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Multimodal reasoning agent for
enhanced ophthalmic
decision-making: a preliminary
real-world clinical validation

Yijing Zhuang† , Dong Fang† , Pengfeng Li† , Bingyu Bai,
Xiangqing Hei, Lujia Feng, Wangting Li and Shaochong Zhang*

Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China

Although large language models (LLMs) show significant potential in clinical
practice, accurate diagnosis and treatment planning in ophthalmology require
multimodal integration of imaging, clinical history, and guideline-based
knowledge. Current LLMs predominantly focus on unimodal language tasks and
face limitations in specialized ophthalmic diagnosis due to domain knowledge
gaps, hallucination risks, and inadequate alignment with clinical workflows. This
study introduces a structured reasoning agent (ReasonAgent) that integrates
a multimodal visual analysis module, a knowledge retrieval module, and a
diagnostic reasoning module to address the limitations of current AI systems in
ophthalmic decision-making. Validated on 30 real-world ophthalmic cases (27
common and 3 rare diseases), ReasonAgent demonstrated diagnostic accuracy
comparable to ophthalmology residents (β = −0.07, p = 0.65). However, in
treatment planning, it significantly outperformed both GPT-4o (β = 0.49, p =
0.01) and residents (β = 1.71, p < 0.001), particularly excelling in rare disease
scenarios (all p < 0.05). While GPT-4o showed vulnerabilities in rare cases
(90.48% low diagnostic scores), ReasonAgent’s hybrid design mitigated errors
through structured reasoning. Statistical analysis identified significant case-level
heterogeneity (diagnosis ICC = 0.28), highlighting the need for domain-specific
AI solutions in complex clinical contexts. This framework establishes a novel
paradigm for domain-specific AI in real-world clinical practice, demonstrating
the potential of modularized architectures to advance decision fidelity through
human-aligned reasoning pathways.
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1 Introduction

The integration of artificial intelligence (AI) into ophthalmology has demonstrated
transformative potential in automating image analysis (Feng et al., 2025; Rao et al.,
2023), streamlining diagnostic workflows (Choi et al., 2024; Waisberg et al., 2024), and
enhancing clinical decision-making (Delsoz et al., 2023; Tan et al., 2024). Numerous AI
systems have been developed to tackle different tasks such as interpreting ophthalmic
images, including fundus photography (Gulshan et al., 2016; Li et al., 2018), optical
coherence tomography (OCT) (Schlegl et al., 2018), and scanning laser ophthalmoscopy
(SLO) (Meyer et al., 2017; Tang et al., 2021), whose performance benchmarks often rival
human experts in controlled settings. On the other hand, the advent of large language
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models (LLMs), particularly generative AI systems like ChatGPT,
has rapidly expanded public access to AI technologies. Such
models generate human-like responses from text prompts,
offering applications ranging from facilitating physician-patient
communication to synthesizing clinical data (Dave et al., 2023;
Thirunavukarasu et al., 2023; Wu et al., 2023; Goh et al., 2024;
Tangsrivimol et al., 2025; Yang X. et al., 2025). However, the
diagnosis and management of many ophthalmic diseases require
a complex integration of multimodal imaging interpretation and
contextual clinical information (Yang et al., 2023; Gong et al.,
2024). Current AI tools are predominantly designed for singular
tasks and lack dynamic reasoning capabilities to emulate
clinicians’ integrative decision-making processes (Homolak, 2023;
Li et al., 2025; Wang et al., 2025). This critical gap limits their
utility in real-world scenarios where diagnostic accuracy hinges
on correlating heterogeneous data sources.

GPT-4o, OpenAI’s multimodal large language model,
demonstrates enhanced capability in processing hybrid inputs (text,
imaging, and audio) through cross-modal alignment (Shea et al.,
2023). While this capability offers distinct advantages for analyzing
medical data, the model’s multimodal architecture inadvertently
amplifies hallucination risks, which may generate descriptions of
pathological features absent from actual imaging findings (Shea
and Ma, 2023; Chen D. et al., 2024; Günay et al., 2024; Li and Li,
2024). Furthermore, its black-box reasoning process fails to provide
traceable diagnostic rationales anchored in medical literature,
posing significant concerns for real-world clinical applications
(Keles et al., 2025). Moreover, GPT-4o′s reliance on general-
domain training data limits its mastery of specialized ophthalmic
knowledge, particularly rare disease patterns and region-specific
diagnostic criteria (Cai et al., 2024). Although retrieval-augmented
generation (RAG) enhances LLM responses by retrieving relevant
information from external sources before generating answers,
improving accuracy and reducing hallucinations (Lewis et al., 2020;
Nguyen et al., 2025; Song et al., 2025), conventional RAG systems
exhibit critical shortcomings in ophthalmology applications:
they frequently retrieve contextually irrelevant guidelines due
to inadequate understanding of imaging biomarkers while
mechanically concatenating retrieved evidencewithout synthesizing
pathophysiological logic, resulting in clinically incoherent
recommendations (Gargari and Habibi, 2025; Yang R. et al., 2025).
This dual challenge of multimodal hallucination control and
context-aware knowledge integration necessitates an architectural
paradigm that synergistically combines the perceptual strengths
of multimodal LLMs with rigorous evidence-based reasoning. To
bridge these gaps, a structured framework that seamlessly integrates
multimodal image analysis, real-time knowledge retrieval, and
clinical reasoning is urgently needed.

In January 2025, DeepSeek introduced DeepSeek-R1, an
innovative open-source reasoning LLM rapidly gaining worldwide
prominence (Guo et al., 2025). Differing from opaque models,
DeepSeek-R1 enables transparent, hierarchical reasoning through
probabilistic causal graphs, dynamically resolving conflicting
clinical evidence to produce auditable diagnostic pathways
(Moëll et al., 2025; Sandmann et al., 2025). Additionally, its
offline deployment capability allows healthcare institutions to
locally operate and adapt the model without internet dependency,
ensuring compliance with stringent data privacy regulations by

eliminating sensitive data transmission, thereby fortifying security
and confidentiality in clinical workflows (Sandmann et al., 2025).

Here, we proposed a structured reasoning agent (ReasonAgent)
integrating three specialized modules: (1) a vision understanding
module leveraging GPT-4o to analyze multimodal ophthalmic
images and flag abnormalities; (2) a RAG module that retrieves
diagnostic criteria from a curated knowledge base of ophthalmic
guidelines based on patient history and exam findings; and (3)
a diagnostic reasoning module (DeepSeek-R1) that synthesizes
image interpretation, retrieved evidence, and clinical narratives to
generate final diagnoses and treatment plans. To evaluate its clinical
applicability, we compared the ReasonAgent’s performance against
standalone GPT-4o outputs and answers from three ophthalmology
residents across 30 real-world cases. This study aim to investigate
whether a structured ReasonAgent can surpass general-purpose
LLMs in ophthalmic diagnosis and evaluate how AI-assisted
decision-making compares to human resident physicians in complex
real-world scenarios.

2 Materials and methods

2.1 Study design and participants

This comparative, single-center, cross-sectional study adheres
to the Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE) reporting guideline. A total of 30
deidentified ophthalmic cases (collected from January to March
2025) were included, with all protected health information
rigorously encrypted. These cases were randomly selected from a
database of Jinan University-affiliated Shenzhen Eye Hospital clinic,
ensuring diversity in disease severity and presentation.

2.2 ReasonAgent implementation

We developed a hierarchical ReasonAgent (Figure 1) through
localized deployment of Dify. AI (Beijing, China, v1.0.0) workflow
orchestration platform, where GPT-4o, RAG architecture, and
DeepSeek-R1 were programmatically chained as core processing
nodes. We configured all system components through dedicated
API interfaces, establishing automated data pipelines between
modules. The agent was programmed to emulate clinical
ophthalmologists’ diagnostic workflow through the following
technical implementation.

2.2.1 Vision understanding module
GPT-4o (OpenAI, USA; version 2024–11–20, temperature

= 0.7) was adopted as a visual analysis module. This module
received multimodal ophthalmic imaging inputs (e.g., OCT,
B-scan, SLO, fluorescein fundus angiography/indocyanine
green angiography (FFA/ICGA)) with the prompt
provided in Supplementary Appendix 1.

2.2.2 Evidence retrieval module
We employed a RAG architecture BGE-M3 (Chen J. et al.,

2024) embeddings (designed by BAAI, China; provided by
SiliconFlow, China) for multilingual knowledge retrieval. The
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FIGURE 1
Flowchart of the Reasoning Agent Design and the Evaluation of Different Methods’ Responses in Clinical Ophthalmology Scenarios. Ophthalmic
imaging (e.g., OCT, B scan, SLO, FFA) and clinical history serve as input sources. The Vision Understanding Module (GPT-4o) analyzes ophthalmic
images for abnormalities and descriptions. The Evidence Retrieval Module (RAG) extracts diagnostic knowledge from guidelines based on clinical
history and ocular examination. These outputs, combined with clinical history text, are input into the Diagnostic Reasoning Module (DeepSeek-R1)
within the reasoning agent for diagnostic analysis and treatment planning. Comparison groups included standalone GPT-4o and three residents.
Responses were evaluated using Likert scales by 7 attending physicians.

knowledge base integrated two principal corpora: 1) Kanski’s
Clinical Ophthalmology (ninth Edition) as foundational textbook
knowledge, and 2) annually updated clinical guidelines (January
2024 to February 2025) from the American Academy of
Ophthalmology (AAO) and the Chinese Medical Association
(CMA). A unified prompting framework was adopted across
retrieval components, synchronizing with the DeepSeek-R1
model through the shared instruction.

2.2.3 Diagnostic reasoning module
We applied DeepSeek-R1 (DeepSeek, China; 671B version,

temperature = 0.6) for comprehensive reasoning analysis.
The model received formatted inputs: [Imaging Analysis]
+ [Retrieved Evidence] + [Clinical History], generating a
reasoning process, preliminary diagnosis, and treatment plans
with explicit citations, with the detailed prompt provided in
Supplementary Appendix 1.
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2.3 Case selection

To evaluate the models’ performance versus clinicians across
diseases of varying complexity, we curated 30 clinical cases spanning
corneal diseases, cataracts, glaucoma, and fundus disorders. The
cohort included 27 common ophthalmic conditions (e.g., age-
related cataracts, retinal detachment) and 3 rare diseases (Coats
disease, malignant glaucoma, Vogt-Koyanagi-Harada syndrome).

2.4 Comparison and scoring criteria

To establish comparative benchmarks, clinical cases in
Chinese with associated imaging data were independently
analyzed using three methods: 1) the output of
ReasonAgent pipeline, 2) GPT-4o analysis with explicit
instructions shown in Supplementary Appendix 1, 3) three
residents producing comprehensive diagnoses and prioritized
treatment plans.

The diagnoses and treatment plans generated by ReasonAgent,
GPT4o, and residents were anonymized and randomly presented to
the panel of 7 senior attending physicians for evaluation using a 5-
point Likert scale:

1: Unacceptably poor or containing critical errors
2: Poor accuracy with potentially harmful errors/omissions
3: Neutral (moderate quality with ambiguous/minor issues)
4: Good quality with non-critical errors/omissions
5: Excellent quality with no errors/omissions

2.5 Statistical analysis

Descriptive statistics were reported as means, standard
deviations (SD), along with medians and interquartile ranges
(IQR) of the Likert scores. A Cumulative Link Mixed Model
(CLMM) fitted with the Laplace approximation was implemented
to evaluate decision-making performance differences between
methods (ReasonAgent, GPT-4o, and residents). Two separate
model analyses were conducted for diagnoses and treatment plans,
with each model preserving identical random effects structures.
Fixed effects were modeled to assess the accuracy of diagnoses
and treatment plans, while random effects accounted for variability
across individual cases and between different raters. Main analytical
indices included estimated marginal means (EMMs) with 95%
confidence interval (CI), and interpretation of intraclass correlation
coefficients (ICCs) derived from variance components of the logistic
distribution to quantify proportional variance contributions of case-
level and rater-level heterogeneity, with lower ICC values indicating
higher consistency. Post hoc pairwise comparisons with Tukey
adjustment for multiple testing were conducted to identify specific
group differences. For subgroup comparisons between common
and rare diseases, Kruskal–Wallis tests were performed to detect
overall differences in scores across groups within each disease
category. Dunn’s post hoc tests with Bonferroni adjustment were
applied for pairwise group comparisons. Additionally, low-score
proportions (scores≤2) were analyzed as a secondary metric to
evaluate performance across methods. The level of significance

was set at p < 0.05. All analyses were conducted in R (version
4.4.3) with the ordinal package (clmm function) for model fitting,
lme4 for mixed-effects infrastructure, emmeans for marginal
mean estimation and comparisons, and FSA for non-parametric
subgroup analysis.

3 Results

3.1 Fixed effects analysis of reasoning
performance across methods

The CLMM analysis revealed no statistically significant
differences in diagnostic reasoning performance between the
ReasonAgent (median = 4, IQR = 3–5), GPT-4o (median = 4, IQR
= 3–4), and residents (median = 4, IQR = 3–4, Figure 2A). Fixed
effects comparisons showed non-significant deviations for GPT-4o
(β = 0.04, 95% CI: −0.31 to 0.40, p = 0.81) and physicians (β = −0.07,
95%CI: −0.36 to 0.22, p = 0.65, Table 1) relative to the ReasonAgent.
Post hoc pairwise contrasts revealed consistently non-significant
differences across all groups (Table 1). These findings demonstrate
concordant diagnostic reasoning across methods, with algorithmic
approaches (ReasonAgent and GPT-4o) achieving performance
comparable to human physicians.

In terms of the treatment planning task, the statistical analysis
identified significant between-group differences across methods.
Fixed effects analysis revealed that ReasonAgent (median = 4,
IQR = 4–5) significantly outperformed both GPT-4o (median
= 4, IQR = 3-5, β = 0.49, 95% CI: −0.86 to −0.11, p = 0.01)
and residents (median = 3, IQR = 2-4, β = 1.71, 95% CI: −2.03
to −1.40, p < 0.001, Table 1; Figure 2B). Post-hoc comparisons
with Tukey adjustment demonstrated significantly superior
performance of Reasoning Agent over both GPT-4o (β =
0.486, p = 0.030) and residents (β = 1.714, p < 0.001, Table 1).
GPT-4o also demonstrated significant advantages over human
physicians (β = 1.228, p < 0.001). These results indicate that
algorithmic approaches (ReasoningAgent andGPT-4o) consistently
outperformed human physicians in treatment plan formulation,
with ReasonAgent achieving particularly enhanced efficacy
relative to GPT-4o.

3.2 Rater-level variability analysis

Low variability in rating stringency was observed across raters,
with the random intercept variance between raters in the diagnostic
reasoning task estimated at σ2 = 0.40 (SD = 0.63, Table 2). This
between-rater heterogeneity corresponded to an ICC of 0.08 (95%
CI: 0–0.16), indicating that approximately 8% of the total variance
originated from systematic differences in scoring severity across
raters. This indicates that low inter-rater disagreement in Likert
scores for diagnostic tasks, reflecting relatively consistent clinical
expertise or interpretive standards among raters.

While in the treatment planning task, the variability of rating
is slightly increased compared to the diagnostic task (σ2 =
0.47, SD = 0.68, Table 2), and the corresponding ICC is 0.10 (95%CI:
0.04–0.18), suggesting greater inconsistency in treatment planning
assessment ratings.
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FIGURE 2
Distribution of Likert Scores for Different Methods in Diagnostic Tasks and Treatment Planning Tasks. (A) Violin plot of Likert scores for diagnostic tasks;
(B) Violin plot of Likert scores for treatment planning tasks. Embedded boxplots illustrate the interquartile range (25th to 75th percentile), the median
(black horizontal line), and the whiskers represent the range of scores excluding outliers. Statistical analysis revealed no significant differences in
diagnostic task scores between ReasonAgent, GPT-4o, and residents. In contrast, treatment planning tasks showed significantly higher scores for
ReasonAgent than GPT-4o and residents. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

TABLE 1 Fixed effects analysis and post-hoc pairwise comparisons of different methods.

Group EMMs OR
(95% CI)

z-value p-valuea Adjusted p-valueb

Diagnostic task

ReasonAgent (reference) 0 1.00 — — vs. GPT-4o (0.97)

GPT-4o 0.04 1.05
(0.73–1.49)

0.24 0.81 vs. Resident (0.73)

Resident −0.07 0.94
(0.70–1.25)

−0.45 0.65 vs. ReasonAgent (0.90)

Treatment planning task

ReasonAgent (reference) 0 1.00 — — vs. GPT-4o (0.03)∗

GPT-4o 0.05 0.62
(0.42–0.89)

−2.54 0.011∗ vs. Resident (<0.001)∗∗∗

Resident −1.71 0.94
(0.13–0.25)

−10.69 <0.001∗∗∗ vs. ReasonAgent (<0.001)∗∗∗

EMMs: Estimated Marginal Means, OR: odds ratio, CI: confidence interval.
aCumulative Link Mixed Model (CLMM) fitted with the Laplace approximation.
bPost-hoc pairwise comparisons with Tukey adjustment.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

3.3 Case-level variability analysis

In the diagnostic reasoning task, considerable case-level
heterogeneity was observed, with case-level random intercepts
accounting for significant variance in diagnostic performance
ratings (σ2 = 1.44, SD = 1.20, Table 2). The ICC confirmed that

28% (ICC = 0.28, 95% CI: 0.18–0.39)of total variance stemmed
from systematic differences between clinical cases. This indicates
that clinical characteristics or case complexity exerted a notable
influence on diagnostic assessments. For the treatment planning
task, while case-level variability remained significant (σ2 =
1.01, SD = 1.01, Table 2), its absolute contribution decreased
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TABLE 2 Random effects analysis in diagnostic and treatment
planning tasks.

Group Variance SD Groups ICC (95% CI)

Diagnostic task

Case 1.45 1.20 30 0.28 (0.18–0.39)

Rater 0.40 0.63 7 0.08 (0–0.16)

Treatment planning task

Case 1.01 1.01 30 0.21 (0.15–0.31)

Rater 0.47 0.68 7 0.10 (0.04–0.18)

SD, standard deviation, ICC, intraclass correlation coefficient.

(ICC = 0.21,95% CI: 0.15–0.31), with the relative contribution to
total variance components also reducing to 68.5% compared to
diagnostic tasks.

Pronounced performance variations existed between rare and
common cases across methods. While all three approaches achieved
comparable ratings for common cases (ReasonAgent: median
= 4, IQR = 3-5, GPT-4o: median = 4, IQR = 3-5, residents:
median = 4, IQR = 3–4; all p > 0.05, Table 3), rare cases
revealed substantial divergence in diagnostic performance. GPT-4o
demonstrated significantly lower performance (median = 1, IQR
= 1–2) compared to ReasonAgent (median = 3, IQR = 1-4, p =
0.02) and residents (median = 3, IQR = 1-4, p = 0.03, Table 3).
This substantial gap persisted despite limited rare-case samples (n
= 3), reflecting methodological vulnerabilities. In addition, GPT-
4o yielded low scores (≤2) in 90.48% of rare-case diagnostic
tasks, a proportion substantially surpassing the rates recorded
for ReasonAgent (38.10%) and physicians (49.21%), suggesting
greater vulnerability to the diagnostic complexity of rare ophthalmic
conditions.

In the treatment planning task, we also observed distinct
performance variations among the three methods in both common
and rare diseases. For common cases, the algorithmic methods
(ReasonAgent (median = 4, IQR = 4-5, p < 0.001) and GPT4o
(median = 4, IQR = 3-5, p < 0.001)) demonstrated statistically
significant superior scores compared to residents (median = 3,
IQR = 3–4, Table 3), while showing no significant performance
difference between the two algorithms methods (p = 0.67). In
rare disease scenarios, ReasonAgent (median = 4, IQR = 2–4)
significantly outperformed both GPT4o (median = 1, IQR = 1-
2, p < 0.001, Table 3) and residents (median = 2, IQR = 1-3, p =
0.04), with GPT4o showing no advantage over human physicians
(p = 0.14). Additionally, statistical analysis of low-performance
probabilities (scores ≤2) corroborated these trends: For common
disease treatment planning, bothGPT4o (15.34%) andReasonAgent
(11.11%) exhibited significantly lower rates of low scores compared
to human physicians (24.51%). And for rare diseases, ReasonAgent
(38.10%) maintained a substantially lower low-score rate than both
residents (61.90%) and GPT4o (80.95%), demonstrating its dual
advantage in treatment planning for both common and rare clinical
conditions.

4 Discussion

With the rapid development of large language models, artificial
intelligence has demonstrated tremendous potential for application
in the medical field. However, the diagnosis and treatment decision-
making of ophthalmic diseases possess unique complexity: it
not only relies on the meticulous interpretation of multimodal
images but also requires the integration of heterogeneous data,
including the current medical history and systemic comorbidities,
to formulate personalized treatment plans. This study constructs an
ophthalmic reasoning agent by integrating the modules of visual
understanding, knowledge retrieval, and causal reasoning, and
evaluates its performance in real ophthalmic cases.

Using 30 ophthalmic cases, we conducted a comprehensive
performance evaluation of diagnostic reasoning and treatment
planning across three methods: ReasonAgent, GPT-4o, and
human physicians. The results demonstrated that in diagnostic
tasks, the algorithmic methods (Reasoning Agent and GPT-4o)
achieved performance comparable to ophthalmology residents. In
treatment planning tasks, both algorithmic approaches significantly
outperformed human doctors, with Reasoning Agent showing a
notably superior performance compared to GPT-4o alone. One
possible explanation is that diagnostic classification critically
relies on quantifiable biomarkers, such as the foveal thickness in
OCT. Both AI systems and human physicians can achieve this
through pattern recognition. However, in treatment planning, the
Reasoning Agent mitigates inexperience-driven cognitive biases
among ophthalmology residents through evidence integration via
RAG. Additionally, it can correlate influential features with the latest
guidelines, thus circumventing the generalization errors of GPT-
4o. This indicates that through the structured reasoning involving
multimodal data integration and evidence anchoring, AI has the
potential to transcend the limitations of a single model. Specifically,
the visual module (GPT-4o) of the Reasoning Agent accurately
captures imaging abnormalities, the RAG module retrieves the
latest guidelines in real time, and the DeepSeek-R1 reasoning
module strings together clinical information based on causal logic
to form a traceable decision-making path. For instance, in the case
of Coats’ disease, GPT-4o misdiagnosed it as retinoblastoma, and
some residents confused it with persistent hyperplastic primary
vitreous (PHPV). However, Reasoning Agent accurately identified
the typical vascular abnormalities through the cross-validation of
imaging features and guideline criteria, and through the clinical
characteristics of themedical history, it gave the reasoning process of
the diagnosis and avoided serious misdiagnosis. In a case of diabetic
retinopathy,GPT-4ohad a conflict in the identification ofOCTAand
B-scan images (OCTA detected tractional retinal detachment, while
B-scan indicated “no characteristic strong echo signals of retinal
detachment, suggesting that the retina is attached”). However, the
reasoning module (DeepseekR1) resolved this conflict, presented
a detailed thought process, and obtained the correct diagnosis and
treatment plan. On the other hand, DeepSeek-R1 demonstrates
superior capabilities in processing clinical documentation in
Chinese. Since this study is based on medical records in Chinese, its
language architecture can more accurately capture the key clinical
features in the Chinese context and reduce the ambiguity caused
by direct Chinese-English translation in term mapping. These
findings highlight the necessity of domain-specific architectures
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TABLE 3 Diagnostic and treatment planning performance by method and case rarity.

Group Method Mean score
±SD

Median score (IQR) % low scores (≤2) Pairwise
Comparisons
(p-valuesa)

Diagnostic task

Common diseases

ReasonAgent 3.59 ± 1.27 4 (3–5) 39/189 (15.34%) vs. GPT-4o (>0.99)

GPT-4o 3.68 ± 1.18 4 (3–5) 32/189 (16.93%) vs. Resident (0.47)

Resident 3.57 ± 1.16 4 (3–4) 100/567 (17.64%) vs. ReasonAgent (>0.99)

Rare diseases

ReasonAgent 2.91 ± 1.58 3 (1–4) 8/21 (38.10%) vs. GPT-4o (0.02)∗

GPT-4o 1.67 ± 0.91 1 (1–2) 19/21 (90.48%) vs. Resident (0.03)∗

Resident 2.60 ± 1.40 3 (1–4) 31/63 (49.21%) vs. ReasonAgent (>0.99)

Treatment planning task

Common diseases

ReasonAgent 4.12 ± 1.10 4 (4–5) 21/189 (11.11%) vs. GPT-4o (0.67)

GPT-4o 3.96 ± 1.23 4 (3–5) 29/189 (15.34%) vs. Resident (<0.001)∗∗∗

Resident 3.27 ± 1.11 3 (3–4) 139/567 (24.51%) vs. ReasonAgent (<0.001)∗∗∗

Rare diseases

ReasonAgent 3.10 ± 1.30 4 (2–4) 8/21 (38.10%) vs. GPT-4o (<0.001)∗∗∗

GPT-4o 1.67 ± 1.11 1 (1–2) 17/21 (80.95%) vs. Resident (0.14)

Resident 2.25 ± 1.23 2 (1–3) 39/63 (61.90%) vs. ReasonAgent (0.04)∗

SD, standard deviation, IQR, interquartile range.
aDunn’s post hoc tests with Bonferroni adjustment.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

to constrain general model limitations while augmenting human
expertise. These results are consistent with the theory proposed
by Bommasani et al. that “clinical AI needs to integrate perception
and reasoning”, suggesting that future system designs should give
priority to cross-modal alignment and evidence-based constraint
mechanisms (Bommasani et al., 2021).

The observed case-level heterogeneity (intraclass correlation
coefficient for diagnosis, ICC = 0.28, P < 0.01) may reflect
limitations of general large language models in processing
multimodal inputs with varying pathological complexities. While
GPT-4o′s unstructured reasoning suffices for common conditions
with typical patterns, its failure in rare cases (90.48% low
diagnostic scores) suggests insufficient domain-specific knowledge
acquisition and overreliance on probabilistic associations rather
than pathophysiological logic. ReasonAgent’s superior performance
in rare disease diagnosis likely stems from its hybrid architecture:
a vision-language model enables lesion localization, while RAG
constrains reasoning to evidence-based diagnostic pathways,
compensating for the scarcity of low-prevalence disease patterns
in general training data. In treatment planning, the ReasonAgent’s
advantage over both GPT-4o and resident physicians indicates
that structured knowledge retrieval mitigates knowledge gaps or
clinical experience deficits in junior doctors. GPT-4o′s poorer
therapeutic performance compared to diagnosis aligns with its
lack of hierarchical treatment action structures—a critical gap

addressed by RAG, which prioritizes guideline-recommended
interventions. These findings highlight the utility of hybrid AI
systems integrating deep visual understanding with evidence-based
reasoning in overcoming the limitations of general-purpose models
in complex medical scenarios.

ReasonAgent’s hierarchical architecture distinguishes it from
a single black-box large model like GPT-4o. By modularizing
clinical reasoning into discrete stages—imaging analysis, knowledge
retrieval, biometric validation, and evidence-based conclusion
generation—it is analogous to the systematic logic of human
clinicians while preserving traceable reasoning paths. Throughout
this process, a reasoning path visualization module preserves the
full decision-making trajectory, enabling clinicians to retrace critical
nodes such as biological parameter calculations and literature
evidence citations.This feature distinctly differentiates ReasonAgent
from general models, whose untraceable probabilistic output
paradigms prevent the attribution of diagnostic or therapeutic
suggestions to specific evidential sources. Therefore, in clinical
applications, the Reasoning Agent has two major application
potentials. Firstly, as a decision-support tool for junior doctors
and primary care doctors, its traceable reasoning process facilitates
rapid and accurate identification of evidence-based rationales for
therapeutic plans, addressing knowledge gaps in less experienced
clinicians. Secondly, as a quality control tool, it can serve as an
auxiliary reference for junior doctors in medical record writing,
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reducing the risks of missed or misdiagnosis. Its evidence-
traceable reasoning framework can also act as an assistant in
the medical record systems to assist in systematic validation of
medical records.

In this study, several critical observations concerning large
language models (LLMs) merit attention. Firstly, RAG cannot fully
resolve hallucinations (Gargari and Habibi, 2025; Yang R. et al.,
2025), such as mis-defining normative biometric thresholds (e.g.,
foveal thickness ranges) and conflating diagnostic criteria (e.g., high
myopia). These errors emphasize the need for real-time biometric
verification to counter parameter fabrication tendencies. Secondly,
the GPT-4o demonstrated elevated misjudgment rates for highly
specialized imaging data, such as anterior segment photography
or dynamically interpreted datasets like B-scan, errors included
misidentifying corneal reflection points as corneal leukomas and
failing to determine posterior movement positivity in B-scans.
Such misinterpretations propagate downstream analytical errors
in Deepseek-R1 (e.g., the epiretinal membrane case unrecognized
by GPT-4o in this study). These observations accentuate the
imperative for the development of ophthalmology-specific visual
processing modules, which transcend the limitations of generic
image recognition algorithms. Futhermore, deploying AI-driven
reasoning agents in clinical settings requires careful attention to data
privacy, infrastructure, human oversight, and ethics. The proposed
method is built upon closed-source services for preliminary clinical
validation. To address patient privacy concerns in clinical practice,
these components can be replaced with other locally deployed open-
source models. However, local deployment incurs substantially
higher costs and operational overhead. For example, deploying a
large languagemodel ofDeepSeekR1’s scale (671 billion parameters)
poses significant challenges for hospital infrastructure stability and
maintenance. Besides, although our method has demonstrated
diagnostic capabilities on par with those of junior human clinicians
and even superior performance in formulating treatment plans, it is
intended solely as a decision-support tool and cannot replace human
clinicians. In certain scenarios, the performance may also reflect
biases originating from the training data and themodels themselves.
Beyond model-specific limitations, the current study still has
several methodological limitations. The relatively modest sample
size of 30 cases, with rare diseases constituting only 10% (n = 3),
may compromise the statistical power required for comprehensive
subgroup analyses, and the inter-case heterogeneity inherent in
small cohorts may obscure statistically significant differences in
diagnostic performance across methods. Future investigations
should endeavor to expand the sample cohort to robustly validate
the stability of ReasonAgent. Additionally, the small sample of
three resident evaluators may introduce observer bias; future
studies should include senior ophthalmologists to enhance
validation rigor.

This study developed an ophthalmic ReasonAgent integrating
visual understanding (GPT-4o), evidence retrieval (RAG),
and diagnostic reasoning (DeepSeek-R1) modules to enable
interpretable decision-making in multimodal clinical scenarios.
Testing on 30 real-world cases demonstrated that the ReasonAgent
exhibited diagnostic accuracy comparable to that of resident
ophthalmologists, while significantly outperforming both human
physicians and the general-purpose large language model GPT-
4o in treatment planning. Its core advantage lies in a hierarchical

reasoning mechanism: dynamic knowledge retrieval is triggered by
imaging feature analysis, combined with causal logic to generate
traceable diagnostic and therapeutic decision trees. This approach
mitigates GPT-4o′s cross-modal misalignment and reduces
empirical biases inherent to resident physicians in complex cases.
The ReasonAgent addresses the cross-modal alignment limitations
of general LLMs and offers evidence-based reasoning outcomes,
establishing a novel framework for the application of medical
artificial intelligence in real-world clinical practice.
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