively, these disorders impose a substantial burden
on healthcare systems and underscore the urgency of advancing
research on molecular mechanisms, biomarker discovery, and
therapeutic interventions that could facilitate clinical translation.
The study of miRNAs—particularly exosomal miRNAs—as
potential regulators and biomarkers offers a promising avenue to
address this unmet clinical need.

The purpose of this report is to furnish a broad and authoritative
examination of contemporary knowledge in this subject area.
It will delve into the mechanisms of miRNA biogenesis and

function within skeletal muscle, explore the roles of key miRNAs
in myogenesis and muscle adaptation to exercise, discuss the
function of exosomal miRNAs in intercellular communication
and the response to exercise, examine the dysregulation of these
molecules in various muscle disorders, and finally, consider their
potential as therapeutic targets. Skeletal muscle’s extensive presence
in the body highlights its systemic significance, making the
exploration of miRNAs’ regulatory influence a crucial research
priority. Furthermore, the ability of miRNAs to either promote
or alleviate muscle loss underscores the complexity of these
regulatory networks and the necessity for a detailed understanding
in the context of therapeutic development (Jung et al., 2024;
Sharma et al., 2014; Zabihi and Akhoondian, 2025).

Mechanisms behind skeletal muscle
growth and development

The anabolic properties of insulin and insulin-like growth factor
1 (IGF1) are fundamental to the regulation and continuation of
growth processes at both the systemic level and within skeletal
muscle. The hormones insulin and IGF1, upon receptor binding,
activate phosphorylation cascades that differentially modulate the
activity of proteins, enzymes, and transcription factors, facilitating
either their stimulation or inhibition. The pathway orchestrates
the regulation of protein synthesis and degradation, cellular
proliferation and viability, along with glucose uptake and the
generation of cellular energy. Insulin is produced by the pancreas,
in contrast to IGF1, which is primarily synthesized in the liver
under the influence of growth hormone and functions as a
systemic growth factor. IGF1 is also produced by tissues outside
the liver, where it exerts mainly autocrine and paracrine effects.
Muscle-targeted overexpression of a locally acting IGF1 isoform
in murine models demonstrates that localized IGF1 expression is
essential for promoting muscle growth and regenerative capacity
(Musarò et al., 2001). Among the IGF1 isoforms differing in N-
terminal signal peptides (Class 1 or 2) and C-terminal E-peptides
(Ea or Eb), IGF-1Ea exhibits the greatest potency in enhancing
muscle mass and force production in young and aged murine
subjects (Ascenzi et al., 2019). Both insulin and IGF1 contribute to
the activation of the mitogen-activated protein kinase/extracellular
signal-regulated kinase (RAS-MAPK-ERK) pathway alongside the
PI3K–AKT-mTOR pathway. Selective activation of the PI3K–AKT
pathway by a Ras mutant induces hypertrophy in transfected fibers,
while a Ras mutant restricted to the ERK pathway lacks this
capability (Murgia et al., 2000). Constitutive activation of AKT
induces significant hypertrophy in transfected muscle fibers, an
effect similarly reproduced by inducible transgenic models specific
to muscle tissue (Blaauw et al., 2009; Pallafacchina et al., 2002).

The kinase mTOR functions as a central hub for protein
synthesis and degradation and is modulated by insulin and IGF1
signaling. Acting as a signaling nexus, this kinase combines stimuli
from hormones, cytokines, nutrients, and ATP/AMP ratios and
transmits them to the translation apparatus bymodulating p70S6K1,
which controls ribosomal protein S6, and 4E binding protein 1
(4EBP1), which suppresses the eukaryotic translation initiation
factor 4E. Simultaneously, mTOR inhibits protein breakdown
by blocking autophagy via ULK1. mTOR kinase engages with
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various proteins to form two distinct complexes: the rapamycin-
sensitive TORC1 containing Raptor, and the rapamycin-insensitive
TORC2 complex containing Rictor. Genetic research has established
that these two complexes perform different functions. mTORC2
is involved in glucose and lipid homeostasis, contrasting with
mTORC1, which regulates anabolic processes such as protein
synthesis, ribosome formation, and mitochondrial biogenesis (Liu
and Sabatini, 2020). While muscle-specific deletion of Rictor
does not lead to an overt phenotype, mice deficient in Raptor
and mTOR exhibit stunted postnatal growth characterized by
reduced fast muscle fiber size, unaffected slow fibers, and a
progressive muscular dystrophy phenotype (Risson et al., 2009;
Bentzinger et al., 2008). Rapamycin, which specifically targets
mTORC1, consistently obstructs muscle growth under anabolic
circumstances (Pallafacchina et al., 2002). Recent genetic analyses
suggest that mTOR may perform some roles independently of the
mTORC1 complex. In models of mechanical overload, inducible
deletion of Raptor in muscle inhibits hypertrophy yet does not
affect the enhanced protein synthesis observed via puromycin
incorporation (You et al., 2019). The onset of a growth defect
following conditional mTOR deletion and expression of catalytically
inactive mTOR occurred after the first week postnatally. Compared
with conditional RAPTOR knockout mice, these animals exhibit
substantially greater muscle atrophy (Bentzinger et al., 2008).
Although mTORC1 complex activity is heavily suppressed in
transgenic mice, their muscles still grow, albeit to a lesser extent
than controls. Myofiber degeneration and a myopathic phenotype
present in conditional mTOR knockout and catalytically inactive
mTOR transgenic mice suggest mTOR’s essential function in
supportingmuscle cell survival. Rather than the expected autophagy
hyperactivation following mTORC1 inhibition, these animals
display reduced autophagic activity, which largely drives their
pathological phenotype (Risson et al., 2009; Zhang et al., 2019).
A myopathic phenotype characterized by slow progression was
described in mice with chronic mTORC1 activation driven
by TSC1 inhibition. The impaired autophagy system, resulting
from mTOR hyperactivation, was a significant factor in the
phenotype exhibited by TSC1 knockout mice (Castets et al.,
2013). Collectively, these results demonstrate that mTORC1
is a major contributor to muscle homeostasis but does not
exclusively regulate protein synthesis, with autophagy in muscle
cells controlled through bothmTORC1-dependent and independent
pathways.

A further major signaling pathway regulating skeletal muscle
growth centers on myostatin, which is part of the transforming
growth factor β (TGFβ) superfamily. The TGFβ superfamily
comprises a diverse group of more than 30 secreted ligands,
characterized by differential selectivity for specific receptor
subtypes. In muscle biology, myostatin is the most prominent
superfamily member, highlighted by the severe muscle hypertrophy
seen in myostatin knockout mice (McPherron et al., 1997). The
interaction of Activin/Myostatin/TGFβ proteins with plasma
membrane activin type IIB and IIA receptors (ActRIIB/IIA) and
TGFβ receptors (TGFβRII) triggers recruitment and activation
of receptor-like kinase (ALK)-4, −7, and −5 kinases, resulting in
Smad2/3 phosphorylation and the assembly of a heterotrimeric
complex with Smad4. Inhibition of Smad2/3 alone suffices
to enhance muscle growth, supporting the notion that genes

implicated in protein turnover are targets of these transcription
factors (Winbanks et al., 2012; Sartori et al., 2009). The
relationship between myostatin and the AKT/mTOR pathway
is highlighted by findings that rapamycin or mTOR knockdown
can negate the hypertrophic effects caused by blocking myostatin
(Winbanks et al., 2012; Sartori et al., 2009).

The control of muscle mass involves BMP signaling, which
converges on Smad4 as one of its key pathways (Traoré et al.,
2019; Sartori et al., 2013). Members of the BMP/GDF family
show selective binding to type II receptors—BMP type II receptor
(BMPRII), ActRIIA, and ActRIIB—and facilitate the recruitment
of type I receptors such as BMPRIA (ALK3), BMPRIB (ALK6),
and ACVR1 (ALK2). Ligand/Type II/Type I receptor complexes
enhance phosphorylation and heterotrimerisation of Smad1/5/8
with Smad4, thereby influencing the regulation of transcription.
Thus, ligands from the two superfamily subgroups, in addition
to Smad4, are likely to compete for access to certain type
II receptors. Regulatory mechanisms of the pathway extend
to regions downstream of the receptors. Smad6 and Smad7
proteins inhibit receptor-mediated signaling pathways that activate
Smad1/5/8 and Smad2/3 (Winbanks et al., 2016). In the skeletal
muscle of mice, the specific ablation of Smad4 did not facilitate
hypertrophy but was linked to muscle atrophy and weakness
(Sartori et al., 2013). The demonstration that BMP antagonist
noggin overexpression counteracts the hypertrophic effects seen
in myostatin knockout mice robustly supports the concept of
genetic epistasis between the activin/myostatin and BMP pathways
in muscle. Follistatin induces hypertrophy by concurrently
blocking myostatin signaling and stimulating Smad1/5/8 activation,
consistent with observed regulatory mechanisms (Sartori et al.,
2013; Winbanks et al., 2013; Davey et al., 2016). Thus, decreased
myostatin/activin activity, evidenced by reduced phosphorylation of
Smad2/3, facilitates Smad4 binding to phosphorylated Smad1/5/8,
which may play a role in preserving muscle tissue or counteracting
β-adrenergic-induced atrophic processes.

Adrenergic signaling acts as a supplementary pathway
modulating muscle mass through its interaction with the AKT-
mTOR signaling cascade. The hypertrophic effect of β2-adrenergic
agonists, for example, clenbuterol or formoterol, on muscle is
associated with increased AKT phosphorylation and is completely
prevented by rapamycin (Kline et al., 1985). Recent findings support
that β2-adrenergic signaling partially engages insulin/IGF1 receptor
signaling and does not affect the ERK1 pathway (Gonçalves et al.,
2019). The anti-proteolytic properties of the β-adrenergic
agonist formoterol were completely abolished by genetic and
pharmacological inhibition of insulin receptor, IGF1 receptor, PI3K,
and AKT, but remained unaffected by the ERK1/2 inhibitor U0126.

It has recently been documented that FGF19 fosters muscle
hypertrophy and increases grip strength by stimulating ERK
signaling, despite no activation of AKT (Benoit et al., 2017). This
finding stands in opposition to prior research indicating that FGF21
is essential and sufficient for inducingmuscle loss (Oost et al., 2019).
Among FGF ligands, FGF19 (FGF15 in mice), FGF21, and FGF23
are characterized by their inability to bind heparan sulfates, instead
associating with α- or β-klotho proteins that serve as FGFR co-
receptors or co-ligands. Since both FGF19 and FGF21 interact with
β-klotho and activate FGFR1-4, it is anticipated that they perform
similar functions.

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1639123
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Liu and Dong 10.3389/fcell.2025.1639123

FIGURE 1
Comparison of signaling pathways regulating muscle mass.

A desmosomal protein, plakoglobin, which binds the insulin
receptor and PI3K subunit p85, has recently been identified as a
modulator of insulin receptor activity. The increased expression of
plakoglobin enhances signaling through the PI3K–AKT-FoxO axis
and drives muscle growth (Cohen et al., 2014). The relationship
between zinc ions and muscle growth constitutes a significant
aspect of muscle physiology. Zinc-binding metallothioneins are
recognized as members of the atrogene group (see below). The
inhibition of these proteins induces the release of zinc ions, which
activate hypertrophic processes. The promotion of muscle growth
in mice by metallothionein 2 knockdown and genetic ablation
is likely mediated through the AKT-mTOR axis (Wang G. et al.,
2018). Aberrant ZRT- and IRT-like protein 14 (ZIP14) expression,
induced by inflammatory mediators such as TNF-α and TGF-β,
results in zinc overload within muscle fibers, leading to structural
damage of myosin heavy chains and subsequent muscle wasting.
Notably, ZIP14 suppression in muscle has been shown to attenuate
this degenerative effect in tumor-bearing experimental models
(Wang G. et al., 2018; Figure 1). There are also several important
signaling pathways important in muscle loss. Table 1 summarized
signaling pathways involved in muscle loss.

The Wnt/β-catenin signaling pathway plays a pivotal role in
embryonic myogenesis, satellite cell activation, and regeneration
of adult skeletal muscle (von Maltzahn et al., 2012; Suzuki et al.,
2018; Suzuki et al., 2015; Girardi and Le Grand, 2018). Activation
of Wnt ligands leads to the stabilization and nuclear translocation
of β-catenin, which associates with TCF/LEF transcription factors
to promote the transcription of genes that drive myogenic lineage
progression (Qin et al., 2024; Cadigan and Waterman, 2012;
Liu et al., 2022). This pathway is essential for the proper expansion
and differentiation of muscle progenitor cells. Several miRNAs have
been found to modulate Wnt signaling components. For example,
miR-29 targets negative regulators of Wnt signaling such as Dkk1,
thereby enhancing β-catenin activity and promoting myogenic
differentiation (Hsu et al., 2016; Kapinas et al., 2010). Conversely,
miR-206 has been shown to suppress Wnt signaling by targeting

Wnt5a, indicating that the regulatory outcome is context-dependent
and tightly controlled (Yi et al., 2016; Zhou et al., 2019).

AMP-activated protein kinase (AMPK) functions as a central
energy sensor that promotes catabolic processes and mitochondrial
biogenesis in response to energetic stress, such as during endurance
exercise (Rothschild et al., 2022; Niederberger et al., 2015;
Lantier et al., 2014). AMPK activation leads to increased glucose
uptake, fatty acid oxidation, and inhibition of mTORC1, thereby
shifting the muscle phenotype toward oxidative metabolism
(Tang et al., 2023; Marcondes‐de‐Castro et al., 2023). miRNAs also
participate in regulating AMPK signaling. For instance, miR-128
negatively regulates AMPKα1, reducing the energy-sensing capacity
of muscle cells, while miR-195 has been reported to target SIRT1, an
upstream regulator of AMPK, thereby modulating mitochondrial
function and oxidative capacity (Yuan et al., 2020; Guan et al.,
2025; Kjøbsted et al., 2018; Sun and Kemper, 2023). In contrast,
miR-23a promotes mitochondrial biogenesis and oxidative gene
expression by suppressing PGC-1α repressors, indirectly supporting
AMPK-mediated metabolic reprogramming (Krammer et al., 2022;
Du et al., 2019; Wang et al., 2015).

MicroRNA biogenesis

The synthesis of miRNAs follows a strictly regulated, sequential
process that starts when RNA polymerase II commonly transcribes
miRNA genes, leading to the production of extended precursor
molecules referred to as primary miRNA transcripts (pri-miRNAs)
(Singh et al., 2020; Catalanotto et al., 2016; Olejniczak et al., 2018).
Nuclear processing of pri-miRNAs involves cleavage by a complex
consisting of Drosha and DGCR8, leading to the generation of
shorter precursor miRNAs (pre-miRNAs) characterized by their
stem-loop structures (Singh et al., 2020; Yoshida et al., 2021;
Ying, 2019). Exportin-5 plays a pivotal role in shuttling pre-
miRNAs from the nucleus into the cytoplasm following their
initial processing, ensuring their progression through the miRNA
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TABLE 1 Summary of signaling pathways involved in muscle loss.

Signaling pathway Key regulators Mechanism of action References

FoxOs-Atrogenes FoxO1, FoxO3, FoxO4 Regulated by post-translational
modifications (e.g., phosphorylation,

acetylation), cofactors, and
transcriptional upregulation; inhibition

prevents muscle loss in various
conditions

Shimizu et al. (2011), Yin et al. (2018),
Raffaello et al. (2010), Brault et al.
(2010), Bertaggia et al. (2012),

Beharry et al. (2014), Segalés et al.
(2020), O'Neill et al. (2019), Milan et al.

(2015), Brocca et al. (2017)

TNF-α-IKK-IkB-NF-kB TNF-α, IKK, IkB, NF-kB, TWEAK,
Fn14

IKK activation leads to IkB
degradation, NF-kB activation, MuRF1
expression; TWEAK-Fn14 axis induces

NF-kB and FoxO activity

Mittal et al. (2010), Cai et al. (2004)

IL6-JAK-Stat3 IL6, JAK, STAT3 IL6 induces JAK-STAT3 signaling; Stat3
promotes muscle atrophy and

upregulates atrogin-1; involved in
cancer and sepsis-induced atrophy

Bonetto et al. (2012)

ATF4 and ER Stress ATF4, PERK, eIF2α, GRP78/Bip, IRE1,
XBP1

UPR activates ATF4 and XBP1,
promoting atrogenes; contradictory

effects observed with PERK inhibition

Ebert et al. (2012), Gallot et al. (2019),
Bohnert et al. (2019)

Mitochondrial Dysfunction OPA1, DRP1 Disruption of fusion/fission alters
mitochondrial network shape, affects
muscle mass regulation more than

function

Favaro et al. (2019), Tezze et al. (2017)

maturation pathway (Singh et al., 2020; Wu et al., 2018). Following
cytoplasmic export, pre-miRNAs are subjected to cleavage by
Dicer, an RNase III enzyme, which processes the hairpin structure
to yield short, double-stranded miRNA duplexes (Singh et al.,
2020; Park, 2015). The RNA-induced silencing complex (RISC),
a ribonucleoprotein assembly including the Argonaute protein
AGO2, selectively incorporates one strand of the duplex known as
the mature miRNA (Kirby et al., 2015; Tang, 2005). The mature
miRNA within RISC acts as a guide, directing the complex to
target mRNAs that possess complementary sequences, primarily
within their 3′UTR (Kirby et al., 2015; van den Berg et al., 2008).
Binding of miRNA to target mRNA induces either translational
inhibition or transcript degradation, culminating in decreased
expression of the protein encoded by the mRNA (Kirby et al.,
2015; Valinezhad Orang et al., 2014; Valencia-San et al., 2006).
A single miRNA molecule demonstrates the capacity to influence
multiple mRNA targets, typically those encoding proteins involved
in coordinated cellular pathways or biological functions (Zhang
and Chen, 2018; Ying et al., 2008). The intricate nature of
this biogenesis pathway, involving multiple enzymatic steps and
transport mechanisms, provides numerous potential points for
regulation, allowing for a dynamic control of miRNA expression
in response to various cellular signals and environmental cues
(Singh et al., 2020; Yan et al., 2025; Figure 2).

While the majority of miRNAs are generated through the
canonical Drosha-Dicer pathway, accumulating evidence has
identified non-canonical routes that bypass one or more processing
steps. These alternative pathways expand the regulatory potential
of the miRNA landscape and have particular relevance in contexts
like stress response, tissue-specific regulation, and exosomal sorting
(Miyoshi et al., 2010; Abdelfattah et al., 2014; Santovito and Weber,
2022). A prominent example is miR-451, which undergoes Drosha
processing to yield pre-miR-451, but bypasses Dicer cleavage

(Kretov et al., 2020; Yang and Lai, 2010). Instead, it is directly cleaved
by Argonaute 2 (Ago2), which also serves as its slicer and stabilizer.
This pathway reflects a Dicer-independent biogenesis mechanism
and appears to be conserved in erythropoiesis and skeletal
muscle differentiation, where miR-451 has known regulatory roles
(Kretov et al., 2020; Yang and Lai, 2010). Interestingly, miR-451 has
also been observed to be enriched in exosomes, possibly reflecting
distinct export preferences related to its non-canonical maturation
route (Kumari et al., 2020; Guduric-Fuchs et al., 2012).

Another example is miR-133a, which, although canonically
processed, is subject to additional levels of regulation through
promoter-specific expression, splicing variants, and clustered
transcription with miR-1 (Davis and Hata, 2009; Mitchelson and
Qin, 2015).Thesemechanismsmay influence not only its expression
levels but also its incorporation into exosomes, where it is frequently
detected following muscle injury or exercise.

Additional non-canonical pathways include mirtrons—miRNA
precursors that arise from spliced introns and bypass Drosha
cleavage. Although less studied in muscle tissue, their relevance
is increasing with the discovery of new intron-derived miRNAs
in muscle transcriptomic datasets (Hubé et al., 2017). Collectively,
non-canonical biogenesis pathways contribute to the complexity
of miRNA-mediated regulation and may partially explain the
preferential inclusion of certainmiRNAs into exosomes.Their study
is essential for understanding both miRNA functional diversity
and the selective packaging mechanisms behind intercellular
communication.

Following intracellular processing, a subset of mature miRNAs
is selectively packaged into exosomes—small extracellular vesicles
(30–150 nm in diameter) originating from the endosomal system.
This exosomal compartmentalization introduces an additional
regulatory layer in miRNA biology, enabling these molecules to
act not only within the originating cell but also as messengers in
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FIGURE 2
The initial step in miRNA biogenesis involves the transcription of
pri-miRNA, subsequently processed by the Drosha-DGCR8 complex
to form pre-miRNA. Following transport by Exportin-5 into the
cytoplasm, pre-miRNA is processed by the Dicer-TRBP complex into
mature miRNA, which is then incorporated into the RISC.

local and systemic communication (Han et al., 2022; Vishnoi and
Rani, 2022).

Exosome biogenesis begins with the inward budding of late
endosomal membranes to form multivesicular bodies (MVBs).
These MVBs either fuse with lysosomes for degradation or with the
plasma membrane, releasing their intraluminal vesicles as exosomes
into the extracellular environment (Han et al., 2022; Vishnoi and
Rani, 2022). miRNA sorting into exosomes is a non-random,
actively regulated process involving several RNA-binding proteins,
including hnRNPA2B1, YBX1, and SYNCRIP, which recognize
specific motifs on miRNAs to mediate their selective incorporation
(Corsi, 2023; Sun et al., 2023; Marocco, 2025). While the canonical
miRNA biogenesis pathway culminates in the cytoplasm with RISC
loading, these sorting mechanisms represent a branching fate for
mature miRNAs—those not engaged in intracellular repression may
instead be repurposed for extracellular delivery.

Upon secretion, exosomal miRNAs are taken up by recipient
cells via endocytosis, membrane fusion, or receptor-mediated
pathways (Wang et al., 2025; Liu et al., 2024). In skeletal muscle,
this intercellular delivery system allows myofibers, satellite cells,
fibroblasts, endothelial cells, and infiltrating immune cells to

communicate dynamically during development, regeneration, and
adaptation (Wang W. et al., 2022; Yue et al., 2020). Exosomes
released during exercise, injury, or disease contain miRNAs that
influence target cell behavior by modulating gene expression at
a distance, thereby contributing to systemic crosstalk between
muscle and remote tissues such as adipose, liver, and even brain
(Dong et al., 2024; Luo et al., 2024).

Functionally, exosomal miRNAs have been implicated in the
regulation of myogenesis, hypertrophy, atrophy, inflammation, and
mitochondrial metabolism. For instance, muscle-derived exosomes
carrying miR-1, miR-133a, and miR-206 have been shown to
influence both local and distal responses to training or injury
(Lombardo et al., 2024; Luo et al., 2024; Mytidou et al., 2021).
Their presence in circulation under physiological and pathological
conditions also makes them attractive candidates for non-invasive
biomarkers of muscle health.

By mediating horizontal transfer of regulatory information,
exosomal miRNAs expand the functional repertoire of skeletal
muscle as not only a contractile organ but also a secretory tissue.
This vesicle-based communication system represents a critical and
emerging frontier in muscle biology, with far-reaching implications
for diagnostics, therapeutics, and our understanding of tissue-level
coordination.

MicroRNAs and their exosomal forms
in skeletal muscle development and
adaptation

In skeletal muscle tissue, miRNAs exhibit pronounced
specificity, with select miRNAs showing high enrichment or
exclusive expression in muscle, collectively identified as myomiRs
(Singh et al., 2020; Horak et al., 2016; McCarthy, 2011). This tissue-
specific expression suggests that myomiRs play specialized roles in
regulating the unique characteristics and functions of muscle cells,
including their development, contraction, and metabolic properties
(Kovanda et al., 2014). Several critical myomiRs—including miR-
1, miR-133a, miR-133b, miR-206, miR-208a, miR-208b, miR-486,
and miR-499—have been identified and extensively characterized
(Singh et al., 2020). Other miRNAs, which are expressed both in
muscle and non-muscle tissues, play vital roles in skeletal muscle
biology by participating in a complex regulatory framework that
orchestrates muscle development and functionality (Güller and
Russell, 2010; Singh et al., 2020; Wang J. et al., 2018). Examples
of such miRNAs include miR-23, miR-24, and miR-181 (Zhang
and Chen, 2018). The existence of both specialized myomiRs and
more broadly expressed miRNAs within skeletal muscle indicates
a sophisticated regulatory system where both unique and general
mechanisms contribute to the precise control of gene expression in
this tissue (Singh et al., 2020; Nie et al., 2015; Soares, 2012).

Among the pivotal miRNAs in skeletal muscle development,
miR-1 and miR-133 are co-transcribed from shared genomic
loci and execute different, at times antagonistic, functions during
the course of myogenesis (Ju et al., 2015; Mizbani, 2015).
The promotion of myoblast differentiation by miR-1 occurs
through its targeting of histone deacetylase 4 (HDAC4), a
transcriptional repressor that inhibits the expression of muscle-
specific genes. Additionally, miR-1 can inhibit the proliferation
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of cardiomyocytes by targeting the transcription factor Hand2
(Ju et al., 2015; Luo et al., 2019; Mitchelson and Qin, 2015;
Zhang et al., 2015). miR-1 plays a role in a negative feedback
loop regulating myocyte differentiation, achieved by its targeting
of serum response factor (SRF) (Ju et al., 2015; Coletti et al.,
2016). miR-1 influences metabolic flexibility within skeletal muscle
beyond differentiation, particularly through the regulation of
pyruvate metabolic pathways (Ismaeel et al., 2024). miR-1 has
been identified to inhibit Telokin expression in cardiac muscle,
where Telokin functions as a smooth muscle-restricted suppressor
ofmyosin light chain 2 (MLC2) phosphorylation (Heidersbach et al.,
2013). Satellite cell differentiation is facilitated by miR-1 via the
reduction of their proliferation and the modulation of Pax7, a vital
regulator of satellite cell self-renewal (Chen et al., 2010). miR-
1 exhibits increased expression during satellite cell differentiation
and diminished expression following muscle injury (Chen et al.,
2010; Friedrichs et al., 2011). Acute endurance exercise induces a
notable elevation in miR-1 levels (Safdar et al., 2009). The fact that
miR-1 and miR-133, with their contrasting roles, are transcribed
together suggests amechanism for ensuring a balanced and precisely
controlled progression through different stages of myogenesis
(Ju et al., 2015; Koutsoulidou et al., 2011; Nguyen et al., 2023).

Contrary to miR-1, miR-133 chiefly promotes the proliferation
of myoblasts by downregulating SRF, a vital regulator of muscle
cell differentiation. Through this interaction, a negative feedback
loop is established as SRF promotes miR-133a expression, leading
to amplified repression of SRF (Ju et al., 2015; Yu et al., 2014;
Papaefthymiou, 2016). miR-133, while co-transcribed alongside
miR-1, paradoxically inhibits the differentiation process of
myoblasts (Deng et al., 2011). Muscle fiber type specification is
regulated in part by the miR-133 family, encompassing miR-133a
and miR-133b (Zhang and Chen, 2018). By targeting insulin-
like growth factor 1 receptor (IGF-1R), miR-133 potentially
regulates muscle growth by modulating the IGF-1 signaling
pathway (Huang et al., 2011). By targeting Prdm16, miR-133 is
implicated in governing the brown adipose differentiation pathway
of skeletal muscle satellite cells. It directly and negatively regulates
NFATc4, a transcription factor involved in various cellular processes
(Xie et al., 2016; Yin et al., 2013). In bronchial smoothmuscles, miR-
133a negatively regulates RhoA, a small GTPase involved in cell
contraction. Furthermore, miR-133 inhibits Runx2, a transcription
factor crucial for bone formation. Its expression is downregulated
by nicotine, leading to the upregulation of TGF-β1 and TGF-
βRII (Xie et al., 2016; Pechkovsky et al., 2010; Chen et al., 2015).
miR-133 is abundantly expressed during muscle development
and is part of bicistronic clusters with both miR-1 and miR-206
(Ju et al., 2015; Crocco et al., 2024). Acute endurance exercise
induces an upregulation of miR-133a levels, mirroring the increase
seen in miR-1 (Safdar et al., 2009; Nie et al., 2016). miR-133a and
miR-133b, found within exosomes derived from muscle, likely
contribute to communication mechanisms in the local skeletal
muscle environment (Mytidou et al., 2021).

Another critical myomiR in skeletal muscle development is
miR-206, which exhibits specific expression in skeletal muscle
and plays a significant role in promoting myoblast differentiation
(Ma et al., 2015). miR-206 achieves this by repressing the expression
of connexin 43 (Cx43), a gap junction protein that reduces electrical
coupling between muscle fibers, thereby facilitating terminal

differentiation (Ju et al., 2015; Azzimato, 2014; Li et al., 2017).
The targeting of critical genes like DNA polymerase α1 (Polα1),
Pax7, follistatin-like 1 (Fstl1), and utrophin (Utrn) contributes to
the inhibition of proliferation and the facilitation of differentiation
in muscle cells. miR-206 is tightly regulated by MyoD and
MyoG, transcription factors that are critical to the progression of
myogenesis (Ju et al., 2015; Rosenberg et al., 2006; Megeney and
Rudnicki, 1995; Kablar et al., 2003). miR-206 holds a key function in
skeletalmuscle regeneration subsequent to injury, extending beyond
its developmental role. By promoting differentiation and fusion, it
drives the maturation of satellite cells, the endogenous muscle stem
cells, intomyofibers (Liu et al., 2012).miR-206 promotesmyogenesis
by downregulating a set of inhibitory regulators, notably Pax7,
Notch3, and Igfbp5 (Chen et al., 2010). miR-206 has been shown to
play a protective role in Duchenne muscular dystrophy (DMD) by
reducing the rate at which the disease progresses. The expression of
miR-206 is elevated in satellite cells subsequent to muscle injury and
continues to increase during the progression of Duchenne muscular
dystrophy (Ma et al., 2015; Gr et al., 2009; Bulaklak, 2017). miR-
206 is involved in the innervation of myofibers by regulating the
synthesis of Cx43 (Mytidou et al., 2021). Parallel to miR-1, miR-
206 aids satellite cell differentiation by restricting their proliferation
and targeting Pax7, with upregulated expression in differentiation
phases and downregulation following muscle injury (Chen et al.,
2010; Aráne et al., 2021). Interestingly, miR-206 can exhibit a
dual role in regulating utrophin A expression, oscillating between
direct repression and activation depending on the cellular context
(Amirouche et al., 2014). It exerts its effects by modulating multiple
mRNAs and proteins that contribute to favorable adaptations within
dystrophic muscle tissue (Amirouche et al., 2017). The multifaceted
role of miR-206 underscores its importance in maintaining muscle
tissue throughout the lifespan, contributing to both development
and repair processes.

miR-486 is another significant muscle-enriched miRNA
that participates in myogenesis signaling networks (Zhang and
Chen, 2018). Its expression, modulated by important myogenic
transcription factors like MRTF-A, SRF, and MyoD, highlights its
integration within the overarching transcriptional mechanisms
of muscle development. miR-486 facilitates the activation of the
phosphoinositide-3-kinase (PI3K)/Akt pathway, fundamental for
muscle growth and homeostasis, by targeting and downregulating its
suppressors, phosphatase and tensin homolog (PTEN) and Foxo1a
(Small et al., 2010; Qin et al., 2013; Qiu et al., 2024; Xu et al.,
2012). The inhibition of PTEN by miR-486 is a key mechanism
underlying its vital contribution to cardiomyocyte survival. In
muscular dystrophy, lowered miR-486 expression is evident, but
its transgenic elevation in animal models exhibits the potential to
reverse aspects of the dystrophic phenotype. Furthermore, miR-486
plays a role in regulating systemic inflammation by influencing the
levels of circulating cytokines and chemokines (Wang R. et al., 2022;
Sun et al., 2019; Zhu et al., 2019). Interestingly, circulating levels
of miR-486 are downregulated in response to exercise (Aoi et al.,
2013). Regulated by estradiol, miR-486 may be a contributing
factor to the observed sex-based distinctions in cancer-associated
muscle pathologies. miR-486 supports myotube development
during myoblast differentiation by inhibiting myocardin-related
transcription factor A (MRTF-A) expression (Wang et al., 2021;
Olivieri et al., 2014; Nielsen et al., 2014). miR-486 is vital for
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FIGURE 3
Scientific illustration depicting the major roles of miRNAs in skeletal muscle, including their involvement in tissue-specific expression, development,
regeneration, and physiological regulation.

sustaining normal muscular function and limits the expression
of transcripts linked to dystrophic pathophysiology (Samani et al.,
2022). The regulation of miR-486 by multiple key transcription
factors underscores its central role inmuscle growth and adaptation,
potentially linking mechanical stimuli and developmental signals to
downstream effects on muscle mass and function.

Other miRNAs, including miR-221 and miR-222, are
implicated in skeletal muscle formation, with their suppressed
expression during myoblast-to-myocyte transition highlighting
their involvement in stage-specific progression (Cardinali et al.,
2009). In skeletal muscle, aging is associated with decreased
miR-451 expression, whereas its upregulation characterizes the
differentiation of human myoblasts (Kirby et al., 2015; Munk et al.,
2019; Figure 3; Table 2).

Current limitations and future
direction

Despite significant advances, several unresolved challenges
hinder the translation of microRNA and exosomal microRNA
research into clinical-grade therapeutics for skeletal muscle-related
disorders.

One major obstacle lies in the isolation and purification of
exosomes.Most protocols, including differential ultracentrifugation,
yield heterogeneous vesicle populations that include microvesicles,
apoptotic bodies, and protein aggregates. This complicates
the attribution of function to exosome-specific miRNA
cargo. While newer methods—such as size-exclusion
chromatography, immunoaffinity-based capture, and microfluidic
technologies—offer improved precision, there is currently no
universally accepted standard, limiting reproducibility and
inter-study comparison (Yang and Wu, 2018; Li et al., 2019).

Another critical challenge is the quantification and
normalization of exosomal miRNAs. Techniques such as RT-
qPCR, microarrays, and small RNA-sequencing are commonly
used, but each introduces potential bias, sensitivity variation,
and lacks reliable extracellular RNA reference controls.
Distinguishing between truly exosome-encapsulated miRNAs
and free-circulating or protein-bound miRNAs remains an
experimental challenge requiring rigorous controls (Li et al., 2015;
Moldovan et al., 2014; Siddika et al., 2020).

Validating the biological function of exosomal miRNAs in
skeletal muscle is also technically demanding. Tracking vesicle
uptake by target cells and demonstrating causal regulatory effects
requires a combination of fluorescent labeling, loss- or gain-of-
function experiments, and reporter assays—approaches that are
rarely applied in concert (Boudna et al., 2024; Gupta et al., 2021).
Even when uptake is shown, identifying which specific miRNA(s)
mediate the observed effect remains a bottleneck, due to the
multiplexed nature of exosomal cargo.

Moreover, delivering therapeutic miRNAs or antagomiRs in a
stable, muscle-targeted, and immunogenically safe manner remains
unresolved. While lipid nanoparticles, engineered exosomes, and
viral vectors are under development, concerns over off-target
effects, toxicity, immunogenicity, and regulatory hurdles remain
(Messios et al., 2025; Kim et al., 2024; Gil-Cabrerizo et al., 2024).

From a translational perspective, a lack of human-relevant
models poses another barrier. Most functional data are derived
from rodents, which differ significantly from humans in muscle
composition, metabolism, and miRNA expression patterns. In vitro
studies often exclude the mechanical and paracrine complexity of
the in vivo muscle niche.

Emerging technologies may help bridge these gaps. Single-
vesicle profiling platforms (e.g., ExoView, nano-flow cytometry)
are improving the resolution of cargo analysis. Advances in
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TABLE 2 Key MicroRNAs and exosomal miRNAs in Skeletal Muscle Development.

miRNA Target Gene(s) Function(s) Reference

miR-1 HDAC4, SRF, Hand2, Telokin, Pax7 Promotes myoblast differentiation, regulates proliferation,
involved in metabolic flexibility, represses Telokin in cardiac

muscle, facilitates satellite cell differentiation

Ju et al. (2015)

miR-133 SRF, nPTB, IGF-1R, Prdm16, NFATc4, RhoA, Runx2 Promotes myoblast proliferation, inhibits differentiation,
involved in muscle fiber type determination, influences IGF-1

signaling, involved in brown adipose determination

Ju et al. (2015)

miR-206 Cx43, Polα1, Pax7, Fstl1, Utrn, Notch3, Igfbp5 Promotes myoblast differentiation, suppresses proliferation,
promotes muscle regeneration, slows DMD progression,

involved in innervation

Ju et al. (2015)

miR-486 PTEN, Foxo1a, MRTF-A Enhances PI3K/Akt signaling, essential for cardiomyocyte
survival, reduced in muscular dystrophy, regulates

inflammation, influences sex-specific muscle defects

Ju et al. (2015)

miR-221/222 — Downregulated during myogenesis, role in myoblast to
myocyte progression

Cardinali et al. (2009)

miR-451 — Decreases with age, increases during myoblast differentiation Kirby et al. (2015)

bioinformatics and multi-omics integration are enabling better
mapping of miRNA-mRNA interactions and network regulation.
Longitudinal clinical studies using miRNA panels as biomarkers are
beginning to establish correlations with muscle health, aging, and
therapeutic response.

Looking ahead, promising directions include.

• Development of synthetic or engineered miRNAs tailored to
skeletal muscle disease targets

• Exploration of biomaterials (e.g., hydrogels, nanofibers) for
localized delivery

• Investigation of miRNAs mediating muscle-organ crosstalk,
particularly for metabolic disorders

• Sex- and age-specific miRNA profiling to uncover differential
mechanisms and treatment opportunities

With continued interdisciplinary collaboration and technical
innovation, miRNAs—especially in their exosomal form—hold
significant potential for shaping the future of personalized and
regenerative muscle medicine.

Conclusion

This review emphasizes the evolving recognition of both
intracellular and exosomal miRNAs as key regulators in skeletal
muscle biology. From controlling fundamental signaling pathways
to mediating intercellular communication, these small RNAs
influence development, adaptation, and disease processes. Our
perspective is that future progress will depend not only on refining
molecular tools and delivery systems but also on deepening our
systems-level understanding of miRNA networks in physiological
and pathological contexts. As such, miRNAs—particularly in
their exosomal form—represent both a scientific frontier and
a translational opportunity in muscle research. In conclusion,
intracellular and exosomal miRNAs represent a powerful regulatory
layer in skeletal muscle physiology. Their roles in myogenesis,

regeneration, metabolism, and disease response highlight their
translational promise. However, realizing this potential requires
resolving key experimental and therapeutic challenges. Continued
integration of systems biology, emerging RNA technologies, and
refined delivery platforms will be essential to fully unlock their
value as biomarkers and clinical tools in skeletal muscle-related
disorders.
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