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Mitochondrial transfer is defined the process through which specific cell types
release their mitochondria and subsequently transfer them to unrelated cell
types in response to various physiological or pathological stimuli. This process
enhances cellular function and alters disease states. Recent research has
begun to explore the potential of intercellular mitochondrial transfer as a
therapeutic strategy for human diseases. Mitochondrial dysfunction represents
a significant pathological alteration in osteoarthritis, and studies indicate that
mitochondrial transfermay serve as an effectivemodulatory treatment approach
for osteoarthritis. Mitochondrial transfer, as an innovative subcellular therapeutic
technique, presents the advantages of diverse acquisition methods and multiple
transmission pathways. This paper aims to summarize the current understanding
of the mechanisms of mitochondrial transfer in relation to osteoarthritis,
emphasizing the existing research onmitochondrial transfer in osteoarthritis and
its potential as a disease-modifying therapy.

KEYWORDS
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1 Introduction

Within eukaryotic cells, mitochondria are considered some of the earliest internal
membrane systems. They create adenosine triphosphate (ATP) through the mechanism
of oxidative phosphorylation (OXPHOS), thus supplying the essential energy for cell
functions and serving as a key driving force for numerous cellular processes. This
is why they are commonly referred to as the “powerhouses of the cell” (Lane
and Martin, 2010). Mitochondria were initially recognized for their critical role
in OXPHOS, but as a diverse family of organelles, they exhibit a multitude of
additional functions—up to a dozen—beyond OXPHOS, all of which are essential
for cellular viability. To systematically delineate these various functions, researchers
have categorized them into five dimensions: molecular level, biological characteristics,
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bioactivity, functions, and biological behaviors, Furthermore, they
have established three levels of histological organization, which
include cell types and subtypes, and mitochondrial characterization
(Monzel et al., 2023). Mitochondrial functions encompass a range
of molecular activities, including amino acid metabolism (Ryu et al.,
2024)., ion uptake (Naón et al., 2023), and molecular damage
(Verkerke et al., 2024); biological characteristics related to protein
input (Tracy et al., 2022), lipid synthesis (Wedan et al., 2024),
molecular modifications (Zhang F. et al., 2023; Miriam et al.,
2021), and the maintenance and expression of mitochondrial
DNA (mtDNA) sequences (Saurer et al., 2023; Rahul et al., 2023);
bioactivity categories involving transport (Zhu et al., 2024) and
protein complexes/supercomplexes (Milenkovic et al., 2023);
functional aspects including OXPHOS (Manford et al., 2021),
permeability transition (Zhou et al., 2019)., and the biosynthesis
of iron-sulfur (Fe/S) clusters and hormones (Antoine et al., 2017;
Olga et al., 2025); and biological behaviors such as fusion/fission
dynamics (Di Bona et al., 2024), mitotic nuclear signaling
(Zierhut et al., 2019), and intercellular transfer (Baldwin et al.,
2024). These categories illustrate a hierarchical progression of
mitochondrial functional behaviors, wherein higher-level biological
functions exert regulatory feedback on lower-level biological
functions.

Mitochondrial transfer is defined as the targeted release of
functional mitochondria from donor cells and their subsequent
uptake by recipient cells, modulating critical cellular activities
(Borcherding and Brestoff, 2023; Frisbie et al., 2024). Research has
demonstrated that intercellular mitochondrial transfer can occur
through multiple mechanisms in different tissues, serving several
critical functions, including supporting the metabolism of recipient
cells (McCully et al., 2009; Caicedo et al., 2015; Kim et al., 2018),
regulating cell quality (Hutto et al., 2023; Huang et al., 2023),
promoting wound healing (Boudreau et al., 2014), modulating
the immune system (Tanmoy et al., 2021), and maintaining
metabolic homeostasis (Brestoff et al., 2021; Crewe et al., 2021).
Mitochondrial transfer provides novel insights for disease treatment:
if extracellular mitochondrial transfer into cells is indeed feasible,
it raises the question of whether we can artificially introduce
free mitochondria via specific pathways to modulate physiological
processes or to influence the occurrence and progression of diseases.
Consequently, research pertaining to mitochondrial transplantation
has gradually begun to emerge (Lin et al., 2024; Wu et al.,
2024). Mitochondrial transplantation involves the replacement
or compensation of damaged mitochondria within cells with
healthymitochondria, thereby impacting cellularmetabolism, signal
transduction, and promoting cell survival. Numerous studies have
investigatedmitochondrial transplantation utilizing various carriers
(Cai W. et al., 2024; Long et al., 2024; Sun et al., 2022), establishing
a robust research foundation for the treatment of diverse diseases,
such as wound healing (Yao et al., 2024), pulmonary diseases
(Ding et al., 2024), and cancer (Marabitti et al., 2024), while
providing promising therapeutic directions.

Mitochondrial transfer is regulated by specialized intercellular
mechanisms that exhibit precise tissue and cell type selectivity,
directly modulating essential cellular functions (Table1)
(Baldwin et al., 2024; Levoux et al., 2021; Gao et al., 2019;
Feng et al., 2023; Wang et al., 2020; Fahey et al., 2022; Rosina et al.,
2022; Brestoff et al., 2021; Kawano et al., 2023; Jacoby et al.,

2022; Mistry et al., 2019; Ritsuko et al., 2024; Yuan et al., 2021;
Morrison et al., 2017; Nicolás-Ávila et al., 2020; Ikeda et al.,
2021; Zhou et al., 2024; van der Vlist et al., 2022; Eo et al., 2024;
Peruzzotti-Jametti et al., 2021; Jia et al., 2023; Norat et al., 2023;
Weinhäuser et al., 2023; Kidwell et al., 2023; Zhang H. et al.,
2023; Lazar and Goldfinger, 2021; Xu et al., 2021a). At the cellular
level, mitochondrial transfer can enhance the energy metabolism
of recipient cells, maintain homeostasis, and activate cellular
functions (Cai J. et al., 2024). Notably, cancer cells are known
to actively acquire mitochondria from immune cells such as T-
cells and macrophages. The acquisition of mitochondria by cancer
cells can weaken anti-tumor immunity, support their metabolic
demands, and promote proliferation (Zhang H. et al., 2023). At
the tissue level, mitochondrial transfer contributes to the stability
of various organ systems and initiates coordinated defense and
protective mechanisms (Nicolás-Ávila et al., 2020). This protective
role is exemplified in neurodegenerative pathologies and brain
injury (Zhou et al., 2024; Hannah et al., 2024). Specifically,
microglia transfer healthy mitochondria to compromised neurons
via tunneling nanotubes (TNTs), which reduces oxidative stress and
normalizes pathogenic gene expression. During acute brain injury,
mitochondrial transfer further replenishes energy reserves while
scavenging toxic reactive oxygen species (ROS), thereby establishing
neuroprotection (Fu et al., 2025). Beyond endogenous processes,
exogenous induction of mitochondrial transfer represents a
promising therapeutic strategy for tissue repair. Osteoarthritis (OA)
is a condition associated with this process, wherein mesenchymal
stem cells (MSCs) transfer mitochondria to chondrocytes, thereby
promoting their regeneration and repair (Fahey et al., 2022;
Altuntaş et al., 2025). Interestingly, under different circumstances,
the identities of the receptor and donor in mitochondrial transfer
can be interchangeable (Nicolás-Ávila et al., 2020; Ikeda et al.,
2021). In other words, certain cells may act as mitochondrial
donors under specific conditions, and under other conditions,
they may switch to become receptors. This suggests that many
cells have the ability to both transfer and receive mitochondria,
and this ability may be regulated. Furthermore, mitochondrial
intercellular transfer involves not only the relationship between
receptors and donors, but also potentially complex multicellular
interactions, which warrant further investigation in future
research.

In the senior population, OA is a prevalent joint disorder and
plays a major role in causing disability. The mechanisms underlying
OAare closely associatedwithmitochondrial function. A substantial
body of research indicates that mitochondrial dysfunction results
in energy depletion (Singh et al., 2010), the accumulation of
ROS (Shi et al., 2025), variation in mtDNA (Mercedes et al.),
and calcium metabolism (Wenyu et al., 2024). The initiation and
advancement of OA are influenced by these combined factors
(Sun et al., 2021; Durán-Sotuela et al., 2023; Blanco et al., 2018).
For these reasons, targeted interventions aimed at mitochondrial
function have emerged as a potential modifying therapy for OA.
Such interventions primarily encompass drug-targeted regulation
(Zhang Y. et al., 2023; Chen et al., 2022) and biological interventions
using mesenchymal stem cells (Kim et al., 2022; Zhai et al., 2022).
Artificial mitochondrial transfer has been shown to effectively treat
experimental OA phenotypes in recent studies, establishing novel
therapeutic avenues for OA (Kim et al., 2023; Lee et al., 2022). This
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review discusses the definitions and attributes of mitochondrial
transfer and OA, as well as the established mitochondrial-related
molecular mechanisms implicated OA pathogenesis. Furthermore,
we will explore artificial mitochondrial transfer as a potential a
therapeutic option forOA and propose pertinent scientific questions
and researchmethodologies that warrant further investigation in the
domain of mitochondrial therapy for OA.

2 The biological basis of
mitochondrial transfer

In the early stages of mitochondrial research, it was widely
believed that mitochondria within cells were solely inherited
through vertical transmission during cell division or through
mitochondrial biogenesis. However, in 2006, researchers observed
the phenomenon of mitochondrial transfer between co-cultured
cells, a process that could rescue ρ0 cells lacking mtDNA
(88). Since then, mitochondrial transfer has been recognized as
an important higher-order biological function of mitochondria,
leading to increased attention and extensive investigation in the
field. The biological mechanism of mitochondrial transfer is
a highly complex and multi-layered process, involving various
molecules, the cytoskeletal system, and intracellular dynamic
processes. The biological structural foundation of mitochondrial
transfer includes mitochondrial membrane proteins (Ahmad et al.,
2014), motor proteins (Joshi et al., 2019), ATP generation and
utilization (Spees et al., 2006), regulatory mechanisms, as well as
the cytoskeleton and extracellular vesicles. The unique biological
structure of mitochondria allows them to exhibit diversity in
physiological processes and functions, enabling them to dynamically
and reversibly adapt to energy demands, environmental changes,
and other. These structures and mechanisms work in coordination
to ensure that mitochondria can undergo dynamic transfer within
cells as needed, in order to meet energy demands, respond
to environmental changes, and support the normal functioning
of the cell.

2.1 Mitochondrial membrane proteins and
motor proteins

The outer and inner membranes of mitochondria are the
core of their structure. They not only participate in maintaining
mitochondrial functions (such as ATP synthesis, metabolite
transport, etc.) but also play crucial roles during the transfer process
(Hu et al., 2024;MacVicar et al., 2019; López-Doménech et al., 2018).
Receptor proteins on the mitochondrial outer membrane interact
with motor proteins in the cytoskeleton, helping mitochondria
attach and move along the cytoskeleton on microtubules or
microfilaments. Some proteins are located on the mitochondrial
inner membrane and are involved in transport and positioning
functions; they may regulate the stability and transfer of
mitochondria by interacting with microtubules or microfilaments.
Mitochondrial RhoGTPase 1 (Miro 1) is amitochondrial-associated
Rho-GTPase, a type of GTPase found on the mitochondrial
outer membrane. The primary function of Miro one is to
regulate the positioning and movement of mitochondria. During

mitochondrial transfer, mitochondria use Miro one to shuttle
along the actin-microtubule highways into the cytoplasm of the
recipient cell (Ahmad et al., 2014).

Mitochondrial transfer relies on intracellular motor proteins,
which drive the movement of mitochondria. Motor proteins
typically move along the negative end of microtubules (toward
the centrosome), pulling mitochondria from the cell membrane
toward the cell center or other regions. On the other hand, dynein
proteins move along the positive end of microtubules (toward
the distal end), pushing mitochondria toward the cell membrane
or protrusions. These motor proteins form stable complexes
with mitochondrial membrane proteins, enabling mitochondria
to move in a specific direction (López-Doménech et al., 2018).
Studies have reported that mitochondrial quality control processes
mediated by migration bodies involve the regulation of motor
proteins. When mitochondria are exposed to mild stress, damaged
mitochondria are transported to migration bodies, where they are
subsequently expelled from the migrating cells (Jiao et al., 2021).
Research has also shown that microglial cells rely on dynamin-
related protein 1 (DRP1) and mitochondrial fission protein 1
(FIS1) to release free mitochondria. This indicates that both the
movement of mitochondria within the cell and their quality control
during stress responses are tightly regulated by motor proteins,
ensuring proper mitochondrial distribution and function in the cell
(Joshi et al., 2019).

2.2 ATP generation and utilization

All mitochondria possess a core OXPHOS system, which
consists of five multi-protein complexes, with four being part
of the electron transport chain (ETC.). On the inner membrane
of the mitochondria, the free energy (ΔG) generated by these
complexes establishes an electrochemical gradient, which in
turn creates a membrane potential, serving as a major source
of energy (Edman et al., 2024). The formation of membrane
potential is not only essential for maintaining mitochondrial
permeability, channel integrity, and regulating the morphology
of mitochondrial cristae, as well as mitochondrial fusion/fission
dynamics, but also drives several other mitochondrial functions.
These include ion uptake (such as Ca2+, Na+, and Mn2+), synthesis
of nuclear-encoded proteins and antioxidant defense regenerated,
precursor Fe/S clusters, antiviral signaling, and ATP synthesis
by the Fo ATP synthase F1 subunit, among others. ATP also
powers motor proteins (such as dynein and kinesin), driving the
transfer of mitochondria, and ultimately serves as the energy
source for the recipient cell to uptake mitochondria (Figure 1)
(Spees et al., 2006).

2.3 Regulation of mitochondrial transfer

Mitochondrial transfer is not only dependent on the action of
motor proteins but is also regulated by various signaling pathways.
The regulation of mitochondrial transfer involves calcium ion
(Ca2+) uptake (Wang and Schwarz, 2009), cellular stress responses
(Wang et al., 2018), and the stability of microtubules. Changes in
the Ca2+ concentration can affect the position and movement of
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FIGURE 1
Proteins associated with mitochondrial transfer and regulatory processes. The biological basis of mitochondrial transfer lies in the pairing and binding
of membrane proteins and dynamin proteins. After protein binding, movement is typically facilitated by microtubules. The energy for this movement
primarily comes from ATP produced by the mitochondria. This process is also regulated by calcium ion uptake and bio-mechanical stress stimuli.
(Graphic is created by FigDraw. Copyright Code:ORURW7e3c7).

mitochondria (Emily et al., 2018), especially in neurons, where
calcium signaling is crucial for the transfer of mitochondria to
and from the synaptic sites (Hayakawa et al., 2016). When cells
encounter stress (such as hypoxia (Hu et al., 2023), oxidative stress
(Wang et al., 2018), etc.), mitochondria may alter their position or
accumulate in specific regions to adapt to environmental changes.
The stability and arrangement of the microtubules inside the cell
directly influence the movement of mitochondria. Mitochondrial
morphology changes, such as fission and fusion, also play a major
role in transfer process (Valm et al., 2017). Mitochondrial fission
typically occurs when the cell needs to regulate mitochondrial
number (for example, during cell division) (Jiao et al., 2021),
while fusion helps mitochondria merge into a more powerful
functional unit (Nasoni et al., 2021). These morphological changes
are closely related to the cell’s energy needs and also affect
the distribution and transfer of mitochondria within the cell
(Fu et al., 2025).

2.4 Cytoskeleton and extracellular vesicles

Mitochondrial transfer between cells occurs in various tissues
in vivo and can be classified into mediated and unmediated
mechanisms. Mediated transfer occurs through transient cell
connections, based on the cytoskeletal system, which provides
“tracks” and “power” for mitochondrial movement (Boldogh
and Pon, 2007). Cells establish connection channels, which are
elongated, membrane-wrapped structures that allow organelles
to transfer between cells. Mitochondria are transferred from
1 cell to another through these connections (Figure 2). These cell
connections are typically formed by TNTs and/or gap junction
channels (GJC)mediated by connexin 43 (Cx43). TNTs are dynamic
structures that permit the exchange of proteins, soluble molecules,
and organelles. The transfer of organelles within TNTs is crucial
for regulating cell growth, signaling, and disease progression

(Nasoni et al., 2021; Saha et al., 2022). Cx43 exists in the
mitochondrial inner membrane in a hemichannel form, is related to
gap junction channels, and may also regulate the formation of TNTs
(Tishchenko et al., 2020).

Extracellular vesicle (EV) can also serve as medium for
mitochondrial transfer, with mature mitochondria present in the
vesicles secreted by cells, which are then delivered to recipient
cells. Mitochondrial-derived vesicles (MDVs) have been found in
a variety of cell types, including osteoblasts (Suh et al., 2023),
bone marrow adipocytes (Crewe et al., 2021), and cardiomyocytes
(Ikeda et al., 2021), as well as in migrating cells (Duan et al., 2020).
In the extracellular vesicles of these cells, damaged mitochondria
are more commonly observed. These structures may be regulated
by the PINK1/parkin pathway. Parkin is an E3 ubiquitin ligase
that binds PINK1, marking damaged mitochondria for degradation
by mitophagy. In the absence of parkin, this elimination process
is impaired (Ikeda et al., 2021). Rab7, a small GTPase, plays a
critical role in regulating the maturation of endosomes. When
extracellular vesicles contain mature mitochondria (EVMs), GTP-
bound Rab7 is the determinant of EVM secretion out of the cell
(Liang et al., 2023).

Mitochondrial transfer can also occur in a free form. One
way is through direct cell fusion, which results in the mixing
of cytoplasm and organelles. Another way is through direct
contact, where mitochondria are transferred via direct contact
between cell membranes, and the mitochondria are released
into the extracellular space in a free state, with recipient
cells actively capturing these mitochondria (Brestoff et al.,
2021). This free transfer is more commonly observed in blood
components, where free mitochondria, lacking extracellular
vesicles, are approximately 0.5–1 μm in diameter and comprise
the full-length mtDNA genome. However, their origin is
heterogeneous, suggesting that free mitochondria in blood
may originate from different cell types (Boudreau et al., 2014;
Borcherding et al., 2022).
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FIGURE 2
Cytoskeleton and extracellular vesicles associated with mitochondrial transfer. Mitochondrial transfer utilizes microtubules as “tracks” to move
mitochondria to specific compartments through the pairing of specialized mitochondrial membrane proteins and dynamin proteins. Mitochondria can
also be transported loaded into vesicles and released extracellularly under the regulation of GTPases. The ultimate fate of extracellular vesicles derived
from mitochondria—whether they are internalized, released, or trigger autophagy—is also regulated by signaling pathways. EVMs, extracellular vesicles
contain mature mitochondria. (Graphic is created by FigDraw. Copyright Code: SSWIW00a0a).

3 Overview of the characteristics of
OA

3.1 Clinical features and pathological
process of OA

OA is a leading cause of musculoskeletal pain and disability
and is a common type of arthritis. As a chronic inflammatory
condition associated with the aging process, OA primarily affects
individuals aged 65 and older, with its prevalence significantly
increasing with advancing age (Motta et al., 2023). Clinically,
OA is characterized by symptoms such as joint stiffness,
chronic pain, instability, deformity, radiographic evidence of
joint space narrowing (Heidari, 2011). Given the complexity
of its pathogenesis, current treatment primarily focus on
alleviating joint stiffness and pain, aiming to provide palliative
symptom relief and improve the quality of life for affected
individuals.

The onset of this disease is attributed to an active dynamic
imbalance between repairing and destroying joint tissue, rather
than the passive degenerative process or mere wear-and-tear
typically described (Prieto-Alhambra et al., 2014; Fu et al., 2018).
And then, alterations occur in the components of cartilage,

resulting in the loss of its integrity (Loeser et al., 2016). These
compositional changes alter the properties of the cartilage and
increase its susceptibility to physical damage. Initial erosion
usually occurs at the surface, followed by deeper fissures in
the cartilage and subsequent expansion of calcified cartilage
areas. During the repair process, hypertrophied chondrocytes
demonstrate enhanced synthetic activity, leading to the production
of matrix degradation byproducts and pro-inflammatorymediators.
These factors disrupt the regulation of chondrocyte function and
influence the adjacent synovium, stimulating both proliferation and
inflammatory responses. The proliferating synovial cells also release
pro-inflammatory products, a process that is accompanied by tissue
hypertrophy and increased vascular distribution. Additionally, in
the subchondral bone, there is an elevation in bone turnover and
vascular invasion, which facilitates the extension from subchondral
bone into the cartilage. Furthermore, the formation of bone
spurs at the joint margins due to endochondral ossification are
significantly influenced by inflammatory biological factors, as well
as by mechanical overload and abnormal joint kinematics (Hunter
and Bierma-Zeinstra, 2019). Collectively, these factors disrupt the
dynamic balance of cartilage, leading to an increase in stiffness
and changes in the biological properties, ultimately resulting in the
development of OA.
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3.2 Etiological analysis of OA

Among the etiologies of OA, limited cartilage regeneration
is a key factor in disease progression. Articular cartilage is a
thin layer of tissue that covers the surfaces of articulating bones,
typically measuring between 2 and 4 mm in thickness, and is
referred to as “hyaline cartilage” due to its clear and transparent
appearance (Fujii et al., 2022). This type of cartilage exhibits
considerable elasticity and lubricity, enabling it to effectively
support mechanical loads and facilitate smooth movement between
bones, thereby significantly reducing friction during joint activities
(Fujii et al., 2022; Iwamoto et al., 2013). However, the regenerative
capacity of cartilage is relatively limited and is influenced by various
factors. Consequently, self-repair following injury often proves
inadequate, which can lead to the development of degenerative
diseases, particularly OA (123).The academic community has
proposed several hypotheses to explain the failure of cartilage
regeneration. These hypotheses include the scarcity of regenerative
potential cells, pathological mechanical alterations, persistent
inflammation, and metabolic stress, among others.

It is important to note that the physiological characteristics
of chondrocytes significantly influence their regenerative capacity.
The low density of chondrocytes, coupled with the relatively
limited proliferative ability of mature chondrocytes, is considered
the main reason for the insufficient self-regeneration capacity of
cartilage (Kai-di et al., 2021; Jerry and Kyriacos, 2004). Additionally,
aging is associated with pronounced senescence in chondrocytes,
resulting in a reduction in cell density and in vitro proliferative
capacity, a phenomenon that is particularly evident in patients
with post-traumatic OA (Barbero et al., 2004; David et al.,
2017). Pathological mechanical changes within the joint can lead
to cartilage loss. Trauma or chronic degenerative changes may
modify the load distribution across the joint, thereby affecting the
contact area of the load. This mechanical alteration may stimulate
the activation of osteoclasts, fibroblasts, and macrophages, which
release pro-inflammatory mediators that gradually degrade the
ECM, ultimately resulting in damage to the collagen network
and inflammation of the synovium (Caravaggi et al., 2021;
Assirelli et al., 2022). The widely studied concept of “mechanical
inflammation” refers to the pathological process of inflammatory
signaling caused by mechanical stress. Meanwhile, non-resolving
inflammation may result in histological changes in cartilage.
Inflammatory stress impairs the activity and matrix synthesis of
chondrocytes and promotes matrix degradation by stimulating the
production of various matrix metalloproteinases and interleukin-
2 (Andriacchi et al., 2004).

Moreover, chondrocytes depend on molecular mechanisms
that are specifically adapted to low-oxygen and low-nutrient
environments under physiological conditions for normal operation.
Following an injury, it becomes difficult to maintain the local
partial oxygen pressure at an ideal level, leading to increased energy
demands that can affect the functionality of chondrocytes and
the requisite microenvironment. At this point, cells experience
metabolic changes, particularly the dysregulation of the glycolytic
pathway, resulting in the accumulation of lactic acid, which further
alters the local microenvironment (Dolzani et al., 2019). This
metabolic change inhibit matrix synthesis and accelerates the
degradation process of cartilage.

4 Mitochondrial dysfunction in OA

OA is a heterogeneous disease with various potential pathogenic
pathways. Each common risk factor for OA may trigger different
mechanisms of disease, particularly those involving oxidative stress,
impaired biosynthesis and growth responses of chondrocytes and
osteoblasts, synovial inflammation, and increased degradation and
calcification of the cartilage matrix (Mathiessen and Conaghan, 2017;
Lepetsos and Papavassiliou, 2016; Blanco et al., 2011). OA is also
associated with phenotypic differences, such as age and obesity, and
the pathogenesis of OA varies markedly from one population to the
next,withpossible interactionsbetweenthemechanisms(Muthuetal.,
2023). In this context, OA can be viewed as a syndrome rather than a
singular disease, with potential interactions among its mechanisms
that remain to be fully elucidated. Currently, there are no clear
classification standards for mitochondrial dysfunction in OA. To
describe the changes occurring in mitochondria within OA more
clearly, this article categorizes them into three distinct categories:
structural abnormalities, alterations in biological function, and
biological interactions.

4.1 Structural abnormalities

When mitochondrial homeostasis or mitosis is impaired,
dysfunctional mitochondria cannot be removed in a timely manner,
leading to a disturbance in the dynamic balance ofmitochondria and
further affecting chondrocyte health. The regulatory mechanisms
of mitochondrial quality control are impaired in individuals
diagnosedwithOA.This damage involvesmitochondrial biogenesis,
mitophagy, and mitochondrial dynamics, which include processes
of fission and fusion (Guo et al., 2025). Observations have shown
that mtDNA in patients with OA exhibits damage and mutations,
resulting in a decrease in the size, quantity, and overall content
of mitochondria (Alejandro et al., 2024; Morena et al., 2022).
Genomic instability can cause damage to mtDNA, further affecting
mitochondrial function.

Damaged mtDNA can cause mitochondrial respiratory
chain to malfunction, subsequently resulting in the production
of ROS. Excessive production of ROS is a prominent feature
of mitochondrial dysfunction. It can cause diverse forms of
mtDNA damage. The phenomenon encompasses a range of
structural alterations, including oxidative base damage, strand
breaks, and telomere shortening. It is hypothesised that such
damage may ultimately result in cell cycle arrest and cellular
senescence (Macip et al., 2002). In addition, research findings
have indicated that particular mtDNA variants, encompassing
specific haplotypes, exhibit a notable correlation with the initiation
and progression of OA. (Vermulst et al., 2007). The relationship
between mtDNA haplotypes and OA may exhibit heterogeneity
across different geographic populations, indicating that these
haplotypes could serve as potential biomarkers for the diagnosis
and prognosis of OA (Fang et al., 2014).

Mitochondrial dysfunction can induce alterations in autophagy,
which may lead to the accumulation of defective mitochondria,
thereby potentially increasing mitochondrial levels in chondrocytes
of patients with OA. Furthermore, chronic oxidative damage may
result in a reduction of FIS1, which promotes mitochondrial
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elongation and the formation of giant mitochondria (Lee et al.,
2007). This elongation may contribute to the excessive expansion
of the mitochondrial network, which plays a significant role in the
progression of age-related diseases such as OA.

The mitochondrial permeability transition pore (mPTP)
comprises subunits that are situated within both the inner and
outer mitochondrial membranes (Bonora et al., 2022). In the
chondrocytes of OA patients, factors such as oxidative stress,
calcium overload, and depolarization of the inner membrane
may lead to the pathological opening of mPTP. The transient
activation of mPTP, triggered by a variety of stimuli, can induce
protective pathways, a phenomenon referred to as “mitochondrial
excitability.” Conversely, a persistent opening of mPTP can
culminate in the release of apoptotic factors, which, if prolonged
and unregulated, may ultimately lead to the demise of the
cartilage cells (Patel et al., 2021).

4.2 Alterations in biological function

Oxidative stress-mediated mitochondrial dysfunction in
chondrocytes constitutes a key driver of OApathogenesis (Figure 3).
ROS are widely recognized as contributors to chondrocyte damage
and the progression of OA. The excessive production of ROS
disrupts joint homeostasis, triggering cell apoptosis and accelerating
metabolic degradation, thereby impairing various structures of the
joint (Loeser et al., 2016). Interleukin-1 beta (IL-1β) and tumor
necrosis factor-alpha (TNF-α) are major inflammatory mediators
in the pathogenesis of OA, and their actions are closely related
to mitochondrial dysfunction (van Vulpen et al., 2015). Oxidative
stress is primarily attributed to dysfunctional mitochondria, which
generate ROS such as superoxide anions and hydroxyl radicals.
Excessive ROS has been observed to induce an inflammatory
response, which has been linked to the expression of matrix
metalloproteinases (MMPs) and the activation of associated
signalling pathways, including the MAPK/ERK pathway. The
aforementioned alterations have been shown to impede the
process of glycosaminoglycan and type II collagen synthesis,
whilst concurrently inducing an escalation in the concentrations
of both type I collagen and MMPs. Furthermore, there is a
concomitant increase in pro-inflammatory cytokine production
(Rieder et al., 2018). Furthermore, excessive ROS can also damage
mtDNA and reduce its repair capacity, highlighting the complex
relationship between mitochondrial dysfunction and OA, making
it a potential therapeutic target. In a rat model of OA, a drug
delivery system (DDS) containing melatonin was administered via
intra-articular injection. Melatonin was found to mitigate cartilage
degeneration through its antioxidant properties, which indirectly
enhanced mitochondrial function and facilitated the repair of the
cartilage matrix (Zhang Y. et al., 2022).

Damaged mitochondria lead to insufficient energy production,
producing impaired energymetabolism and an inability tomaintain
normal cellular physiological functions, thereby exacerbating
chondrocyte damage and apoptosis. In response to environmental
stress, chondrocytes exhibit a tendency to switch between different
metabolic pathways to adapt to these changes (Lee et al., 2012).
The alterations in metabolic pathways are closely related to
mitochondrial dysfunction, which may result in a marked decrease

in the NAD+/NADH equilibrium, an increased rate of anaerobic
glycolysis, and alterations in lipid and amino acid metabolism (Stein
and Imai, 2012). The decline in the NAD+/NADH equilibrium, in
combination with an increase in the ADP/ATP and AMP/ATP
ratios, leads to the activation of AMP-activated protein kinase
(AMPK). The balance between OXPHOS and glycolysis is
predominantly regulated by the AMPK and mTOR signaling
pathways (Herzig and Shaw, 2018). Changes in the NAD + pathway
can severely impact mitochondrial function, potentially leading to
cell growth arrest or impairing cellular metabolism through the
depletion of sirtuins (SIRT) 3 and SIRT 5 (Miwa et al., 2022). It
has been reported to improve respiratory chain function through
the induction of SIRT3, with particular emphasis on its potential
application in the treatment of OA (Zhang Y. et al., 2023).

Abnormal calcium regulation leads to overproduction of
reactive oxygen species, mitochondrial depolarisation and reduced
mitochondrial membrane potential, which further contributes to
chondrocyte apoptosis. In the context of OA, the elevation of
cytosolic Ca2+ concentration prompts mitochondria to rapidly
absorb Ca2+, thereby preventing calcium overload within the cells
(Bravo-Sagua et al., 2017).However, excessive calciumaccumulation
within mitochondria can result in heightened production of
ROS, leading to mitochondrial dysfunction and senescence. This
phenomenon has the capacity to exert a deleterious effect on
various facets of mitochondrial metabolism, including nitric oxide
synthesis, the process of releasing cytochrome c, the process of
altering mitochondrial membrane permeability and the process
of activation of calcium/calmodulin-dependent protein kinase
II (CaMKII) signalling pathways (Brookes et al., 2004; Peng
and Jou, 2010). In response to this pathological alteration, the
utilization of nanoparticles carrying siRNA alleviates mitochondrial
calcium overload in MSCs, thereby regulating dysfunctional
mitochondrial autophagy. This approach has demonstrated efficacy
in the treatment of OA (Zhai et al., 2022).

In an environment characterized by oxidative stress,
chondrocytes may undergo regenerative mitochondrial transfer.
Research has observed mitochondrial transfer to chondrocytes
through fluorescence imaging, finding that this process is
associated with enhanced mitochondrial function, likely correlated
with the upregulation of gap junction protein Cx43 expression
(Wang et al., 2021; Mayan et al., 2015). In the context of an
inflammatory environment, the transfer of mitochondria from
MSCs to chondrocytes is significantly increased, with Cx43 playing
a critical mediating role in this process (Irwin et al., 2024). Upon
contact with damaged cartilage, MSCs localize to the injury
site and deliver mitochondria to chondrocytes through cellular
protrusions (Fahey et al., 2022). Experimental results indicate
that combined inflammatory and mechanical stress enhances
mitochondrial transfer between chondrocytes, suggesting that
mitochondrial transfer may occur spontaneously in the progression
of OA. However, further experimental validation is necessary to
substantiate these observations.

4.3 Biological interactions

Chondrocytes have been observed to exhibit a response
to mechanical stimuli, which is mediated by the extracellular
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FIGURE 3
Alterations in biological function of mitochondria during the development of osteoarthritis. Mitochondrial dysfunction leads to oxidative stress,
resulting in the excessive production of ROS. This process activates relevant signaling pathways, triggering inflammatory responses and metabolic
abnormalities. Calcium overload exacerbates this process, causing alterations in mitochondrial membrane permeability, ultimately leading to
chondrocyte cell death. (Graphic is created by FigDraw. Copyright Code: SSTIY92b49).

matrix (ECM). The ECM plays a crucial role in the regulation
of the epigenetics in diseases. Mitochondria may serve as a
potential communication medium between mechanical signals
and epigenetics modifications (Figure 4). The relationship
between inhibition of matrix synthesis and activation of matrix
degradation is also affected in OA. Redox abnormalities in the
mitochondria have been shown to inhibite matrix synthesis
whilst concomitantly activating matrix metalloproteinases, thus
promoting the degradation ofmatrix components and, by extension,
degenerative cartilage lesions.Within the context of OA, an elevated
level of cartilage matrix rigidity in regions that are subjected
to substantial stress has been observed to result in considerable
impairment to the mitochondria of the cartilage cells. This, in turn,
initiates the demethylation of histone H3 lysine 27 trimethylation
(H3K27me3).The opening of the mPTP promotes the translocation
of plant homeodomain finger protein 8 (Phf8) to the nucleus,
catalyzing the demethylation of H3K27me3 (Kan et al., 2024).

Abnormal epigenetic modifications are considered preliminary
factors in the occurrence and development of OA, with a strong
correlation tomitochondrial dysfunction (Jiang et al., 2024). Genetic
and epigenetic abnormalities have been demonstrated to result in
increased mitochondrial respiration and glycolysis, elevated levels
of free radicals and pro-inflammatory cytokines, and augmented
rates of apoptosis. Research has demonstrated that exposure to
a hyperglycemic environment in utero increases the vulnerability
to OA in later adulthood, attributable to persistently diminished
expression levels of Sirt3. The downregulation of Sirt3 results in
impaired mitotic function of the cells responsible for cartilage
production (chondrocytes), abnormal mitochondrial respiration,
and the incapacity to efficiently eliminate aged and damaged
mitochondria in a timely manner. The consequence of this is an
imbalance in mitochondrial homeostasis, which in turn triggers
disease through epigenetic regulation (Li et al., 2024a).

During the occurrence of OA, dysfunctional mitochondria
induce the production of cytokines. These cytokines further
promote chondrocyte apoptosis and accelerate the progression
of OA. In the initial stages, it has been observed that both
the Phosphatidylinositol 3 kinase (PI3K)/Protein kinase B (Akt)
signalling pathway (relevant to cartilage cell death) and the caspase
pathway (pertinentto the initiation of cell death) are activated.
This results in oxidative stress-induced cartilage cell death, a
process involving the mitochondria (Li et al., 2019). These signaling
cascades are crucial for various biological processes, and any
imbalances within these pathways can disrupt normal biological
processes and lead to diseases. Additionally, this dysregulation
may activate the tumor protein p53 signaling pathway, inhibiting
peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-
1α) and peroxisome proliferator-activated receptor gamma co-
activator 1β (PGC-1β). This process may contribute to the
exacerbation of mitochondrial dysfunction (Sahin et al., 2011).

During the process known as mitochondrial biogenesis, the
nuclear-encoded mitochondrial transcription factor A (TFAM)
is an essential component of mtDNA transcription and the
regulation of mitochondrial biogenesis (Picca and Lezza, 2015).
PGC-1α is activated by physiological stressors, which in turn
activate transcription factors and regulate the transcription
of TFAM (Wu et al., 1999). Furthermore, PGC-1α can also
modulate the activity of other transcription factors such as
peroxisome proliferator-activated receptor γ (PPARγ), Yin Yang
1(YY-1), and GA (Guanine-Adenine)binding protein transcription
factor (GABPA), thereby impacting mitochondrial function
(Scarpulla, 2011). The intravenous administration of meta-
Defensomes polymer nanoparticles in collagenase-induced OA
mice resulted in the transformation of pro-inflammatory classically
activated macrophages (M1 macrophages) into anti-inflammatory
alternatively activated macrophages (M2 phenotypes). This
intervention led to an increase in the expression of mitochondrial

Frontiers in Cell and Developmental Biology 11 frontiersin.org

https://doi.org/10.3389/fcell.2025.1643141
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


He et al. 10.3389/fcell.2025.1643141

FIGURE 4
Mitochondria-related biological interactions in the development of osteoarthritis. Under biomechanical stress, mitochondrial dysfunction interacts
with aberrant epigenetic modifications, contributing to alterations and damage in the chondrocyte nucleus. The subsequent release of release
danger-associated molecular patterns (DAMPs) exacerbates the inflammatory response, ultimately driving the progression of osteoarthritis. TFAM,
nuclear-encoded mitochondrial transcription factor A. (Graphic is created by FigDraw. Copyright Code: SSTIY92b49).

transcription factor A, restoration of aerobic respiration, and a
significant reduction in synovitis, thereby effectively inhibiting the
early progression of OA (Zhang L. et al., 2022).

The relationship between mitochondrial dysfunction and the
activation of the immune system is complex and intertwined,
serving as a significant factor in the pathogenesis of OA.
Dysfunctional mitochondria release danger-associated molecular
patterns (DAMPs), which can trigger innate immune responses
and induce inflammation (Miwa et al., 2022; Wan et al., 2014).
As the human organism ages, there is an observed increase in
the concentration of free mtDNA within cells. This increase has
been shown to correlate with the presence of markers associated
with sterile inflammation. This increase activates immune response
pathways, including the NOD-like receptor family pyrin domain
containing 3 (NLRP3) inflammasome, which belongs to the family
of nucleotide-binding oligomerization domain-like receptors. The
activation of the NLRP3 inflammasome consequently results in
the maturation of the second messenger GMP-AMP, which in turn
activates the immune response, thereby promoting inflammatory
responses (White et al., 2014).

5 Practice and prospects of
mitochondrial transfer involvement in
OA therapy

5.1 Mitochondrial transfer in OA therapy

In the management of OA, in addition to conventional
symptomatic treatments and surgical interventions, disease-
modifying therapy (DMT) is increasingly receiving scholarly
attention (Li Z. et al., 2024). As a precision intervention, DMT
corrects core OA etiologies through biomarker-directed pathway
modulation, not only arresting disease trajectory but also activating

endogenous chondrocyte regenerative mechanisms (Yulong et al.,
2021; Ronghui et al., 2024; Giuliana et al., 2023; Kai et al., 2024).

Presently, numerous clinical trials in 2–4 Phase are in progress
(https://www.clinicaltrials.gov/), with mesenchymal stem cell
therapy and blood-derived therapies emerging as significant
areas of research (Naomasa et al., 2017; Yong Sang et al., 2015).
The sources of mesenchymal stem utilized in these therapies
primarily include adipose-derived mesenchymal stem cells
(Chen et al., 2021), bone marrow-derived mesenchymal stem
cells (Vives et al., 2015; Orozco et al., 2014), umbilical cord-
derived mesenchymal stem (Lim et al., 2021) and other types
of MSCs(NCT03866330,NCT02037204). In these therapeutic
modalities, MSCs are believed to ameliorate mitochondrial
dysfunction in chondrocytes through mitochondrial transfer,
thereby providing substantial foundational research support for
their clinical application (Fahey et al., 2022; Angela et al., 2024).
Recent investigations have identified a significant relationship
between Cx43 and its truncated isoform gap junction protein
alpha 1–20 kDa (GJA1-20k) in the transfer of mitochondria
between highly oxidative cells. The overexpression of GJA1-20k in
MSCs has been shown to enhance the transfer of mitochondria
to chondrocytes, thereby facilitating the repair of cartilage
tissue affected by OA (156). Consequently, the direct transfer of
mitochondria to diseased joints emerges as a key facilitator.

Blood-derived treatment strategies predominantly encompass
stromal vascular fraction (SVF) (Krześniak et al., 2021)and
platelet-rich plasma (PRP) (Mayoly et al., 2019). PRP stimulates
cell proliferation and reduces inflammation, oxidative stress and
chondrocyte senescence. A related clinical trial in Phase 4
(NCT05660824) is a multicenter, parallel-group, triple-blind trial
enrolling 130 patients. The aim of the study is to evaluate the
clinical efficacy of SVF as an adjunctive therapy to PRP for
functional and tissue regeneration in OA. PRP contain various
organelles, including mitochondria, lysosomes, dense granules, and
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alpha granules (Zhai et al., 2022). After intra-articular injection,
mitochondria in platelets are transferred to damaged chondrocytes,
promoting chondrocyte repair and regeneration, which is also an
effective treatment option for OA.

5.2 Current status of research on
mitochondrial artificial transfer in OA
therapy

Based on the complexity of mitochondrial dysfunction in
OA, research conducted on 450 participants in the Osteoarthritis
Initiative (OAI) study has demonstrated that indicators associated
with mitochondrial dysfunction are linked to mtDNA variants and
the risk of rapid progression of knee OA (80). This evidence
supports the potential for mitochondrial-targeted therapies in the
management of OA. Mitochondrial artificial transfer, which entails
thesupplementationofhealthyandfunctionallynormalmitochondria,
represents a novel and effective therapeutic strategy for degenerative
diseases related to bones and cartilage. Currently, many studies are
exploringtheartificialmitochondriatransfer fromotherenvironments
or cell types to treat various diseases (Ritsuko et al., 2024;
Vijith et al., 2024). It is also known as mitochondrial transplantation
(Caicedo et al., 2024; Christoph et al., 2022).

In the study of artificial mitochondrial transfer, variousmethods
have been implemented, which can be primarily categorized
into prenatal and postnatal artificial mitochondrial transfer. Early
prenatal artificial mitochondrial transfer treatments have utilized
ooplasm as a mitochondrial carrier, where healthy donor oocyte
mitochondria and their mtDNA are directly injected into a
recipient oocyte with pathogenic mtDNA mutations through
micromanipulation (Barritt et al., 2001). The resultant cells contain
both donor and recipient mtDNA and are subsequently utilized for
in vitro fertilization. Recently, there has been a growing inclination
towards utilizing stem cell-derived mitochondria in mitochondrial-
assisted in vitro fertilization treatments. Mitochondria are extracted
and purified from autologous ovarian stem cells (Labarta et al.,
2019), autologous bone marrow stem cells (NCT03639506), or
autologous urine-derived stem cells (NCT06020742), and are then
co-injected with sperm into oocytes to improve embryo quality.
Presently, several of these therapeutic strategies have progressed into
the early clinical research.

Postnatal artificial mitochondrial transfer represents another
area of exploration (Mitch, 2022). This therapeutic approach is
based on the ability of exogenous mitochondria to enter cells.
Mitochondria may be directly administered to patients following
purification (Ying-Ting et al., 2019), or alternatively, the purified
mitochondria can be incorporated into autologous cells prior
to injection into the patient (Jacoby et al., 2022). Furthermore,
purified mitochondria can be directly given to patients (Ikeda et al.,
2021). In the treatment of OA, several experiments have been
reported in animal experiments using autologous mitochondria
and exogenous mitochondria, using intra-articular injections, to
improve osteoarthritic symptoms and slowdown the course ofOA in
various ways (Table 2). The results confirm the favourable biosafety
of mitochondrial transfer following intra-articular injection in
mammals. Mitochondrial injections are more biocompatible than
cellular level modification treatments. Therefore, it may be more

efficient to introduce purified, highly concentrated mitochondria
into the lesion site artificially without the aid of exogenous cellular
mediators (cells, plasma, etc.) to improve the therapeutic effect.

5.3 Prospects for mitochondrial transfer in
the treatment of OA

The application of the artificial transfermethod ofmitochondria
is a very promising therapeutic strategy for the treatment of
OA because of the obvious advantages of this method. However,
mitochondria is large size about 0.5–1 μm and the efficiency
of delivery by conventional endocytosis is very low, thereby
constraining their clinical applicability (Sun et al., 2019). This
limitation has prompted recent research to concentrate on
optimizing the efficiency of mitochondrial transfer, primarily
through two avenues: optimizing carriers and augmenting transfer
efficiency (Figure 5). In addition to conventional stem cells, it has
been identified that mitochondria can adapt to form structures
known as mitochondrial-derived vesicles (MDVs), which exhibit
repair functions (Min et al., 2025; Reut et al., 2023). Exosomes from
adipose-derived mesenchymal stem cells (AdMSC-Exos) has been
found to effectively donate mitochondrial components and improve
macrophage mitochondrial integrity and OXPHOS levels. This
restores metabolic and immune homeostasis of airwaymacrophages
and attenuates inflammatory lung pathology (Miriam et al., 2021).
Therefore, utilizing exosomes as carriers for mitochondrial transfer
is supported by a physiological basis for therapeutic interventions.

Advancements in bioengineering have led to increased diversity
and efficiency in the design of biological carriers. Fusogenic
mitochondrial capsules (FMCs), which are composed of various
lipids and liposomes, facilitate the rapid and efficient transport
of mitochondria to chondrocytes, thereby promoting cartilage
regeneration (Kim et al., 2023). Besides liposomes, hyaluronic acid
has been employed in conventional carrier systems. Liposomes
that are coated with hyaluronic acid have the capability to co-
deliver the natural cyclic peptide RA-XII and mitochondrial-
targeting photosensitizers, exhibiting high selectivity and potential
for precise combination therapy in colorectal cancer (Xu et al.,
2021b). Targeted modification of mitochondria is also an effective
approach. Nanomotorizedmitochondria has recently been developed
with chemotactic targeting ability for damaged heart tissue (Wu et al.,
2024). This mitochondrion is packaged in an enteric gel capsule. The
orally administered mitochondria are rapidly absorbed by intestinal
cells and subsequently released into the bloodstream, from where
they are transported to the damaged heart tissue. Modulation of the
disease microenvironment by nanomitochondria not only facilitates
the rapiduptakeandprolongedretentionofmitochondriabydamaged
cells, but also preserves the high functional activity of exogenous
mitochondria. It would be an intriguing attempt if the chemotactic
targeting ability of mitochondrial transfer to chondrocytes could be
enhanced through a similar approach. Given that hyaluronic acid
is frequently utilized in palliative treatment for OA through intra-
articular injection, exploring its potential to deliver mitochondria
presents novel approach to for OA treatment. Hydrogel is also one
of the candidate carriers, and an engineered layered hydrogel with
immunoreactive properties that can adapt to the bone regeneration
environment and mediate targeted mitochondrial transfer between
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TABLE 2 Current studies applying purified mitochondrial transfer for osteoarthritis treatment.

Donor Structure Recipient Targeted
tissue

Mechanism
of action

Treatment Ref.

Homo sapiens UC-MSCs-derived
MT

collagenase-induced
OA mouse model
(12-week-old
C57BL6 male mice)

left knee joint Balanced cell redox,
energy and
metabolic
homeostasis in the
osteoarthritic
chondrocyte
preserving cartilage
integrity

Intra-articular
injection

Angela et al. (2024)

Homo sapiens FMCs,
MSCs-derived MT

MIA-induced OA
mouse model
(8-week-old Balb/c
nude mice)

knee joint A highly effective
and promising
strategy for delivery
of MT to promote
cartilage
regeneration

Intra-articular
injection based on
membrane fusion

Kim et al. (2023)

Equus ferus caballus healthy equine
platelets-derived MT

adult horses left equine
intercarpal joint

Autologous
mitochondria
injection was well
tolerated, providing
essential safety
information for
clinical application
in horses and
humans

Intra-articular
injection

Cassano et al. (2023)

Rattus norvegicus BMSCs-derived MT collagenase-induced
OA rat model
(4-6-week-old male
SD rats)

right knee joint Ameliorated
pathological
cartilage injury,
suppressed
inflammation,
inhibited
chondrocytes
apoptosis, and
improved
osteoarthritis
phenotype

Intra-articular
injection

Yu et al. (2022)

Rattus norvegicus L6 cells-derived MT MIA-induced OA rat
model (7-week-old
male Wistar rats)

right knee joint Improved
mitochondrial
function in
chondrocytes
indicated by
membrane potential
and oxygen
consumption rate

Intra-articular
injection

Lee et al. (2022)

UC, umbilical cord; MSCs, mesenchymal stem cells; MT, mitochondria; OA, osteoarthritis; FMCs, Fusogenic mitochondrial capsules; MIA, monoiodoacetate; BMSCs, bone marrow derived
mesenchymal stem cells.

cells was recently published (Cai W. et al., 2024). This finding
provides a new therapeutic strategy to promote bone regeneration
and repair, and also has research value and practical applications
in the treatment of OA.

Moreover, the indirect enhancement of mitochondrial transfer
efficiency represents a viable strategy. The mitochondrial transfer
technology based on droplet microfluidics has demonstrated
efficient, high-throughput quantitative mitochondrial transfer at
the single-cell level. This advancement is expected to significantly
promote mitochondrial transfer in clinical applications and
optimize cellular function, thereby creating new avenues for the
treatment of OA (36). Currently, most of the clinical applications
alter the efficiency of mitochondrial transfer by modulating

key signalling pathways. For example, magnetic iron oxide
nanoparticle (IONP)-activated hMSCs (Fe-hMSCs) can induce the
overexpression of Cx43, thereby promoting mitochondrial transfer
and enabling human placenta-derivedMSCs to efficiently and safely
transfer mitochondria to target cells (Huang et al., 2021).This could
also be a therapeutic reference for mitochondrial transfer in OA.

5.4 Challenges of artificial mitochondrial
transfer in the treatment of OA

Artificial mitochondrial transfer is emerging as a significant
therapeutic approach in the treatment of OA, and researchers
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FIGURE 5
The potential application of mitochondrial transfer in OA therapy. (A) Various sources of donor mitochondria, including mesenchymal stem cells,
mitochondrial-derived vesicles (MDVs), and platelet-rich plasma (PRP); (B) Encapsulation of therapeutic mitochondria with various delivery vehicles,
including nanomotors, fusogenic mitochondrial capsules (FMCs), hyaluronic acid, and hydrogels; (C) Modes of cargo delivery to target cells, including
intra-articular injection, droplet microfluidics, and oral nanoparticle capsules. (Graphic is created by FigDraw. Copyright Code: UYUWA7822c).

are actively investigating its potential. However, this procedure
encounters several challenges. In the pre-mitochondrial transfer
phase, implementers need to refine the treatment plan. OA as a
syndrome has different etiologies and significant differences in the
pathological stages of presentation (Glyn-Jones et al., 2015; Li et al.,
2024c; Papatriantafyllou, 2024; Coryell et al., 2021). Consequently,
the efficacy of artificial mitochondrial transfer in addressing specific
etiologies, as well as the precise criteria for patient selection for
personalized treatment, remains an unresolved issue. Moreover,
the optimal therapeutic window for artificial mitochondrial
transfer during disease progression to maximize efficacy
remains undefined.

Moreover, although mitochondria exhibit a certain affinity for
specific tissues, their targeting of chondrocytes within the human
body requires enhancement (Tracy et al., 2022; Justin et al., 2024;
Qinglian et al., 2003). Ensuring that mitochondria can accurately
localize to damaged joint tissues or cells represents a critical
issue in current research. It is reported that cells can capture
purified mitochondria for aerobic respiration, which raises the
possibility that non-targeted cells can capture mitochondria and
affect the therapeutic effect (Borcherding et al., 2022). Additionally,
artificial mitochondrial transfer may elicit an immune response
because mitochondria possess mtDNA, which can be recognized

by the immune system as foreign material, potentially leading
to an immune attack (Tobias et al., 2019). Such a response may
result in transfer failure, cause other complications, and even
exacerbate the condition ofOA.At present, the clinical application of
mitochondrial transfer remains in its infancy, with a limited number
of cases reported, thereby complicating a comprehensive assessment
of its efficacy and safety (Craven et al., 2018).

Following mitochondrial transfer, it is imperative for the
mitochondria to sustain stable functionality within the recipient
cells. However, variations in the cellular environment of aging of
the transplanted mitochondria, may lead to a gradual decline in
their functionality (Yi et al., 2024). Additionally, the processes
of mitochondrial fusion and degradation present significant
challenges: transplanted mitochondria must successfully fuse
with the recipient cells' mitochondria to fulfill their intended
functions, a process thatmay be influenced by a variety of regulatory
factors (National Academies of Sciences E and Medicine, 2016;
Gammage et al., 2018). It was found that a portion of naked
mitochondria can escape from recipient cells after capture, and
that some donor-derived mitochondria may also be degraded by
recipient cells and fail to fulfil their intended role (Cowan et al.,
2017). While some studies have demonstrated positive outcomes
of mitochondrial transfer in animal models, the long-term efficacy
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and safety of this intervention in human subjects necessitate further
investigation.

6 Outlook

Mitochondrial dysfunction in osteoarthritis presents as a
multifaceted disease mechanism, featuring diverse manifestations
with interconnected regulatory networks. Future therapies targeting
mitochondrial restoration represent a promising frontier for OA
intervention. Given the operability and favorable biocompatibility
of artificial mitochondrial transfer, this strategy appears promising
as an effective intervention for future OA therapies. Artificial
mitochondrial transfer can be conducted through various carriers,
including stem cells, subcellular organelles, bioengineering
materials, and even the direct transfer of isolated mitochondria.
Additionally, targeted interventions, physical stimulation, bio-
protein mediation, andmodulation of signaling pathway can also be
employed to enhance the efficiency of mitochondrial transfer.

Currently, the research directions pertaining to artificial
mitochondrial transfer are varied, offering numerous opportunities
for achieving the objectives of mitochondrial transfer. Nevertheless,
investigations in this domain remain in the nascent stages,
necessitating a clarification of the differences in responses observed
between animal models and humans subjects. It is imperative
to validate these findings through more experimental data prior
to advancing to clinical applications. Advancing phase-targeted
osteoarthritis therapies while resolving key technical challenges,
including mitochondrial delivery optimization and therapeutic
durability, represents critical research priorities. With continued
investigation, artificial mitochondrial transfer is anticipated to
provide new therapeutic strategies for OA, accommodating its
diverse stages and underlying causes.
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Glossary

AdMSC-Exos Exosomes from adipose-derived mesenchymal stem cells

ADP Adenosine diphosphate

AKT Protein kinase B

AMP Adenosine monophosphate

AMPK Adenosine 5′-monophosphate (AMP)-activated protein kinase

ATP Adenosine triphosphate

BMSCs Bone marrow derived mesenchymal stem cells

CaMKII Calcium/calmodulin-dependent protein kinase II

Cx43 Connexin 43

DAMP Danger-associated molecular pattern

DDS Drug delivery system

DMT Disease-modifying therapy

DRP1 Dynamin-related protein one

ECM Extracellular matrix

ERK Extracellular regulated protein kinases

ETC Electron transport chain

EV Extracellular vesicle

Fe-hMSCs Magnetic iron oxide nanoparticle (IONP)-activated humanMSCs

Fe/S clusters Iron-Sulfur clusters

FIS1 Fission protein 1

FMCs Fusogenic mitochondrial capsules

GABPA Guanine-adenine(GA)binding protein transcription factor

GJA1-20k Gap junction protein alpha 1–20 kDa

GJC Gap junction channels

GMP-AMP Guanosine monophosphate-adenosine monophosphate

GTPase Guanosine triphosphate

H3K27me3 Histone H3 lysine 27 trimethylation

HSCs Haematopoietic stem cells

IL-1β Interleukin-1 beta

M1Macrophages Classically activated macrophages

M2Macrophages Alternatively activated macrophages

MAPK Mitogen-activated protein kinase

MDVs Mitochondrial-derived vesicles

MIA Monoiodoacetate

Miro 1 Mitochondrial Ras homology guanosine triphosphate one

MMPs Matrix metalloproteinases

mPTP Mitochondrial permeability transition pore

MS Multiple sclerosis

MSCs Mesenchymal stem cells

MT Mitochondria

mtDNA Mitochondrial deoxyribonucleic acid

mTOR Mammalian target of rapamycin

NAD+ Nicotinamide adenine dinucleotide (oxidized form)

NADH Nicotinamide adenine dinucleotide (reduced form)

NLRP3 Nucleotide-binding domain(NOD)-like receptor family pyrin

domain containing 3

OA Osteoarthritis

OAI Osteoarthritis initiative

OXPHOS Oxidative phosphorylation

PD Parkinson’s disease

PGC-1α Peroxisome proliferator-activated receptor-γ coactivator-1α

PGC-1β Peroxisome proliferator-activated receptor gamma co-

activator 1β

Phf8 Plant homeodomain finger protein 8

PI3K Phosphatidylinositol 3 kinase

PINK1 Phosphatase and tensin homolog induced putative kinase one
PN-101
Mitochondria Human umbilical cord mesenchymal stem cell-derived

mitochondria

PPARγ Peroxisome proliferator-activated receptor γ

PRP Platelet-rich plasma

ROS Reactive oxygen species

SE Status epilepticus

siRNA Small interfering ribonucleic acid

SIRT Sirtuins

SLSMD Single large-scale mitochondrial deoxyribonucleic acid deletion

SVF Stromal vascular fraction

T-cells Thymus dependent lymphocyte

TFAM Nuclear-encoded mitochondrial transcription factor A

TNF-α Tumor necrosis factor-alpha

TNTs Tunneling nanotubes

UC Umbilical cord

YY-1 Yin yang one

ρ0 cells Cells depleted of mitochondrial deoxyribonucleic acid
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