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Invadosomes are a family of subcellular actin-based structures essential for
cell—extracellular matrix (ECM) interaction and remodeling. In non-invasive
cells, they are referred to as podosomes, which enable adhesion, migration,
and ECM remodeling via secretion of metalloproteinases or mechano-traction.
In invasive tumoral cells, these structures are called invadopodia due to their
function. Despite structural similarity, podosomes appear as highly regular
dots in 2D and do not always exhibit ECM-degradative abilities; hence,
the term “degradative dot-podosomes” is used in this paper. Invadopodia
are consistently degradative, fewer in number, slightly larger, deeper, less
regular-shaped, and longer-lived. In tumor cells, collagen | induces the
formation of linear invadosomes, which promote invasion by degrading collagen
through the action of MT1-MMP (membrane type 1-matrix metalloproteinase)
and the adaptor protein Tks5 (tyrosine kinase substrate 5). Interestingly,
linear invadosomes also appear in non-tumor cells, such as megakaryocytes
(MKs)—the platelet precursors—which display podosomes that closely resemble
invadopodia. As MKs mature, Tks5 expression decreases, and dot-podosomes
align along collagen | fibers, fusing into linear podosomes that remodel the
ECM through mechanical traction but have lost their degradative ability. The
GTPase Cdc42, crucial for invadosome formation, remains highly active in the
MK internal demarcation membrane system (DMS) but is downregulated in
linear podosomes. These observations suggest that Tks5, considered a marker
of metastatic potential, also plays roles in normal physiology. Thus, linear
podosomes with mechanotransductive properties may exist in a broader range
of non-transformed cells. This mini-review focuses on the linear subfamily of
invadosomes, highlighting their structure and function in MKs, a model in which
invadosomes remain underexplored.

linear invadosomes, podosomes, cytoskeleton, extracellular matrix, metalloproteinase,
CDC42 GTPase, collagen |, megakaryocytes

Introduction

In all organisms, both physiological and pathological cells are surrounded
by an extracellular matrix (ECM), composed of various proteins, whose
stiffness depends on composition. Some ECMs tend to form soft gels, while
others generate stiffer substrata, such as basement membranes around blood
vessels or the osteoblasts near bone tissue, as examples. The most abundant
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ECM protein in the body is fibrillar collagen type I, which can form
highly rigid bundles (Nilsson et al., 1998).

To cope with various ECM environments, cells have developed
specialized subcellular structures at their ventral surface. These
structures sense the ECM and transmit information to intracellular
components via a central F-actin core and associated proteins,
located at the center of invadosomes. This signaling modulates
gene expression, as well as protein and lipid activity and dynamics,
promoting cellular adaptation, ECM remodeling, or both. These
structures belong to the invadosome family, which includes
podosomes found in primary or cultured cells and invadopodia
observed in transformed tumor cells with high metastatic potential
(Cambi and Chavrier, 2021; Linder et al., 2023; Paterson and
Courtneidge, 2018). Measuring 500 nm to 1 uM, both structures
feature a central F-actin core that contains actin-remodeling
proteins such as Arp2/3 (actin-related protein 2/3 complex),
WASP (Wiskott-Aldrich syndrome protein), cortactin, the small
GTPase Cdc42, and Tks5 (tyrosine kinase substrate 5), with these
components being the most critical (Linder and Wiesner, 2015;
Seals et al., 2005; Zagryazhskaya-Masson et al., 2020). The core is
surrounded by a ring or cloud, which contains proteins linking the
ECM to the intracellular cytoskeleton, via transmembrane receptors
such as $31 integrin, DDR1 (discoidin domain receptor 1), or CD44.
These ECM receptors associate with mechano-sensitive proteins,
vinculin, talin, or paxillin in the ring, to transmit forces into the
cell cytoskeleton (Albiges-Rizo et al., 2009; Chabadel et al., 2007;
Destaing et al., 2014; Destaing et al., 2010; Juin et al., 2014). Dorsal
actomyosin fibers interconnect dot-podosomes through their caps,
enabling coordinated movements and the formation of higher-
order structures such as rosettes in endothelial cells or podosome
belts, clusters, or sealing zones in osteoclasts (Luxenburg et al.,
2007; Portes et al., 2022; Seano et al., 2014). Lateral actomyosin
fiber contraction allows protrusions into the ECM (Linder and
Wiesner, 2016).

Podosomes are found in a large variety of cells, including
fibroblasts, monocytes/macrophages, dendritic cells, and sprouting
endothelial cells (for review, see Linder, 2009; Linder et al., 2023).
They also appear during development in neural crest cells and
play essential roles in myoblast cell-cell fusion and megakaryocyte
maturation in the bone marrow, enabling the release of mature
platelets into the bloodstream (Eckly et al., 2020; Murphy et al., 2011;
Sens etal., 2010). Thus, podosomes are involved in key physiological
functions, such as adhesion, migration, and immune responses.
Being frequently abundant, they appear in microscopy as regular
circular structures; hence, the term dot-podosomes is used in this
mini review to distinguish them from the linear forms currently
under investigation by several groups (Linder et al., 2023; Paterson
and Courtneidge, 2018).

Invadopodia are typically located exclusively beneath the
nucleus and are fewer per cell than podosomes. They exhibit less
regular morphology, appearing as irregular dot-like structures of
varying widths and depth within the ECM. Although their core
and ring components resemble those of podosomes, invadopodia
are specifically associated with invasive and metastatic tumor cells,
hence the term “invadopodia” We now know that both dot-
podosomes and invadopodia can secrete proteases, often MMP-
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2 or MMP-9, or, very commonly, MT1-MMP (membrane type
I-matrix metalloproteinase), to digest the ECM (Cecchetti et al,,
2011; Ferrari et al., 2019; Malara et al., 2018; van den Dries et al.,
2013). In this study, we define “degradative” dot- or linear-
podosomes as those that express ECM-degrading proteins in
non-tumor cells.

Invadosomes commonly express the scaffold protein Tks5
during formation and maturation. Tks5 binds phosphoinositides
and various signaling proteins (e.g., Scr family kinases) involved
in actomyosin regulation and, consequently, cytoskeleton
dynamics. Both Cdc42 and Tks5 are critical for invadosome
formation and have been widely described as required for tumor
invasion and metastasis (Di Martino et al., 2014; Zagryazhskaya-
Masson et al., 2020).

Invadosome formation occurs in several steps: (1) initiation,
triggered by the ECM and growth factor signaling, leading to
Cdc42 activation and the appearance of intracellular actin-rich
dots; (2) maturation, involving the recruitment of actin-regulatory
proteins, protein scaffolds, and lipids with signaling properties such
as phosphoinositides, often through integrin/receptor-mediated
signaling and Tks5 expression; (3) acquisition of proteolytic
ability, mechanosensing or traction capacity, depending on ECM
composition and the cell type involved; and (4) disassembly, a poorly
understood process believed to involve actomyosin breakdown
under RhoA GTPase control, will take place (Di Martino etal., 20165

Di Martino et al.,, 2014).

Megakaryocyte and ECM interactions

Among the many cell types found in the body, megakaryocytes
(MKs), the precursors of blood platelets, are of particular interest
for studying cell signaling and cytoskeleton dynamics. Located
in the bone marrow, MKs originate as small precursors in the
osteoblastic niche and progressively differentiate into giant cells as
they migrate toward the medullary sinusoids. Their maturation is
a complex process involving endomitosis, the development of an
internal membrane system known as the demarcation membrane
system (DMS), and the synthesis of proteins required for future
platelets. Once matured, MKs reach the vascular niche as large
multinucleated cells (up to 24N in vivo and 126 N in vitro),
extending cytoplasmic elongations known as pro-platelets (PPTs)
that unfold from the DMS. These projections cross the endothelial
barrier to release platelets into the bloodstream (Italiano etal., 2007).
This intricate maturation process is tightly regulated by cytokines
and ECM components. Although the osteoblastic niche is enriched
in fibrillar collagen I and fibronectin, the vascular niche is rich in
collagen IV, laminin, and fibrinogen (Malara et al., 2015). As already
mentioned, type I collagen is the most abundant ECM protein in the
body, including the bone marrow. However, abnormal accumulation
of collagen I fibers, as observed in myelofibrosis, can hinder cell
motility, contributing to bone marrow failure and cytopenia. The
interaction between MKs and their microenvironment is essential
for triggering the cytoskeletal and membrane rearrangements
required for proper differentiation. Like many other cells, MKs form
invadosomes to interact with the ECM (Machlus et al., 2014).
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High-resolution imaging: a revolution
in the study of podosome plasticity

The ability of MKs to form podosomes on fibronectin or
fibrinogen was previously described (Schachtner et al, 2013),
but their role in MK maturation remained poorly understood
because of technical limitations in microscopy, along with the
size and fragility of MKs. Interestingly, using high- or super-
resolution microscopy, researchers observed the formation of
F-actin lines along collagen I fibers. These structures resembled
dot-podosomes in terms of protein composition but were
morphologically similar to the linear invadopodia previously
described in tumor cells (Ferrari et al.,, 2019; Juin et al., 2012).
Our team and others have conducted in-depth investigations of
invadosomes in MKs to better understand their nature and function
compared to linear invadopodia in tumor cells. Advanced imaging
techniques, including super-resolution photonic microscopy in
cultured cells and whole bone marrow, along with correlated
light and electron microscopy (CLEM), transmission electron
microscopy (TEM), and focused ion beam/standard electron
microscopy (FIB/SEM) on frozen bone marrow sections, have
proven instrumental in understanding the relationship between
invadosome structure and MK maturation, from progenitors cells
to endothelium crossing and platelet production in the bloodstream
(Eckly et al., 2020).

Recent advances have confirmed the presence of linear
invadosomes with collagenase activity and Tks5 association in
several cell types besides tumor cells (Aguilar et al., 2016; Eckly et al.,
2020; Oprescu et al., 2022; Seano et al.,, 2014). In MKs, we found
that linear podosomes form in response to collagen I stiffness.
Our team was able to describe and record the alignment and
fusion of dot-podosomes along collagen I bundles into linear F-
actin-based structures, which were notably absent in progenitor
cells (Oprescu et al., 2022). Interestingly, although dot and linear
podosomes shared a majority of components in mature MKs (an
F-actin core with cortactin, Arp2/3, and WASP, surrounded by
talin, vinculin, and actomyosin), a striking difference appeared
in progenitor dot-podosomes. They exhibited high levels of
Tks5 and strong degradation activity, functionally resembling
invadopodia. MK maturation seemed to be clearly associated
with the maturation/function of invadosomes. As MKs matured,
both Tks5 expression and ECM degradation capacity decreased,
in parallel with DMS formation and endomitosis (Oprescu et al.,
2022). These findings highlight that although Tks5 is a marker
of ECM degradation capacity, it is not a reliable indicator of
metastatic potential as it is also expressed in non-tumor cells under
physiological conditions.

Interestingly, mature MKs use linear podosomes to exert
traction on collagen I fibers, remodeling the ECM without
degrading it, possibly to facilitate PPTs or large MK fragment
passage through sinusoids. Unlike tumor cells, which rely on
MT1-MMP for collagen degradation, MKs and progenitors
secrete only MMP9, even though the presence of mRNA or
proteins such as MMP1, MMP2, MMP9, and MT1-MMP has
been reported (Cecchetti et al., 2011; Malara et al., 2018). Given
the large size of mature MKs (>80 um wide in suspension),
it is reasonable to assume that they require ample space
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to migrate without damaging the marrow or blood vessels.
Therefore, mechanical traction, rather than ECM digestion,
appears to be a more tissue-preserving strategy for migration and
transendothelial crossing.

Structural remodeling of invadosomes
in response to external cues

Our studies are among the first to describe in detail the
linear restructuring and maturation of podosomes from dot-
structures in MKs (Eckly et al., 2020; Oprescu et al., 2022).
Most known podosome superstructures, such as rosettes or
belts, are composed of clusters of individual dot-podosomes
and do not involve full remodeling of the core and ring. In
contrast, linear invadosomes lack many components of dot-
podosomes (Juin et al, 2012; Linder et al., 2023). In MKs, the
actin core fuses along the collagen fibers, and the surrounding
ring proteins are reorganized around this new linear core. These
components, including membrane receptors and cytoskeletal
proteins, assemble into concentric layers that link collagen I
fibers to intracellular F-actin, optimizing force transmission
(Oprescu et al., 2022).

Interestingly, in vivo, MKs use a transcellular mechanism
in which dot-like invadosomes located at the tips of PPTs or
protrusions digest ECM components near the endothelium (e.g.,
collagen IV, which is abundant in this region). These structures
may also function in surface sensing to identify ECM-free sites for
transendothelial migration (Eckly et al., 2020). Evidence suggests
that collagen I fibers could act as guiding tracks toward the sinusoids.
We demonstrated that the transition from dot- to linear-podosome
is reversible (Oprescu et al., 2022). Degradation activity could be
reinitiated at PPT extremities upon contact with the endothelium
or vascular niche, although further studies are needed to fully
elucidate the molecular mechanism involved. It remains to be
determined whether this reactivation involves the recruitment of
Cdc42 and Tks5 to trigger MMP production and ECM degradation
near the sinusoids. To explore this possibility, a co-culture model
of endothelial cells and MKs is currently being developed to study
invadosome dynamics and ECM remodeling in a reconstructed in
vitro system. This approach is essential as current techniques do
not yet offer sufficient resolution to visualize endogenous protein
clusters in vivo.

Recent findings have shown that throughout megakaryopoiesis,
Cdc42 remains associated with the DMS, where it displays strong
activity (Antkowiak et al., 2024; Antkowiak et al., 2016; Dutting et al.,
2017). In both primary MKs and the human UT711oc cell line
differentiated with thrombopoietin (TPO), Cdc42 was detected
along PPTs, as expected given its role in platelet activation. However,
FRET-based measurements using probes derived from Raichu-
Cdc42 (Viaud et al., 2014) revealed that Cdc42 activity is markedly
lower in linear podosomes than in the DMS (Antkowiak et al.,
2024). This finding supports the hypothesis that Cdc42 activity
does not correlate with the degradative function of invadosomes.
In MK progenitors, Cdc42 and Tks5 may function together or
sequentially as part of a supramolecular complex that promotes
invadosome formation and ECM digestion. In mature MKs, their
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FIGURE 1

Changes in invadosomes during megakaryocyte maturation. Top
panel: a small megakaryocyte progenitor displays multiple
dot-invadosomes (black dots), which express Tks5 and secrete MMP9
(pink diamonds), enabling ECM degradation (depicted in yellow) and
facilitating migration toward sinusoids. At this early stage of
maturation, progenitors form degrading dot-podosomes. Middle
panel: as MKs migrate toward the medullary sinusoids, they
differentiate into large, multinucleated cells that have downregulated
Tks5 and MMP9 expression. MKs then extend proplatelets (blue
projections) toward the sinusoid. These proplatelets use collagen |
fibers (long, dark yellow strands) as guidance tracks and form linear
podosomes (black lines into the proplatelets) that elongate along the
fibers. At this stage, ECM remodeling occurs via traction exerted by
linear podosomes on collagen bundles. Bottom panel: when
proplatelets and/or mature MKs reach the endothelium barrier of the
sinusoids, contact is established through dot-like invadosomes
capable of degrading the endothelial matrix (rich in collagen IV,
fibronectin, and other components). These structures also function in
surface sensing, initiating the formation of transendothelial pores for
platelet release into the bloodstream (Eckly et al., 2020;

Malara et al., 2014; Oprescu et al., 2022).
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activity appeared dispensable, in contrast to their essential role in
highly invasive tumoral cells.

Conclusion

This mini-review highlights the relationship between structural
changes and functional transitions occurring during the maturation
of MKs, a physiological model in which invadosomes remain
relatively unexplored (see Figure 1 for a schematic reconstitution).
During the differentiation of progenitors into mature MKs,
podosomes undergo structural, molecular, and functional
remodeling in response to ECM and cytokine signaling. Proteins
previously considered markers of invasive potential, such as Tks5,
are dynamically regulated throughout MK maturation, in parallel
with podosome organization (from dot-like to linear forms). This
suggests a broader physiological role for Tks5 and emphasizes the
plasticity of invadosomes beyond pathological contexts. Recent
findings also point to a possible interplay between Tks5 expression
and Cdc42 activity in the acquisition of mechanical properties that
promote invadosome shape change, a feature that may be common
to other cell types undergoing complex maturation programs.
Further studies are needed to fully clarify this aspect.
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