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Matrisome remodeling in the
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for molecular diagnostics
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Hypertrophic cardiomyopathy (HCM) is an inherited cardiac disorder
characterized by left ventricular thickening and extracellular matrix (ECM)
remodeling, often manifested as increased interstitial fibrosis that impair
muscle function. The clinical and pathological presentations, as well as the
genetic background, vary among patients, making HCM a heterogeneous
disease with diverse clinical phenotyping and responses to treatment. In
HCM, the myocardium exhibits an increased secretion of inflammatory
mediators and ECM proteins, indicating a stress response to myocardial
pathogenesis. The production of these ECM proteins is regulated by the
interaction between cardiomyocytes and the surrounding stroma, including
cardiac fibroblasts, immune cells, and microvasculature. This crosstalk defines
the responsiveness to injury and the progression of the disease. In this review,
we aim to dissect the composition of myocardial ECM in relation to HCM
development, highlighting the key cellular contributions to ECM remodeling
and identifying potential molecular targets for personalized diagnostics and
therapeutics.

KEYWORDS

HCM, ECM, matrisome, inflammation, secretome

1 Introduction

A distinctive hallmark of Hypertrophic Cardiomyopathy (HCM) is the thickening
of the left ventricle accompanied by ECM remodeling, typically characterized by
increased interstitial fibrosis (Maron, 2002; Marian and Braunwald, 2017). The disease
exhibits heterogeneity in clinical and pathological presentations, as well as in genetic
backgrounds, resulting in diverse responses to treatment (Marian and Braunwald, 2017;
Coats et al., 2018). This heterogeneity can be attributed to the highly variable genetic
and epigenetic etiology that triggers pathological mechanisms extending beyond the
sarcomere, and further beyond the myocardium (Chou and Chin, 2021; Repetti et al.,
2021). The ECM constitutes an intricate network of proteins essential for preserving
the structural integrity and functional homeostasis of cardiac tissue under various
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stimuli in both physiological and pathological conditions (Hynes
andNaba, 2012; Naba et al., 2012).This dynamic entity continuously
undergoes remodeling to adapt to the changing demands of the
heart in health and disease (Rienks et al., 2014). Maintaining a
balance in collagen synthesis and degradation, protease activity,
and the presence of fibulins, cytokines, and chemokines is critical
for preserving cardiac function (Rienks et al., 2014; Fan et al.,
2012). Therefore, comprehensive understanding of various
interactions among these ECM components in physiological
and pathological states is imperative for the development
of targeted therapies aimed at mitigating adverse
cardiac remodeling.

Currently, there are approximately 300 proteins recognized as
ECM proteins (Matrisome) (Hynes and Naba, 2012), comprising
collagens, proteoglycans, elastin, and glycoproteins (Figure 1). Each
of these proteins possesses unique physical and biochemical
characteristics, and their distribution is controlled via factors
contributing to ECM remodeling, such as proteases, and molecules
facilitating cell-ECM interaction, such as integrins, syndecans,
and other receptors (Rienks et al., 2014; Fan et al., 2012).
Maintaining the balance of these proteins within myocardial tissue
is essential for responding to both physiological and pathological
signals [Figure 2].

2 Myocardial ECM in physiological
condition and HCM

2.1 Collagens

Collagens are themost abundant andwell-studied ECMproteins
in the heart (Eghbali and Weber, 1990; Ricard-Blum, 2011). They
are deposited in the ECM and play structural roles contributing to
mechanical properties, organization, and shape of tissues (Eghbali
and Weber, 1990; Ricard-Blum, 2011; Villarreal and Dillmann,
1992). They interact with cells via several receptor families and
regulate their proliferation, migration, and differentiation (Ricard-
Blum, 2011).

2.1.1 Fibril-forming collagens
Collagen I, the most abundant type of collagen in the heart and

provides tensile strength to the myocardium as a fundamental part
of the fibrous tissue in the cardiac interstitium (Ricard-Blum, 2011;
Lombardi et al., 2003). Collagen III: often found in association with
collagen type I and contributes to the elasticity of the myocardium
(Ricard-Blum, 2011; Nikolov and Popovski, 2022). Collagen V: plays
a role in regulating the fibril diameter and assembly of collagen
fibers (Yokota et al., 2020). Though other collagen components have
not been primarily found in the myocardium, it's worth noting
that collagen composition in various tissues can be complex, and
in certain pathological conditions or specific developmental stages
(Ricard-Blum, 2011; Lombardi et al., 2003), the presence of other
collagens in the myocardium might be investigated.

2.1.2 Basement membrane (BM)
Collagen IV is a major component of the BM and represents

a type of network forming collagens (Bruggink et al., 2007). It
provides support and separates different tissue layers within the

heart (Hynes and Naba, 2012; Ricard-Blum, 2011). Under normal
physiological conditions, collagen serves to offer tensile strength,
supporting the structural framework ofmyocytes,myofiber bundles,
and sheets (Bruggink et al., 2007). This support is crucial for
maintaining the normal functioning of the heart, and various cardiac
disorders are linked to disturbances in the collagen matrix, such as
its accumulation, depletion, or restructuring (Bruggink et al., 2007).

Several recent studies have highlighted the alteration of
myocardial collagen uponmyocardial hypertrophy, particularlywith
the hallmark of an increased interstitial fibrosis, which is considered
an early manifestation of the diseases and mainly composed of
fibrous collagen, influencing the stiffness of the myocardium,
hindering the proper function of the heart (Ho et al., 2010;Díez et al.,
2020). Alterations in myocardial collagen in HCM have been
reported in several studies, with particular emphasis on collagen I
and III, not only in the myocardium but further in the circulation
as byproducts of collagen turnover, such as PIIINP (collagen III
synthesis), PICP, PINP (collagen I synthesis) and ICTP (collagen
I degradation), which both showed relevance to HCM phenotype,
however data is not yet conclusive (Nikolov and Popovski, 2022;
Ellims et al., 2014). Other collagens were also examined in
HCM patients; collagen IV has showed alterations in expression
pattern in HCM with a discontinuous and destroyed basal lamina
(Bruggink et al., 2007; Ibrahim et al., 2020a), and exhibited an
increased serum level, in correlation to fractional shortening and
end-diastolic volume (Bruggink et al., 2007). Collagen V was
recently reported to be downregulated in cardiac fibroblasts (CFs)
in HCM (Ibrahim et al., 2022a), suggested to regulate the size of
heart scars in an integrin-dependent manner (Yokota et al., 2020).
However, collagen V protein has been reported to increase in HCM
tissue specimens, alongside collagen I and VI (Previs et al., 2022).

Further, imaging techniques including cardiac magnetic
resonance imaging (CMR), Cardiac CT scan, and Echocardiography
have been able to quantify collagen content and assess myocardial
fibrosis in HCM patients (Ho et al., 2010; Piers et al., 2013; Marwick
and Narula, 2010), of which studies aimed to link CMR data to
histological data for a more accurate representation of interstitial
fibrosis in HCM patients (Diao et al., 2016; Espeland et al., 2018;
Haaf et al., 2016). Increased collagen turnover and myocardial
fibrosis and Left Ventricular Stiffness are associated with diastolic
dysfunction in HCM (Ho et al., 2010). Enhanced collagen turnover
contributes to increased left ventricular stiffness, impacting the
functional capacity of the heart in HCM (Lombardi et al., 2003).
The extent of collagen turnover and fibrosis is associated with the
severity of symptoms in HCM, including heart failure symptoms
(Olivotto et al., 2008). Of note, myocardial fibrosis resulting from
altered collagen turnover is linked to the occurrence of arrhythmias
in HCM patients (O’Hanlon et al., 2010). Indeed, collagen
turnover in the myocardium involves a dynamic balance between
collagen synthesis and degradation processes (Lombardi et al.,
2003). Several factors and signaling pathways contribute to
the control of collagen turnover, directly or indirectly, in the
myocardium, such as Transforming Growth Factor-β (TGF-
β) Signaling, Matrix Metalloproteinases (MMPs) and Tissue
Inhibitors of Metalloproteinases (TIMPs), Angiotensin II Signaling,
inflammation, other ECM proteins and other understudied factors
such as miRNAs. Understanding the intricate regulation of
collagen turnover in the myocardium is crucial for developing
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FIGURE 1
A schematic diagram showing the different components of the ECM in the myocardium. Abbreviations: MMP, Matrix Metalloproteases; ADAM,
disintegrin and metalloproteinase; TGF-β, transforming growth factor beta; TNF, tumor necrosis factor; CCL, chemokine ligands; CXCL, CXC subfamily
of chemokines; and FGF, fibroblast growth factor.

targeted therapies to modulate fibrosis and prevent adverse cardiac
remodeling (Maron, 2002).

2.2 Proteoglycans

Proteoglycans are complex molecules composed of a core
protein and long chains of glycosaminoglycans (GAGs) (Hynes
and Naba, 2012; Rienks et al., 2014). They play essential roles
in the ECM, contributing to tissue structure, cell signaling, and
various physiological processes. In the myocardium, proteoglycans
are crucial for maintaining the structural integrity of the cardiac
ECM and influencing cell behavior (Hynes and Naba, 2012;
Wang et al., 2019). The expression of proteoglycans in the
myocardium is tightly regulated and can be influenced by various
physiological and pathological conditions (Wang et al., 2019;
Barallobre-Barreiro et al., 2021). In cardiac diseases such as
myocardial infarction or heart failure, alterations in proteoglycan
expression and remodeling of the ECM occur, impacting
cardiac function. While not specific to HCM, proteoglycans

expression has been reported to change in the aging heart,
and some of the principles may apply to cardiac diseases
(Christensen et al., 2019; Silva et al., 2020).

Hyalectans: Versican: a large chondroitin sulfate proteoglycan
(CSPG) involved in tissue morphogenesis and inflammation
(Sasi et al., 2023). It has been identified in the heart, where it
influences cell adhesion and migration and has been known to be
the major CSPG in the heart (Barallobre-Barreiro et al., 2021). It
has recently been reported that versican is expressed after induction
of pressure overload in mice, preceding collagen accumulation,
particularly in collagen expressing CFs in transforming growth
factor beta-dependent pathway (Sasi et al., 2023). Further, versican
appeared to increase in the heart of HCM patients in conjunction
with collagen increase, which suggests an involvement in the
cardiac fibrosis (Previs et al., 2022; Sasi et al., 2023). Aggrecan:
a large proteoglycan that forms giant hydrated aggregates with
hyaluronan in the ECM is present in the heart and present in
cardiac jelly, developing heart valves, and blood vessels during
cardiovascular development, and contributes to the resilience
and mechanical loading of the tissue (Krawetz et al., 2022).
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FIGURE 2
A schematic diagram demonstrating the possible alterations in different components of myocardial ECM in association with muscle hypertrophy. (A)
The scheme points out to the normal status of the myocardium where cardiomyocytes are physiological interacting with the neighboring cells such as
cardiac fibroblasts and immune cells, with intact basement membrane and receptors landscape. (B) The scheme highlights the pathological alterations
associated with cardiomyocytes hypertrophy, such as the activation of cardiac fibroblasts that drive ECM deposition and turnover, along with the
infiltration of immune cells, inducing inflammatory response.

Mice with mutant aggrecan have been reported to have HCM
(Koch et al., 2020). Further, Wistar rats undergone aortic banding,
exhibited an increase in aggrecan mRNA, along with versican
and other proteases (Vistnes et al., 2014). Aggrecan has also
been reported for its overexpression in the aneurysmal aortic
walls, increasing interlamellar swelling pressure, and disorganizing
the aortic wall’s microstructure (Barallobre-Barreiro et al., 2020),
which is has recently been reported to be associated with
HCM (Ibrahim et al., 2022b). BM proteoglycans: Perlecan: A
heparan sulfate proteoglycan, found in the BM and participates
in cell-matrix interactions and helps regulate growth factor
activities (Sasse et al., 2008; Johnson et al., 2024). Altered
expression of Perlecan has been observed in cardiac diseases,
including HCM, where it may contribute to abnormal cell-matrix
interactions and affect growth factor signaling (Johnson et al.,
2024). Perlecan null mice, had a severe effect on laminin and
collagen IV, components of BM, compared to controls, and
further exhibited a more severe dysfunction upon myocardial
infarction, due to impaired BM composition and cardiomyocytes
crosstalk with surrounding stroma and ECM (Sasse et al., 2008).
Of interest, human pluripotent stem cell-derived cardiomyocytes
(hPSC-CMs) cultured on a Perlecan substrate have exhibited
hypertrophy and show heightened nucleation, characteristic of
hypertrophic growth (Johnson et al., 2024). Interestingly, Perlecan
appears to exert an opposing influence compared to Agrin,
fostering cellularmaturation instead of hyperplasia and proliferation
(Johnson et al., 2024).

Cell membrane proteoglycans: Syndecan: Syndecans are a
family of transmembrane heparan sulfate proteoglycans that play
important roles in the myocardium, contributing to various cellular

processes and tissue functions, such as Cell-ECM interaction, signal
transduction, regulating CMs function, angiogenesis and tissue
repair and remodeling (Lunde et al., 2016). Syndecans, particularly
syndecan-4, are also involved in cardiac development, where
they regulate signaling pathways involved in heart development,
including Wnt, FGF, and BMP signaling (Mathiesen et al., 2019). A
recent investigation into syndecan-4 underscored its significance
in triggering the Ca2+-dependent calcineurin-NFAT signaling
pathway, leading to hypertrophic remodeling and dysfunction in
CMs under pressure overload conditions (Mathiesen et al., 2019;
Lunde et al., 2022). Additionally, syndecan-4 has been reported
to mediate muscle LIM protein nuclear translocation in CMs,
a mechanism associated to HCM and dilated cardiomyopathy
(DCM) (Mathiesen et al., 2019). Further, mice lacking syndecan-
4 exhibited less collagen cross linking and fibrosis (Herum et al.,
2015; Finsen et al., 2011), and further exhibited diminished
capillary density, reduced cardiomyocyte size, and deteriorated
left ventricular cardiac function following transverse aortic
constriction (Li et al., 2017). Further, Syndecan‐4 was found to
bind to osteopontin in LV and CFs protecting over deposition
of collagen fibers (Herum et al., 2020). Interestingly, serum
syndecan-4 has been shown potential as a new diagnostic
and prognostic biomarker for LV remodeling in failing hearts
(Takahashi et al., 2011).

Small Leucine Rich proteoglycans: Decorin is a small leucine-
rich proteoglycan is expressed in the heart and is involved in
collagen fibrillogenesis and interacts with various growth factors
(Merline et al., 2009). Decorin has been suggested to induce
cardiac hypertrophy by regulating the CaMKII/MEF-2 signaling
pathway (Yang et al., 2021). However, other reports showed that
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Decorin overexpression can inhibit hypertension-induced cardiac
fibrosis and hypertrophy and improved cardiac function (Yan et al.,
2009), and can further inhibit TGF-β pathway and its pro-
fibrotic effects on the failing human heart (Yan et al., 2009;
Jahanyar et al., 2007), which makes it a potential candidate in HCM
pathogenesis. Lumican (LUM) is a keratan sulfate small leucine-
rich proteoglycan (SLRP) localized to the ECM, and known to
regulate collagen fibrillogenesis in connective tissues, e.g., cornea,
tendon and skin (Nikitovic et al., 2008). LUM is abundant in fibrotic
tissues including the thickened intima of human atherosclerotic
coronary arteries and is present in the developing myocardium
(Mohammadzadeh et al., 2019; Hultgårdh-Nilsson et al., 2015).
It has previously shown that LUM levels are increased in hearts
of mice and patients with heart failure, via mediation cardiac
remodeling, fibrosis, and inflammation (Mohammadzadeh et al.,
2019; Mohammadzadeh et al., 2020), and accumulates with collagen
fibers during HCM (Rixon et al., 2023). Proteomic analysis of
myocardial specimens of HCM patients has shown that LUM is
upregulated, correlating with the left atrial area myocardial fibrosis
and the presence of a pathogenic sarcomere mutation (Coats et al.,
2018), however this expression is yet debatable whether it could have
a cardio-protective function (Guo et al., 2023).

2.3 Glycoproteins

Fibronectin (Fn) is a glycoprotein found in the ECM of tissues
and plays a crucial role in various cellular processes, such as
cell adhesion, migration, and signaling (Früh et al., 2015). In
the myocardium, Fn contributes to the structural integrity of the
ECM and participates in the regulation of cardiac development,
remodeling, and repair (Talman and Ruskoaho, 2016). During
embryonic development, Fn is expressed in the developing heart,
where it contributes to the formation of the cardiac ECM (Jallerat
and Feinberg, 2020). In adult myocardium, Fn is present in the
ECM of the normal adult myocardium, where it forms a network
that interacts with other ECM components, including collagen and
proteoglycans (Chute et al., 2019). It further serves as a substrate
for cell adhesion, allowing cells to attach and interact with the
ECM via integrins and BM proteins (Farhadian et al., 1996). In
response to cardiac injury, Fn expression can be upregulated in
the myocardium in association with collagen deposition and TGF-
beta 1 signaling (Villarreal and Dillmann, 1992; Wi et al., 1991).
During myocardial fibrosis, there may be an excessive deposition
of Fn as part of the fibrotic response (Piek et al., 2016). It has
been reported that Fn contributes to pathological cardiomyocyte
hypertrophy in vitro and in vivo via Nuclear Factor of Activated
T cells activation (Konstandin et al., 2013) or via integrin beta 1-
dependent activation (Chen et al., 2005). Further, Fn signaling is
thought to stimulate BNP secretion, a gold standard indicator of
HCM and cardiac fibrosis (Hasegawa et al., 1993), accompanied by
hypertrophic responses in vitro (Ogawa et al., 2002). Of interest,
circulating levels of fibronectin have been reported to be reduced
in patients with HCM (Fucikova et al., 2016; Moretti et al., 2007),
which raises the question of whether Fn in the circulation correlates
to the myocardial expression in HCM.

Laminin (LN) is an essential component of the BM providing
the integrity and function of CMs and blood vessels within

the heart (Oliviéro et al.). It also contributes to the structural
framework of the myocardium, specifically in anchoring CMs to
the ECM, facilitating cell-to-cell communication, and contributing
to the overall mechanical stability for cardiac tissues homeostasis
(Oliviéro et al., 2000; Schwach and Passier, 2019). In hypertrophied
CMs, LN was thought to contribute to alterations in sarcolemmal
properties (Oliviéro et al., 2000), and its deficiency can lead to
malformation in the myocardial microvasculature and subsequent
ischemia, represented in elevated levels of hypoxia-inducible factor
1α (Hif1α) and vascular endothelial growth factor A (VEGFA)
transcripts (Wang et al., 2006). Of note, mutation in the laminin
alpha4 chain results in an abnormal myocardial ECM and
subsequent muscle hypertrophy (Wang et al., 2006).

Fibulins (FBLNs) are a family of glycoproteins involved in
ECM assembly and stabilization in different biological systems
(Timpl et al., 2003). The widespread distribution of FBLNs
correlates with their broad binding repertoire for fibronectin,
collagens, BM proteins, elastin and proteoglycans (Timpl et al.,
2003; Argraves et al., 2003). FBLN 1 and 2 are highly expressed
in migratory cardiac mesenchymal during cardiac valvular septal
formation (Argraves et al., 2003; Cooley et al., 2008), which dragged
attention to their role in cardiac development and further in
pathological conditions such as HCM. While research on FBLNs
in HCM is not extensive, recent reports indicated that FBLN2
plays an essential role in Ang II-induced TGF-β signaling and
subsequent myocardial fibrosis (Khan et al., 2016). FBLN4 was
reported to be crucial for elastic fiber formation (Halabi et al.,
2017), and mutations in the FBLN4 gene have been associated with
aortic aneurysms and dissections (Loeys et al., 2005). FBLN5 is
also involved in elastic fiber assembly and is expressed in various
tissues, including the heart (Chapman et al., 2010; Wang et al.,
2005). Knowledge on FBLN5 in the context of HCM specifically is
limited, nonetheless, its role in ECMmaintenance suggests potential
implications for cardiac remodeling (McLaughlin et al., 2007). Of
interest, we recently reported that CF-associated transcriptomics
signature comprised upregulation of FBLN1 and FBLN5 genes,
which was further confirmed in the tissues of HCM patients
(Ibrahim et al., 2020a). We further reported that FBLN2, which has
common binding partners with FBLN1 and FBLN5, is upregulated
in the CMs and the circulation of HCM patients, however, protein
expression in CFs did not significantly change; an observation that
was further confirmed by our generated transcriptome signature of
HCM-CFs (Ibrahim et al., 2020a). Further, it has been suggested
that FBLN5 modulate TGF-β signaling, a pathway implicated in
tissue fibrosis and remodeling (Nakasaki et al., 2015), hallmarks of
HCM. It has also been reported that FBLNs 1, 2 and 5 are reduced
in the aorta of HCM patients, in association with an increase in
aortic stiffness, which introduce FBLNs as targets for cardiac and
extra-cardiac tissues (Ibrahim et al., 2022b).

Periostin is amember of the glycoprotein family (Stansfield et al.,
2009). Studies have indicated the significant involvement of
periostin in fostering collagen fibrogenesis and promoting a
fibroblastic lineage during the maturation of atrioventricular
valves in cardiac development (Norris et al., 2008; Norris et al.,
2009). While its expression remains low in adult hearts, periostin
is crucial for maintaining the biomechanical characteristics of
mature myocardium (Kühn et al., 2007). Periostin has been
shown to correlate and contribute to cardiac remodeling and
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fibrosis in overloaded hearts and heart failure (Zhao et al., 2014;
Ioakeimidis et al., 2023). Interestingly, periostin has been shown to
mediate the AngII via ERK1/2 and TGF-β1/Smad signaling (Li et al.,
2011). Nevertheless, some reports showed that periostin might be
involved in the transdifferentiation of CMs leading to cardiac repair
(Kühn et al., 2007). The distribution and expression patterns of
periostin, which correlated with the degree of myocardial fibrosis,
could serve as a potential biomarker for cardiac remodeling in
patients with HCM heart failure (Zhao et al., 2014).

Tenascin-C (TNC) is a glycoprotein categorized as a
matricellular protein and exhibits transient expression patterns at
various crucial stages of embryonic heart development (Imanaka-
Yoshida et al., 2020; Tucker and Chiquet-Ehrismann, 2009).
In the normal adult heart, its presence is minimal, yet under
pathological conditions linked to inflammation, such as myocardial
infarction, hypertensive cardiac fibrosis, myocarditis, dilated
cardiomyopathy, and Kawasaki disease, TNC is re-expressed in a
spatially and temporally confined manner (Imanaka-Yoshida et al.,
2020; Tucker and Chiquet-Ehrismann, 2009). It has recently been
reported that upon myocardial infarction, interstitial cells located
in the border zone begin producing TNC serving to weaken the
adhesion between surviving CMs and ECM, potentially facilitating
the reorganization of the tissue (Imanaka-Yoshida et al., 2001).
TNC has also demonstrated the ability to induce inflammatory
reactions by hastening the migration of macrophages and the
production of proinflammatory and profibrotic cytokines through
the integrin αVβ3/FAK-Src/NF-κB pathway, leading to an increased
fibrosis (Shimojo et al., 2015). TNC has been reported to prompt
cardiac myocytes to enhance the activation of genes linked to
hypertrophy and MMPs (Podesser et al., 2018). Conversely,
removing TNC could lessen the inflammatory and fibrotic changes,
as well as hypertrophy, and diminish contractile dysfunction
in hearts undergoing TAC (Podesser et al., 2018). Of interest,
serum TNC has shown a prognostic power in HCM patients
(Kitaoka et al., 2012).

2.4 Proteases and their inhibitors: MMPs,
ADAMs and TIMPs

MMPs are enzymes responsible for collagen degradation, while
TIMPs inhibit MMP activity (Nagase et al., 2006). The balance
between MMPs and TIMPs influences collagen turnover (Spinale,
2007; Cambronero et al., 2009). Of the known MMPs in the
myocardium are: MMP-1 and MMP-8, which are involved in
the degradation of type I and type III collagens (which are
classical major components of the myocardial fibrillar collagen and
interstitial fibrosis) (Takahashi et al., 1999). MMP-2 (Gelatinase A),
which is involved in the degradation of type IV collagen (Spinale,
2007), MMP-9 (Gelatinase B), which is involved in the degradation
of type IV collagen and is associated with tissue remodeling
and inflammatory processes (Yabluchanskiy et al., 2013), MMP-3
(Stromelysin-1), which participates in the breakdown of fibronectin
and laminin (Rodríguez et al., 2010), MMP-13 (Collagenase-3),
which targets type II collagen (Takahashi et al., 1999; Uesugi and
Sakata, 2005), and MMP-14 (MT1-MMP), which plays a crucial
role in ECM remodeling and activates other MMPs, contributing
to tissue homeostasis (Nagase et al., 2006). In pathological cardiac

remodeling, a group of MMPs such as MMP-2 and MMP-9, are
upregulated, leading to increased ECM degradation and subsequent
fibrosis (Roldán et al., 2008; Takawale et al., 2017). and their
levels in plasma were associated to NT-proBNP levels and further
related to clinical parameters such as LV ejection fraction, LV
end-diastolic dimension, exercise capacity and the maximum LV
wall thickness (Roldán et al., 2008; Kitaoka et al., 2011; Bi et al.,
2021). Although MMPs have been associated with myocardial
fibrosis, MMP1 has been reported to attenuate the development of
cardiac fibrosis in mouse models (Foronjy et al., 2008), however
other studies reported the increase of circulating MMP1 levels in
HCM patients (Fernlund et al., 2017). Therefore, understanding the
pathophysiologymechanisms ofMMPs, and cell-specificMMPs and
(Ibrahim et al., 2022a; Toba et al., 2017), is crucial for identifying
personalized targeting approaches.

TIMPs, on the other hand, act as inhibitors and regulators
of MMPs (Nagase et al., 2006). TIMP-1, is a broad-spectrum
inhibitor of MMPs and primarily inhibits MMP-1, MMP-2, MMP-
3, and MMP-9 (Brew and Nagase, 2010), TIMP-2, inhibits a
range of MMPs, including MMP-1, MMP-2, MMP-3, and MMP-
9 and is also involved in regulating cell growth and apoptosis
(Stetler-Stevens and on, 2008), TIMP-3, has a broader inhibitory
profile, affecting MMP-1, MMP-2, MMP-3, MMP-9, and ADAMs
(a disintegrin and metalloproteinases), and plays a crucial role in
maintaining tissue integrity and inhibiting angiogenesis (Brew et al.,
2000), and TIMP-4 inhibits MMP-2 and MMP-9 and plays a
role in modulating tissue responses to injury and inflammation
(Cabral-Pacheco et al., 2020). Circulating TIMP1 and TIMP2
were reported to be increased in HCM, in association with LV
end‐systolic dimension, Left atrium dimension, and LV ejection
fraction (Kitaoka et al., 2010). Of interest, a recent study has
shown that TIMP1 deficiency have significantly reducedmyocardial
fibrosis via meditating an association between CD63 (cell surface
receptor for TIMP1) and integrin β1 on CFs, leading to de
novo collagen synthesis, reducing myocardial fibrosis, independent
from MMPs (Takawale et al., 2017).

Besides, ADAMs aremembrane-anchored proteins that mediate
ectodomain shedding of substrate proteins, and play diverse roles in
the normal myocardium, including cell adhesion, proteolysis, and
signaling, however, their exact role requires further investigation
(Weber and Saftig, 2012). ADAM12 for instance, mitigates the
excess hypertrophic response by attenuating integrin-mediated
downstream signaling (Nakamura et al., 2020).

Further, activation of protease-activated receptors (PARs)
by proteases, such as thrombin, has been implicated in
cardiac hypertrophy (Antoniak et al., 2011). PARs may
contribute to signaling pathways that influence hypertrophic
responses (Antoniak et al., 2011).

2.5 Cytokines and chemokines

Cytokines are small signaling proteins that play crucial roles
in the regulation of immune responses, inflammation, tissue
repair, remodeling, and adaptation to various physiological stimuli
(Hanna and Frangogiannis, 2020). While the heart is traditionally
viewed as an organ with limited immune activity, it does
produce and respond to certain cytokines under healthy conditions
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(Hanna and Frangogiannis, 2020; Mann, 2015). In physiological
conditions, the myocardium maintains a balanced and regulated
environment, and the expression of cytokines is generally at low
levels (Fang et al., 2017). In HCM however, pro-inflammatory
cytokines are elevated, contributing to fibrosis and ECM alterations,
which has been suggested to compose a chronic “low grade”
inflammatory microenvironment (Hanna and Frangogiannis, 2020;
Lillo et al., 2023). Interleukin-10 (IL-10) and IL-1β are pro-
inflammatory cytokines that are involved in immune responses
and inflammation (Xu et al., 2021). In physiological conditions,
their expression in the heart is generally low, only sufficient
to help regulate immune responses and reduce inflammation
(Xu et al., 2021). In HCM, IL-10 may play a protective role by
modulating inflammatory responses and attenuating myocardial
remodeling (Sziksz et al., 2015). IL-1β is involved in inflammatory
responses and may contribute to the progression of cardiac
hypertrophy in HCM (Schwinger et al., 1994).

TGF-β is a multifunctional cytokine involved in maintaining
tissue integrity and preventing excessive inflammation in the
myocardium (Hanna and Frangogiannis, 2019). In HCM, TGF-β
signaling has been long known for its upregulation in experimental
models of myocardial infarction and cardiac hypertrophy
(Frangogiannis, 2020; Teekakirikul et al., 2010). Endogenous
TGF-β plays a crucial role in the development of cardiac fibrotic
and hypertrophic remodeling, as well as in regulating ECM
metabolism in the pressure-overloaded heart (Frangogiannis, 2020).
TGF-β deactivates inflammatory macrophages while facilitating
myofibroblast transdifferentiation and ECM synthesis through
Smad3-dependent pathways (Saadat et al., 2020). Consequently,
TGF-β may function as the pivotal “master switch” orchestrating
the transition from the inflammatory phase to scar formation in
the infarcted heart (Rienks et al., 2014), and activate Angiotensin
II signaling (via FBLN2 mediation) (Zhang et al., 2014) (Figure 3),
all of which are hallmarks of HCM. Efforts aimed at translating
these concepts into therapeutic approaches to mitigate cardiac
hypertrophy and fibrosis face challenges due to the intricate,
multifaceted nature of TGF-β signaling (Hanna and Frangogiannis,
2019). Concerns arise regarding the potential harmful effects of
inhibiting TGF-β and the possibility of limited benefits for patients
already receiving optimal treatment with ACE inhibitors and
β-adrenergic blockers (Lim et al., 2001; D et al., 2011).

IL-6 has both pro-inflammatory and anti-inflammatory
properties, and may contribute to normal physiological processes,
such as the response to exercise and stress (Scheller et al.,
2011). IL-6 has been associated with inflammation and cardiac
hypertrophy in HCM and increased IL-6 levels may contribute
to disease progression (Teekakirikul et al., 2010). IL-6 has been
found to be essential in increasing collagen content regulated
by isolated CFs and played a role in mediating a phenotypic
conversion to myofibroblasts, via Angiotensin II induction
(Meléndez et al., 2010). It has also been reported for its mediation
to the Angiotensin II signaling during cardiac hypertrophy
(Gro et al., 2019; Högye et al., 2004). Higher IL-6 levels in the
both the myocardium and the circulation have been associated
with larger infarct size and decreased cardiac function in HCM
(Gro et al., 2019; Högye et al., 2004).

Tumor Necrosis Factor-Alpha (TNF-α) is a pro-inflammatory
cytokine that is typically associated with immune responses and

plays a role in adaptation to exercise (Jang et al., 2021). (Xu et al.,
2021)TNF-α has been reported to contribute to myocardial
dysfunction (Tian et al., 2015), with an association of higher
expression along with IL6, with HCM (Sano et al., 2000). CMs-
specific expression of TNF-α has shown to lead to LV hypertrophy
(Schumacher and Naga Prasad, 2018), however, studies have shown
contradiction of TNF-α effect based on its source (Miao et al., 2020;
Yokoyama et al., 1997; Feldman et al., 2000). Of interest, inhibition
of TNF-α reduces adverse myocardial remodeling in a rat model
of volume overload (Jobe et al., 2009). Another recently studied
interleukin in HCM is IL11, which is a member of the IL6 family,
and its receptors are mainly expressed in CFs (Alter et al., 2023).
In IL11-stimulated CFs, collagen, ECM remodeling components
such as periostin and MMP2 are strongly upregulated at the protein
level (Sweeney et al., 2020). Blocking of IL11 signaling with Lutein
has recently been suggested to attenuate angiotensin II- induced
cardiac remodeling and fibrosis (Chen et al., 2021) (Figure 3). As a
biomarker, elevated plasma IL-11 levels have been associated with
a notable rise in cardiac events and indicate a poor prognosis in
HCM and heart failure patients (Ye et al., 2019). On the other
hand, chemokines, such as monocyte chemoattractant protein-1
(MCP-1), play a role in recruiting immune cells to the heart during
inflammation, which can subsequently impact ECM homeostasis
(Sun et al., 2021).MCP-1/CCL2 is associatedwith the recruitment of
monocytes andmacrophages to the site of inflammation (Shen et al.,
2014). Myocardial and circulating MCP1 levels have been reported
to increase in HCM patients particularly in patients with systolic
dysfunction (Iwasaki et al., 2009). MCP1-driven pro-inflammatory
signaling may accentuate cardiomyocyte death and can mediate
fibrosis upon recruiting monocytes and macrophages that secrete
mediators, such as TGF-β (Hanna and Frangogiannis, 2020), a key
driver in myocardial fibrosis in HCM (Ibrahim et al., 2020a). Of
interest, in vitro experiments have revealed that a combination of
IL-6 with MCP1 sustained STAT3 activation in CMs, promoting the
differentiation of CFs into myofibroblasts under hypoxic conditions
(Morimoto et al., 2006). In agreement, we have recently reported
that CCL2 is overexpressed in HCM CFs and myocardium in
association with IL6 and other pro-inflammatory drivers, such as
CCL11 and CCL4 (Ibrahim et al., 2022a).

Osteopontin (OPN) is a matricellular protein that mediates
diverse biological functions and functions as a proinflammatory
cytokine promoting cell-mediated immune responses (Shirakawa
and Sano, 2021). OPN has been implicated in the progression of
fibrosis induced by Ang II (Mohamed et al., 2019; Matsui et al.,
2004), a key driver of interstitial fibrosis in HCM (Zhang et al.,
2014). It has exhibited interactions with diverse ECM proteins such
as fibronectin and collagen, indicating its potential involvement
in organizing and stabilizing the matrix structure (Matsui et al.,
2004). Lack of OPN could potentially decrease the rise in blood
pressure induced by Ang II and improve the progression of cardiac
fibrosis (Matsui et al., 2004). It has therefore been suggested as
a therapeutic target for HCM and heart failure for its role in
cardiac fibrosis (Mohamed et al., 2019).

Fibroblast growth factors 2 and 16 (FGF2 and FGF16): FGFs
are proteins that serve a variety of functions in the tissue
development, repair, and metabolism (Itoh and Ornitz, 2008).
FGF16 stands out among paracrine FGFs as it is predominantly
expressed in cardiac tissue (Itoh and Ohta, 2013; Hotta et al.,
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FIGURE 3
A schematic diagram demonstrating secretome mediators of Ang II signaling in CMs during interstitial fibrosis and Hypertrophy, where Fibulin-2 can
mediate Angiotensin signaling via the activation of TGF-β, along with the concurrent FGF and IL6 signaling, inducing myocardial fibrosis.

2008). While FGF16 expression is relatively low in the embryonic
heart, it becomes more abundant during adulthood compared
to embryonic stages, which suggest potential roles for FGF16
in cardiac function (Tacer et al., 2010). A recent study on a
mouse model, has shown that FGF16 prevents angiotensin II-
induced cardiac hypertrophy and fibrosis by antagonizing FGF2
(Matsumoto et al., 2013). Further, deleting FGF2 attenuates muscle
hypertrophy in adult mice (Schultz et al., 1999). We have recently
reported CF-specific upregulation of FGF16 and downregulation
of FGF2 in HCM patients. Nonetheless, the interplay between
FGF16 and FGF2 in the cardiac tissue microenvironment is
yet debatable and arise from their competition on FGFR to
activate MAPK signaling and induce tissue remodeling (Itoh and
Ohta, 2013).

2.6 Integrins

Integrins: Integrins play several crucial roles in the
myocardium, serving as key mediators of cell-cell and cell-
ECM interactions (Ross and Borg, 2001). They can be expressed
on either CFs or CMs, mainly for mediating the interaction
between them and the ECM, particularly collagen (such as
integrins α1β1, α2β1, α11β1) (Ross and Borg, 2001; Mezu-
Ndubuisi and Maheshwari, 2020; Harston and Kuppuswamy,
2011). Integrins are also involved in Mechanical Signaling
bidirectionally between the ECM and the intracellular cytoskeleton,
which is essential for regulating cellular processes such as cell
contraction, proliferation, and gene expression in response to

changes in mechanical forces (Ross and Borg, 2001; Israeli-
Rosenberg et al., 2014). Signal Transduction via activating
intracellular signaling pathways in response to ECM ligands, for
cell survival, proliferation, differentiation, and gene expression
(Harston and Kuppuswamy, 2011; Ross, 2002). Angiogenesis
via mediating the adhesion and migration of endothelial
cells (ECs), which are essential for the formation of new
blood vessels during myocardial development, tissue repair,
and ischemic injury (Mezu-Ndubuisi and Maheshwari, 2020).
Electrical Coupling between CMs and the ECM, contributing
to the transmission of electrical signals between cells and
modulating cardiac conduction properties (Valencik et al., 2006;
Dabiri et al., 2012).

Several In vitro and in vivo models have studied the association
of integrins with cardiac hypertrophy (Harston and Kuppuswamy,
2011). In the pathological myocardium, expression of the
integrins isoforms is altered leading to alterations in CFs, the
ECM and CMs, and in response to the mechanical stretch
resulting from hypertrophy (Brancaccio et al., 2006). Integrin
pathological signaling may result in the activation of myofibroblasts
or the development of CM hypertrophy (Maitra et al., 200).
Deletion of β1 integrin in mice has been reported to reduce
myocardial proliferation and impaired ventricular compaction.
(Maitra et al., 200).Interestingly, it has been recently reported
that Integrin beta-like 1 is an important functional mediator
between fibroblast–cardiomyocyte crosstalk and could be an
effective target for cardiac remodeling in myocardial hypertrophy
and HCM (Chen et al., 2023), particularly with its reported
interaction with multiple ECM proteins during myocardial
remodeling (Laser et al., 2000).
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3 Interactions between matrisome
components in the myocardium

As previously highlighted, the matrisome comprises a network
of core ECM proteins (e.g., collagens, proteoglycans, glycoproteins)
and matrisome-associated proteins (e.g., ECM regulators, affiliated
proteins, and secreted factors), which interact to determine the
structural and signaling microenvironment of the myocardium.
In HCM, dysregulation of these interactions contributes to
pathological fibrosis, impaired mechano-transduction, and chronic
inflammation (Dabiri et al., 2012;Martino et al., 2018). For example,
fibronectin interacts with collagen I and III via specific domains
to promote fibrillogenesis and scaffold assembly (Singh et al.,
2010), while decorin and lumican regulate collagen fiber diameter
and cross-linking, modulating tissue stiffness (Chen et al.,
2020). Perlecan binds laminin and collagen IV in the basement
membrane, supporting endothelial cell adhesion and barrier
function (Yousif et al., 2013). Proteoglycans like versican form large
aggregates with hyaluronan, facilitating hydration and influencing
leukocyte infiltration during inflammation. Furthermore, fibulins
serve as bridging molecules, linking elastin, collagen, and
glycoproteins like fibronectin, and modulating growth factor
availability such as TGF-β sequestration (Sasi et al., 2023). Further,
Fibulins were repeatedly reported to interact with each other’s and
with BM proteins such as laminin and Col IV (Ibrahim et al., 2018;
Olijnyk et al., 2014; WalyEldeen et al., 2024).

These protein–protein interactions are dynamic and context-
dependent, influenced by post-translational modifications,
mechanical cues, and localized cellular and molecular activity
in the myocardium. Their disruption or overactivation in HCM
alters ECM organization, leading to increased myocardial stiffness,
altered electrical conductivity, and myocyte-ECM uncoupling.
Therefore, dissecting the physical and biochemical interplay
between matrisome components may offer new insights into
the progression of HCM and the identification of matrix-based
therapeutic targets.

4 Sources of ECM components

The human heart consists of five primary cell types: CMs,
CFs, ECs and immune cells such as macrophages, and adipocytes
(Hall et al., 2021). The dynamic interplay between various cell
types and their secreted products regulates the structural and
functional properties of the myocardial ECM (Rienks et al., 2014).
Understanding the sources and regulation of ECM components
is crucial for deciphering the complex biology of the heart.
Several sources contribute to the composition of the ECM in
myocardial tissue (Figure 4).

4.1 Cardiac fibroblasts

CFs represent the major non-cardiomyocyte cell lineage
that maintain the myocardial homeostasis and ECM turnover
(Travers et al., 2017). They are the primary cell type responsible
for producing and regulating the majority of the known ECM
components (Fan et al., 2012; Travers et al., 2017). CFs are the

main source of collagen, particularly collagen types I and III
(Verdecchia et al., 2012; Kanisicak et al., 2016). They also contribute
to the synthesis of Fn, MMPs and TIMPs (Fan et al., 2012;
Travers et al., 2017). During myocardial injury and HCM, CFs
become activated, via mechanical and/or molecular signaling, and
may differentiate to myofibroblasts, with an expression of smooth
muscle actin (SMA), increased secretion of inflammatorymediators,
and increased deposition of ECM proteins (Marian and Braunwald,
2017; Fan et al., 2012), which represent stress responses that
aggravate heart diseases (Fan et al., 2012). CFs-associated FGF2 and
FGF16 contribute to cardiac hypertrophy via stimulating CMs in a
paracrine fashion (Fujiu andNagai, 2014). Further, interleukins such
as IL6 and IL11 were reported to be secreted by CFs during cardiac
injury and hypertrophy (Hall et al., 2021). CFs alternatively respond
to inflammatory mediators and adipokines either via autocrine or
paracrine loops, contributing to an inflammatory environment that
influences ECMremodeling inHCM(Camelliti et al., 2005; Tallquist
and Molkentin, 2017). Activated CFs exhibit dysregulated MMPs
and TIMPs expression, influencing ECM turnover (Fan et al., 2012).
They are involved in the activation of the TGF-β signaling pathway,
which is associated with fibrosis and ECM remodeling in HCM
(Fujiu and Nagai, 2014; Lasala et al., 2012).

The crosstalk between CFs and CMs, as well as with the
surrounding stroma/ECM, is bidirectional and crucial for tissue
homeostasis (Hall et al., 2021; Bursac, 2014). In pathological
conditions, all these elements are influenced by altered signaling
cascades, leading to a microenvironment that chronically affects
CFs phenotype and relevant response (Hall et al., 2021). CM-
associated signals such as TGF-β, angiotensin II, and microRNAs
promoting CFs activation, myofibroblast transition, and increased
collagen, fibronectin, and periostin synthesis. CFs have recently
become targets for novel cardiac therapeutics due to their primary
contribution to ECM remodeling, their direct interaction with
CMs, and their ability to differentiate and regenerate (Hall et al.,
2021). While CFs are the primary ECM-producing cells in the
myocardium, the intricate crosstalk between CMs and other cell
types in the heart contributes to the dynamic and finely tuned
process of ECM remodeling (Camelliti et al., 2005; Bursac, 2014).
Understanding these interactions is crucial for unraveling the
complexities of cardiac physiology and pathology, particularly
in conditions like myocardial infarction, hypertrophy, and
heart failure.

4.2 Cardiomyocytes

While CMs are traditionally recognized for their contractile
function in the heart, CMs also play a significant role in ECM
remodeling (Rienks et al., 2014; Mouw et al., 2014). CMs can secrete
fibronectin and MMPs, regulated, in part, by factors like mechanical
stretch, cytokines, and neurohormones (Aoyagi and Matsui, 2011).
CMs-Integrins mediate the interaction between CMs and the ECM
which activates intracellular signaling pathways that can influence
cell behavior, including gene expression related to ECM remodeling
(Aoyagi and Matsui, 2011). Mechanical forces, such as those
generated during contraction, can affect CMs behavior and gene
expression, and can activate pathways that influence ECM synthesis
and remodeling for maintaining tissue integrity and preventing
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FIGURE 4
A schematic diagram summarizing the cross-talk between different myocardial components for ECM remodeling, including the reciprocal interaction
between cardiomyocytes (Fibronectin; thrombospondin-4; ECM-interacting proteins (integrins); MMPs; exosomes with ECM-modulatory factors) and
cardiac fibroblasts (Collagen types I, III, V; fibronectin; periostin; proteoglycans (decorin, biglycan); TGF-β; MMPs and TIMPs), immune cells (TGF-β,
IL-1β, IL-6, IL-11; matrix-degrading enzymes (MMPs); osteopontin), adipocytes (Adipokines (leptin, resistin); pro-fibrotic cytokines; influence on
fibroblast ECM secretion) and endothelial cells (Basement membrane proteins (collagen IV, laminin, perlecan); regulators of angiogenesis (angiopoietin,
VEGF). This interaction is governed by several factors including the genetic variation, secreted components from various cell types and the ECM
network surrounding the cellular niche.

adverse remodeling (Martino et al., 2018). CMs release extracellular
vesicles, including exosomes, which can transport bioactive
molecules including microRNAs, that influence neighboring cells,
including CFs involved in ECM regulation (Aoyagi and Matsui,
2011). Adaptive Responses to Stress: Under conditions of stress, such
as hypertrophy or ischemia, CMs can undergo adaptive changes
that influence ECM remodeling. This may involve alterations in
gene expression profiles that impact the synthesis and degradation
of ECM components. Indeed, the genetic variations encompass
HCMetiology, particularly those associatedwith sarcomere proteins
(Marian and Braunwald, 2017; Allouba et al., 2023), accounts
for the cellular and molecular alterations in CMs that can cause
downstream alterations in the ECM (Dour et al., 2017).

4.3 Endothelial cells

Endothelial Cells are lining the blood vessels within the
myocardium secrete various ECM components, including BM

proteins such as laminin and collagen IV (Widyantoro et al.,
2010). ECs can also secrete various ECM components, including
fibronectin and laminins, which are important for maintaining
the structural integrity of blood vessels and the surrounding
tissue (Yousif et al., 2013). ECs are crucial for angiogenesis,
which requires balanced ECM remodeling for vessel sprouting,
branching, and stabilization (Gogiraju et al., 2019). ECs release
various growth factors and cytokines that influence the behavior
of neighboring cells, including CFs (Mai et al., 2013). These
factors can modulate ECM turnover and remodeling (Davis
and Senger, 2005; Bischoff et al., 2005). Of interest, ECs
produce nitric oxide (NO), which has vasodilatory effects
and plays a role in maintaining vascular tone (Bischoff et al.,
2005). Dysregulation of NO production may influence ECM
remodeling and contribute to vascular changes (Heiss et al.,
2015). Of note, changes in the microvasculature, influenced
by ECs, may impact nutrient and oxygen supply to the
myocardium. These changes can have downstream effects on ECM
homeostasis.
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4.4 Immune cells

Various immune cells, including macrophages, play a role
in tissue repair (Davies et al., 2013; Wang et al., 2020). While
immune cells are primarily associated with the immune response
and inflammation, their interactions with other cell types, including
CFs and CMs, can influence ECM remodeling (Toba et al., 2017;
Lavine et al., 2018). Immune cells can infiltrate the myocardium
in response to various stimuli and contribute to ECM remodeling
and has recently been suggested to halt myocardial fibrosis and
promote angiogenesis (Revelo et al., 2021; O’Rourke et al., 2019).
Immune cells release cytokines, which are signaling molecules
that can influence the behavior of CFs and other cells involved
in ECM maintenance (Frieler and Mortensen, 2015). An Altered
cytokine expression, including pro-inflammatory cytokines, has
been reported in HCM and may contribute to cardiac remodeling
(Piek et al., 2016). As mentioned earlier, immune cells can
produce MMPs and TIMPs, in response to pathological stimuli
and in coordination with CFs and CMs (Lavine et al., 2018;
Frieler and Mortensen, 2015). CFs may respond to signals from
immune cells, influencing collagen synthesis and deposition
(Hitscherich and Lee, 2021). This stimulation cascade varies
based on tissue status. During acute myocardial infarction, pro-
inflammatory cytokines are released to initiate inflammation
and clear necrotic tissue. Once the necrotic tissue is removed,
macrophages transition to an anti-inflammatory phenotype,
stimulating CFs to deposit collagen and promote fibrotic tissue
formation (Chen et al., 2024), a mechanism similarly observed
in cancer models (Ibrahim et al., 2020b; Wang et al., 2020). This
interplay is activated in various cardiac pathologies, including
ischemia and pressure-overloaded myocardium, and is linked to
the regulation of ECM proteins, such as MMPs (Chen et al., 2024;
Waleczek et al., 2022), and can be orchestrated via myocardium-
residentmacrophages (Waleczek et al., 2022), or previously activated
monocytes (Chen et al., 2024).

4.5 Adipocytes

Adipocytes are fat cells found in the myocardial tissue and
can contribute to the ECM by secreting various adipokines
and other signaling molecules (Chait and den Hartigh, 2020).
The specific role of adipocytes in ECM maintenance in the
myocardium, particularly inHCM, has not been extensively studied.
Increased epicardial fat thickness has been associated with disease
severity and adverse clinical outcomes (Hajsadeghi et al., 2014;
Talman et al., 2014), such as atrial fibrillation and coronary heart
conditions, which are complications of HCM (Macintyre and
Lakdawala, 2016). Associations between epicardial adipose tissue
volume and arrhythmias may have relevance to HCM patients
with arrhythmic complications (Conte et al., 2022). Adipokines
secreted by the adipose tissue, such as adiponectin and leptin,
have the potential to influence the restructuring of the ECM
in the myocardium, via regulating the expression of proteases
(TIMPs and MMPs). plasminogen activator inhibitor type 1,
primarily synthesized by adipose tissue, controls the function
of plasmin, a serine protease crucial for regulating the ECM
(Zibadi et al., 2011; Schram and Sweeney, 2008). Adipocytes can

engage in paracrine signaling with neighboring cells, including
CFs and CMs (Krishnan et al., 2021). The interplay between
adipocytes and the cardiac microenvironment is an active area
of research, and there are several considerations regarding their
potential contributions.

5 Candidate myocardial ECM proteins
with clinical relevance

A plethora of biomarkers have been defined in myocardial
pathologies, in particular HF and HCM, and are associated with
pathophysiological pathways in disease progression, such asmarkers
of neurohormonal activation (ET-1) (Widyantoro et al., 2010),
oxidative stress (Myeloperoxidase (MPO)), and myocyte injury and
stress (cardiac troponins, Brain Natriuretic Peptide (BNP) and NT-
ProBNP) (Ho et al., 2017; Captur et al., 2020). ECM remodeling
biomarkers have recently been introduced to clinical research as
an attempt to expand the phenotype screening of HCM, especially
with the disease clinical heterogeneity. Inflammation and ECM-
associated markers such as sST-2, TGF-B, TIMPs and MMPs, have
been a focus of recent studies for that purpose (Matthia et al.,
2022). Elevated levels of collagen turnover biomarkers—such as
PIIINP, PICP, PINP, and ICTP correlate with fibrosis severity
and phenotype differentiation, making them valuable non-invasive
markers of ECM remodeling (Lombardi et al., 2003; Matthia et al.,
2022). TGF-β is a central regulator of myocardial fibrosis and
inflammation, linking molecular pathways to phenotypes and
serving as an experimental therapeutic target despite the challenges
posed by its pleiotropic nature (Hanna and Frangogiannis, 2020;
Hanna and Frangogiannis, 2019; Matthia et al., 2022). The
circulating levels of MMPs and TIMPs correlate with fibrosis
severity and outcomes, offering diagnostic and therapeutic insights
(Spinale, 2007; Matthia et al., 2022). Similarly, reduced fibronectin
levels are associated with myocardial hypertrophy progression,
and it has been explored for diagnostic correlation with BNP
secretion and fibrosis, as well as a target for anti-fibrotic therapies
(Konstandin et al., 2013; Matthia et al., 2022).

Other ECM proteins also contribute to fibrosis and hypertrophy
inHCM; Lumican, identified through proteomic analyses, correlates
with fibrosis severity and left atrial enlargement, and has been
proposed as a marker of advanced fibrosis (Rixon et al., 2023)
TNC is associated with inflammation-driven HCM and adverse
outcomes, with serum levels offering prognostic value in heart
failure (Kitaoka et al., 2012; Kitaoka et al., 2010; Matthia et al.,
2022). Syndecan-4, involved in fibrosis progression and myocardial
stiffness, is under investigation as both a biomarker and therapeutic
target (Takahashi et al., 2011). OPN levels increase significantly
with fibrosis and adverse remodeling, making it a biomarker and
therapeutic target (Mohamed et al., 2019; Matthia et al., 2022).
Having been intensively studied, interleukins, such as IL-6 and IL-
11, stratify patients based on fibrosis and inflammation burden.
IL-11 in particular predicts poor prognosis and has therapeutic
potential (Gro et al., 2019; Högye et al., 2004; Sano et al., 2000;
Ye et al., 2019; Cook, 2023). Lastly, fibulins—especially circulating
Fibulin-2—are suggested to correlate with myocardial fibrosis in
HCM, adding further value to the pool of ECM-related biomarkers
in cardiac disease management (Ibrahim et al., 2020a).

Frontiers in Cell and Developmental Biology 11 frontiersin.org

https://doi.org/10.3389/fcell.2025.1641584
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Ibrahim et al. 10.3389/fcell.2025.1641584

6 In Vitro modeling and future
directions

HCM is increasingly recognized not only as a disease of the
sarcomere but also as a complex condition involving extensive
remodeling of the myocardial ECM. The evidence presented
in this review highlights that ECM components—including
collagens, proteoglycans, glycoproteins, proteases, cytokines,
and integrins—undergo substantial quantitative and qualitative
changes that contribute to hallmark features of HCM such as
interstitial fibrosis, diastolic dysfunction, and arrhythmogenesis.
Recent advances in disease modeling have expanded our ability
to explore these ECM changes with greater specificity and
translational relevance. In particular, in vitro systems such as
human induced pluripotent stem cell-derived cardiomyocytes
(iPSC-CMs) and engineered heart tissues (EHTs) provide platforms
to study the molecular and cellular interactions between ECM
components and cardiac cells under genetic and biomechanical
stress (Yildirim et al., 2025; Jebran et al., 2025). iPSC-CMs derived
from HCM patients exhibit aberrant fibronectin deposition, BNP
secretion, and ECM-associated signaling responses (e.g., TGF-
β activation), allowing mechanistic dissection and therapeutic
screening. Co-culture systems with CFs or immune cells further
enable modeling of the cellular crosstalk driving ECM remodeling.
These models, combined with high-content imaging and single-
cell omics, offer insights into disease heterogeneity and therapeutic
responsiveness.

Despite significant progress, several key questions remain
unanswered. Notably, the spatial and temporal regulation of ECM
components across HCM stages is poorly defined, and it is
unclear how ECM remodeling varies between genotypes or clinical
phenotypes. Moreover, the mechanistic links between specific ECM
alterations and clinical outcomes—such as arrhythmia burden,
progression to heart failure, or sudden cardiac death—are not yet
fully elucidated.

To address these gaps, future research should focus on:

• Cell-type-specific and single-cell transcriptomic and proteomic
profiling to dissect the heterogeneity of ECM-producing cells
and their contributions to fibrosis and hypertrophy.

• Longitudinal and multi-omics studies in HCM patients,
integrating advanced imaging, circulating ECM biomarkers,
and genetic data to enable more precise phenotyping and
outcome prediction.

• Functional validation of ECM-related targets in vitro and in
vivo, using iPSC-based platforms and preclinical animalmodels
to establish causality and therapeutic efficacy.

• Comparative analyses of primary (genetic) versus secondary
(acquired) hypertrophy, to delineate shared and divergent ECM
remodeling pathways.

• Translational pipelines that link ECM biology to clinical
applications—including the development of circulating ECM
biomarkers, risk stratification tools, and anti-fibrotic or
immunomodulatory therapies.

In conclusion, incorporating ECM biology into the diagnostic,
prognostic, and therapeutic frameworks of HCM has the potential
to transform patient care. By leveraging innovative in vitro disease
models and clinically anchored translational research, the field
is poised to develop precision-based strategies that address not
only the genetic substrate but also the fibrotic and inflammatory
landscape that underpins disease progression.
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