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Integrated single-cell and bulk
transcriptome analysis reveal
lactate metabolism-related
signature and T cell alteration in
atrial fibrillation
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1Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China,
2Chongqing Medical University, Chongqing, China

Background: Atrial fibrillation (AF) is linked to modifications in T cell-mediated
immunity. Although lactate metabolism influences T cell differentiation and
function, its specific role in AF and associated immune processes remains
inadequately understood.

Methods:Weperformed an integrated transcriptomic analysis utilizing both bulk
and single-nucleus RNA sequencing data derived from hearts exhibiting AF and
those in sinus rhythm. Genes associated with lactate metabolism were curated
from the MsigDB, and key genes were identified through Weighted Gene Co-
expression Network Analysis and differential expression analysis. A diagnostic
model based on machine learning was developed, and gene expression was
further validated using qRT-PCR in a mouse model of AF. T cell heterogeneity
was evaluated using the Seurat package, and intercellular communication was
inferred using CellChat.

Results: In AF, six key genes related to lactate metabolism showed
transcriptomic changes linked to the AF phenotype and CD4+/CD8+ T cell
populations. A diagnostic model using these genes achieved an AUC of 0.909
in external datasets. Single-nucleus RNA sequencing identified a reduced
metabolism-related T cell subset (CLM-T) in AF, with increased CD45 and
thrombospondin signaling between CLM-T and other T cell subclusters.
qRT-PCR in a mouse AF model confirmed significant gene upregulation in
atrial tissue.

Conclusion: This study synthesizes bulk and single-cell transcriptomic analyses
to identify genes associated with lactate metabolism as potential biomarkers for
AF and to elucidate T cell alterations in AF. These findings offer novel insights
into the pathogenesis of AF and suggest potential strategies for its diagnosis.
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1 Introduction

Atrial fibrillation (AF), the most prevalent sustained cardiac arrhythmia, affects 1%–2%
of the global population and significantly contributes to stroke and heart failure-related
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mortality (Wong et al., 2024; Shi et al., 2022). Despite advances
in catheter ablation and anticoagulation therapies, AF recurrence
rates remain high, partially due to persistent atrial remodeling and
inflammation, underscoring the need to unravel its pathogenesis
underpinnings (Winkle et al., 2023).

Beyond electrophysiological remodeling, emerging evidence
implicates immune microenvironment dysregulation in AF
progression (Scott et al., 2021; Huang et al., 2024; Chen et al.,
2024). T lymphocytes, particularly CD4+ and CD8+ subsets,
emerge as key mediators: CD8+ T cell senescence marks AF
atrial tissue and correlates with recurrence (Li et al., 2024);
CD4+CD28null T cells predict postoperative AF and heart failure
outcomes (Sulzgruber et al., 2017; Sulzgruber et al., 2018;
Hammer et al., 2021); Th17/Treg imbalance associated with AF-
related inflammation and fibrosis (Wu et al., 2016; He et al., 2018;
Chen et al., 2020). These observations collectively suggest that
T cell-driven immunity may represent a potential therapeutic
target for AF. Meanwhile, lactate has been recognized as an
active immunometabolic regulator, modulating T cell function
via histone lactylation, HIF-1α stabilization, and GPR81 signaling
(Naik et al., 2025; Zhang et al., 2025; Caslin et al., 2021). In
cancer, lactate promotes Treg accumulation and PD-1 upregulation
(Yasukawa et al., 2025; Wang et al., 2025). However, whether
lactate metabolism similarly contributes to T cell alteration in AF
remains unknown.

Here, we integrated bulk and single-nucleus transcriptomic data
to identify lactate metabolism-related genes using Weighted Gene
Co-expression Network Analysis (WGCNA) and machine learning,
and to explore their associations with T cell subset dynamics in AF,
validated key genes by AF mouse model, thereby providing a basis
for future studies.

2 Methods

2.1 Data acquisition and preprocessing

Bulk RNA-seq datasets from AF and sinus rhythm (SR)
patients were retrieved from the GEO database: GSE79768
(discovery cohort, n = 13) and GSE41177 (validation cohort,
n = 20) (Platform GPL570) (Tsai et al., 2016; Yeh et al.,
2013). Lactate metabolism-related genes (LRGs, n = 387)
were curated from the MsigDB (https://www.gsea-msigdb.
org/gsea/msig db/) (Castanza et al., 2023).

2.2 Differential expression analysis and
functional annotation

Differentially expressed genes (DEGs) between AF and SR
were identified using limma (v3.62.1) with thresholds: |log2FC|
>1 and FDR-adjusted p < 0.05 (Ritchie et al., 2015). Gene
Ontology (GO) and KEGG pathway enrichment analyses were
performed using clusterProfiler (v4.14.4) with org. Hs.e.g.,.db
(v3.20.0) (Wu et al., 2021).

2.3 Immune microenvironment profiling

Immune cell infiltration was estimated using CIBERSORT
(v1.03), xCell (v1.1.0), and MCPcounter (v1.2.0) (Newman et al.,
2015; Aran et al., 2017; Becht et al., 2016). The Wilcoxon test
compared cell proportions between groups, and the Spearman
correlation assessed gene-immune cell associations.

2.4 Weighted gene co-expression network
analysis (WGCNA)

A signed network was constructed (WGCNA v1.73) using the
top 5,000 most variable genes from GSE79768 (Langfelder and
Horvath, 2008). The soft threshold (β = 6) was chosen to satisfy
scale-free topology (R2 ≥0.9). The AF-associated modules (MEblue
and MEturquoise) were selected (MEblue: module-trait correlation
r = 0.63, p = 6e-04; MEturquoise: module-trait correlation r =
0.69, p = 1e-04), and its genes which significance and correlation
coefficients exceeding 0.5 were intersected with DEGs and LRGs to
identify key genes.

2.5 Gene set enrichment analysis (GSEA)
and transcriptional regulatory network
analysis

GSEA was performed using the clusterProfiler package in
R to identify functionally enriched pathways based on the
GSE79768 dataset. Gene expression correlations were calculated
using Spearman correlation, and genes were ranked accordingly.
Gene symbols were converted to ENTREZ IDs via org. Hs.e.g.,.db,
and redundant entries were removed. The ranked gene list
was analyzed against the MSigDB using preranked GSEA, with
significance set at an adjusted p-value < 0.05. GSEA enrichment
plots were generated to visualize the enrichment score profiles
of significantly enriched gene sets, illustrating their distribution
across the ranked gene list. Transcription factor (TF) prediction
based on hTFtarget (http://bioinfo.life.hust.edu.cn/hTFtarget#!/).
TFs that regulate all key genes simultaneously were retained.
The regulatory network was visualized in Cytoscape (v3.10.0)
(Shannon et al., 2003).

2.6 Diagnostic model development and
validation

Three machine learning algorithms were compared: Random
Forest (RF), Support Vector Machine (SVM), and Generalized
Linear Model via Elastic Net Regularization (GLMnet) (Hu and
Szymczak, 2023; Yang et al., 2014; Nelder and Wedderburn, 1972).
Key genes were selected as features. The GSE79768 dataset was used
for the construction of themodel.Model performancewas evaluated
via 10-fold cross-validation repeated 10 times. The optimal model
was selected based on: the area under the ROC curve (AUC) and
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model residuals. Decision Curve Analysis (DCA) and calibration
curve analyses were used to evaluate the model. External validation
was performed on GSE41177 datasets.

2.7 SnRNA-seq analysis

SnRNA-seq data (GSE255612) were processed using Seurat
(v5.1.0) (Hao et al., 2023; Hill et al., 2024). Data were normalized
via SCTransform. Principal Component Analysis (PCA) identified
the top 20 PCs for t-distributed stochastic neighbor embedding (t-
SNE) clustering (resolution= 0.5). Cell clusterswere annotated using
manual curation based on existing literature and gene characteristics
(Hill et al., 2024; Shimazu et al., 2016). T cells were subsetted and re-
clustered (resolution = 0.2). Metabolic pathway activity was scored
by AUCell (v1.24.0) based on HALLMARK and KEGG gene sets.
Cell-cell communication analysis employed CellChat (v1.6.1) with
default ligand-receptor pairs (Jin et al., 2021).

2.8 AF animal model and experimental
procedures

A total of 10 C57BL/6 J male mice (8-week-old) were
obtained from the Department of laboratory Animals, Central
South University. The animal breeding process and experimental
procedures adhered to protocols sanctioned by the Central South
UniversityAnimal Care andUseCommittee. All animal studieswere
reported according to the ARRIVE guidelines (Kilk et al., 2010).
Specifically, the study included the following treatment groups:
control (saline, n = 5) and AF model (Ach-CaCl2; n = 5). Baseline
transthoracic echocardiography and electrocardiogram (ECG)
recordings were performed on all mice to ensure no pre-existing
differences between groups. AF model was established by a daily
mixture of acetylcholine (66 μg/kg; Shanghai Macklin Biochemical
Co., Ltd., Shanghai, China) andCaCl2 (10 mg/kg; ShanghaiMacklin
Biochemical Co., Ltd., Shanghai, China) in a total volume of 0.1 mL
by tail vein injection (i.v.) for 3 weeks. The control group received
daily injections of an equivalent volume of sterile saline (Liu et al.,
2021). At the end of the three-week intervention period, a final
round of echocardiography and ECG examinations was conducted
on all mice before they were euthanized for atrial tissue sampling.

2.9 Transthoracic echocardiography and
electrocardiogram

During all procedures, mice were lightly anesthetized via
inhalation of 1.5%–2.0% isoflurane and placed on a heating
pad to maintain body temperature at 37°C. Transthoracic
echocardiography was performed using a Vevo F2 imaging
system and analyzed with the accompanying Vevo LAB software
(FUJIFILM VisualSonics, Toronto, Canada) to assess cardiac
structure and function. Key parameters, including left atrial
diameter (LAD) and left ventricular ejection fraction (LVEF), were
measured from the parasternal long-axis view. All assessments were
conducted by a technician blinded to the experimental groups.

Subsequently, surface ECGs were recorded and analyzed using a BL-
420N biological signal acquisition and processing system (Chengdu
TME Technology Co., Ltd., Chengdu, China).

2.10 Quantitative real-time PCR (qRT-PCR)
analysis

Total RNA was isolated from mouse atrial tissue using the
MiniBEST Universal RNA Extraction Kit (Takara Bio, Kyoto,
Japan). cDNA was synthesized with the PrimeScript RT reagent Kit
with gDNA Eraser (Takara Bio). Quantitative real-time PCR was
performed using TB Green Premix Ex Taq II under the following
cycling conditions: initial denaturation at 95°C for 30 s, followed by
40 cycles of 95°C for 5 s and 60°C for 30 s, with a final extension at
65°C for 5 s and 95°C for 5 s, in a total reaction volume of 10 µL.
Gene expression levels were calculated using the 2-∆∆Ct method and
normalized to GAPDH.

The primer sequences used were listed as follows:

GAPDH (forward 5′‐GGAGCGAGATCCCTCCAAAT‐3´;
reverse 5′‐GGCTGTTGTCATACTTCTCATGG‐3′).

SLC16A1 (forward 5′‐TGGCTGTCATGTATGGTGGAGGT
C‐3´; reverse 5′‐GAAGCTGCAATCAAGCCACAG
C‐3′).

MRPL44 (forward 5′‐TTGAAGACGAGTACCCAGACA‐3´;
reverse 5′‐GGGCTCCAATAACTGCAAAGAA‐3′).

FLI1 (forward 5′‐GGATGGCAAGGAACTGTGTAA‐3´;
reverse 5′‐GGTTGTATAGGCCAGCAG‐3′).

COX16 (forward 5′‐CACAAATCCGGTACGATGCTG‐3´;
reverse 5′‐GGAGTTGAGGATCTTCCCAAGG‐3′).

COG3 (forward 5′‐GATGGGAGACCCGACTCGAT‐3´;
reverse 5′‐GCAGCGACTGGGATGCTAA‐3′).

CD46 (forward 5′‐GGCCAGATAAGTTTTCCCTTGT‐3´;
reverse 5′‐AGGCTTGGTAGGATGAGTAGG‐3′).

2.11 Statistical analysis

All analyses were performed in R v4.4.1 and GraphPad Prism
9 software. Continuous variables were compared between groups
using the Student’s t-test or the Wilcoxon rank-sum test, as
appropriate. Categorical variables were compared using Chi-square
test or Fisher’s exact test. Correlation analyses used Spearman’s rank
coefficient. P < 0.05 was considered statistically significant.

3 Results

3.1 Different expression gene and cardiac
immune microenvironment characteristics
in AF patients

Thestudyworkflow is summarized in Figure 1.We identified 391
differentially expressed genes (DEGs), including 300 upregulated
and 91 downregulated genes. Hierarchical clustering of the top 30
upregulated and downregulated DEGs distinctly separated atrial
fibrillation (AF) and sinus rhythm (SR) samples (Figures 2A,B).
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FIGURE 1
Flowchart of the research workflow.

GO and KEGG enrichment analyses showed significant enrichment
in leukocyte transendothelial migration and cytokine signaling
pathways, implicating immune-inflammatory processes in AF
(Figures 2C,D). CIBERSORT analysis revealed altered T cell
homeostasis in AF, with increased resting memory CD4+ T cells
and decreased CD8+ T cells (Figures 2E,F; p < 0.05). These results
suggest that AF is associated with immune microenvironment
dysregulation, particularly involving T cell subset
 alteration.

Recent studies have shown that metabolic reprogramming,
particularly lactate metabolism, plays a key role in T cell
differentiation and function. Given our observation of abnormal
T cell subset proportions in AF patients, we hypothesized that

lactate metabolism-related genes may contribute to the immune
imbalance associated with AF. Therefore, we further investigated
the involvement of lactate metabolism genes in AF by identifying
relevant key genes through integrative analysis.

3.2 Identification of key genes through
WGCNA for predicting AF

To identify AF-associated key genes potentially involved in
lactate metabolism and immune dysregulation, WGCNA was
performed on AF and SR cohorts. A soft threshold (β = 6) achieved
scale-free topology (R2 ≥0.9, slope = −1.2; Figures 3A,B). The blue

Frontiers in Cell and Developmental Biology 04 frontiersin.org

https://doi.org/10.3389/fcell.2025.1644702
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Long et al. 10.3389/fcell.2025.1644702

FIGURE 2
Gene expression profiles associated with atrial fibrillation (AF). (A) Volcano plot of differentially expressed genes (DEGs); (B) Heatmap of the top 30
upregulated and downregulated genes; (C) Top 10 enriched Gene Ontology (GO) terms; (D) Top 10 enriched KEGG pathways; (E) Immune cell
infiltration landscape in GSE79768; (F) Differential immune cell infiltration between AF and sinus rhythm (SR) groups (p < 0.05; ns, not significant).

(r = 0.63, p = 6 × 10−4) and turquoise (r = 0.69, p = 1 × 10−4)modules
showed strongest AF correlation (Figures 3C,D). Genes from these
modules with high module significance (gene significance >0.5 and

module membership >0.5) were intersected with the differentially
expressed genes (DEGs), resulting in 228 core candidates relevant
to AF. To specifically investigate the role of lactate metabolism,
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FIGURE 3
WGCNA analysis. (A–D) WGCNA identified two AF-associated modules: The MEblue and MEturquoise modules showing positive correlation with AF;
(E) High-correlation genes (correlation coefficient >0.5) within MEblue and MEturquoise; (F) Six lactate metabolism-related key genes linked to AF.

we further intersected these 228 genes with a predefined set of
387 lactate metabolism-related genes (LRGs; see Methods). This
integrative screening identified six key genes: SLC16A1, MRPL44,
FLI1, COX16, COG3, and CD46 (Figures 3E,F).

Multiple immune deconvolution methods (CIBERSORT,
xCell, and MCPcounter) consistently demonstrated the T cell
subset alteration in AF and all six key genes were positively
associated with resting memory CD4+ T cells and negatively with
CD8+ T cells (p value < 0.05, r >0.4, Figures 4A–D). To elucidate
their potential functions, we performed pathway enrichment and

transcriptional network analyses (Figure 5). These findings suggest
that the identified lactate metabolism genes may contribute to
immune microenvironment dysregulation in AF.

3.3 Diagnostic model development and
validation

To assess the diagnostic potential of lactate metabolism-related
genes (LRGs), we compared threemachine learningmodels: random
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FIGURE 4
The correlation analysis results of key genes with immune cells. (A) Lollipop plot of the correlation between six key genes (SLC16A1, MRPL44, FLI1,
COX16, COG3, CD46) in the mRNA expression profile and immune cells identified by CIBERSORT. (B) Correlation heatmap of six key genes expression
with immune cell infiltration identified by xCell (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). (C) Boxplot of the difference in CD8+ T cells relative abundance
between AF and SR groups. (D) Boxplot of the difference in T cells relative abundance between AF and SR groups.
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FIGURE 5
Gene set enrichment analysis (GSEA) and transcription factor (TF) prediction of six key genes. GSEA of key genes: (A) SLC16A1, (B) CD46, (C) COG3, (D)
COX16, (E) MRPL44, (F) FLI1. (G) Transcriptional regulatory network of key genes predicted by hTFtarget and visualized in Cytoscape.
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forest (RF), support vector machine (SVM), and GLMnet. Among
these, the RF model exhibited the best performance, with the lowest
residual errors and the highest area under the curve (AUC = 0.971),
outperforming both SVM (AUC = 0.94) and GLMnet (AUC =
0.95) (Figures 6A–D). Decision curve and calibration curve analyses
further supported the superior net benefit and prediction accuracy
of the RF model (Figures 6F,G).

We constructed an RF-based nomogram that integrated all six
key genes (SLC16A1, MRPL44, FLI1, COX16, COG3, and CD46),
enabling individualized risk prediction for AF (Figure 6E). Receiver
operating characteristic (ROC) analysis of the six key genes showed
that CD46, FLI1, and MRPL44 each achieved AUC values above
0.8, while SLC16A1 had the lowest AUC at 0.775, indicating robust
classification performance (Figure 6J).

External validation using the independent GSE41177 dataset
further demonstrated the generalizability of the models, with the
RF model achieving an AUC of 0.909, GLMnet an AUC of 0.901,
and SVM an AUC of 0.844 (Figure 6K). Together, these results
suggest that LRGs are promising biomarkers for AF detection, and
that the RF-based model offers a clinically useful tool for risk
stratification.

3.4 Single-nucleus RNA sequencing
visualization of key gene expression

To visualize the cell-type specific expression patterns of
lactate metabolism-related key genes, we analyzed snRNA-seq
data from AF and control hearts (GSE255612). After quality
control and normalization, unsupervised clustering identified 14
distinct cell types, including cardiomyocytes, endothelial cells,
and immune subsets (T cells, B cells, macrophages), based
on canonical marker expression (Figures 7A,B). The six key
genes exhibited distinct expression patterns across cell types:
COG3, CD46, COX16, and MRPL44 were broadly expressed,
SLC16A1 was mainly enriched in cardiomyocytes, and FLI1
was predominantly localized to endothelial cells and immune
populations (Figures 7C,D). This cell type-resolved expression
indicates their potential involvement in cell-specific pathways in AF
pathophysiology.

3.5 T cell heterogeneity and metabolic
remodeling in AF

To further dissect T cell heterogeneity in AF, we performed
unbiased clustering of T cells, identifying three distinct subsets:
(1) Th1-polarized memory T cells (Th1-MT, marked by IL7R,
CD2, THEMIS, IFNG-AS1, BCL11B), (2) cardiac lipid-adapted
memory T cells (CLM-T, characterized by NNMT, ABCA6,
TCF7L2, LRP1, EGFR), and (3) NK-like cytotoxic T cells (NK-CTL,
expressing KLRF1, GNLY, KLRC1, NCR1, SYK) (Figures 8A–D).
Functionally, Th1-MT are associated with pro-inflammatory
responses, CLM-T with metabolic adaptation, and NK-CTL with
cytotoxicity.

Comparative analysis revealed that AF hearts exhibited a
significantly increased proportion of Th1-MT and a decreased
frequency of CLM-T compared to controls (p < 0.05; Figure 8C).

Using AUCell-based pathway scoring, we found that CLM-T
displayed the highest overall metabolic activity, with significant
enrichment in glycolysis and fatty acid metabolism pathways.
Notably, Th1-MT showed significantly elevated lactate metabolism
activity compared to the other subsets (p < 0.05; Figure 8E),
indicating subset-specificmetabolic adaptations in the context ofAF.

3.6 Altered intercellular communication in
AF

Cell-cell communication analysis demonstrated enhanced
interaction frequency and signal strength in AF T cells,
particularly involving CLM-T as a central signaling node
(Figures 8F–H). Pathway-specific changes included upregulation
of CD45 and THBS (thrombospondin) pathways (associated
with immune activation and adhesion) and downregulation of
LAMININ and MHC-I pathways (linked to matrix interaction
and antigen presentation) in AF (Figure 8I). These shifts
suggest a reconfiguration of T cell communication networks
in AF, potentially contributing to immune microenvironment
dysregulation.

3.7 Experimental validation of the six key
genes in an AF mouse model

Prior to the intervention, baseline echocardiography
and ECG parameters showed no significant differences
between the two groups (p > 0.05) (Supplementary Figure S1;
Supplementary Table S1). To experimentally validate the expression
levels of the six key genes identified in our analysis, we established an
AF mouse model as described in the Methods section (Figure 9A).
ECG analysis confirmed successful induction of AF in the model
group, as evidenced by the disappearance of P waves and the
presence of an irregularly irregular rhythm, which are typical
hallmarks ofAF (Figure 9B). In addition, echocardiography revealed
significantly increased LAD and reduced LVEF in the AF group
compared to controls (CTRL), further supporting the successful
establishment of the AF phenotype (Figures 9C–E).

Subsequently, the mRNA expression levels of the six key
genes (SLC16A1, MRPL44, FLI1, COX16, COG3, and CD46)
were measured using qRT-PCR. The results demonstrated that all
six genes were significantly upregulated in the atria of AF mice
compared to controls (Figure 9F; p < 0.05 for all genes, Student’s
t-test). These experimental findings corroborate our bioinformatics
analyses and highlight the potential contribution of these genes in
AF pathophysiology.

4 Discussion

Despite advances in pharmacotherapy and catheter ablation,
atrial fibrillation (AF) management remains hampered by variable
treatment responses and high recurrence rates (Arcoraci et al., 2025;
Parks et al., 2024). While electrical and structural remodeling are
important in the pathogenesis of AF, increasing evidence suggests
that metabolic-immune interactions may also contribute to disease
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FIGURE 6
Machine learning-based AF diagnosis. (A) ROC curves of three models; (B,C) Residual comparisons between RF, SVM, and GLMnet; (D) Reverse
cumulative residual distributions; (E) Nomogram for AF risk prediction; (F) Decision curve analysis showing the net benefit of the gene model (red)
versus treat-all (gray) and treat-none (black) strategies; (G) Calibration curve; (H) Key gene expression distribution; (I) Gene effect on AF probability; (J)
Individual gene ROC curves; (K) External validation in GSE41177.
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FIGURE 7
Single-nucleus RNA-seq analysis of AF and CTRL hearts (GSE255612). (A,B) t-SNE visualization of 14 annotated cell clusters; (C) Violin plots of key gene
expression across cell types; (D) t-SNE plots showing key gene expression patterns.

development, supporting the need for new biomarker identification
(Tian et al., 2023; Zhao et al., 2023).

In this study, we used an integrated transcriptomic analysis
approach to identify six lactatemetabolism-related genes (SLC16A1,
MRPL44, FLI1, COX16, COG3, and CD46) that were associated
with CD4+/CD8+ T cell imbalance of AF (Floyd et al., 2023).
The diagnostic model constructed from these genes demonstrated
favorable performance in public datasets. Furthermore, in an
AF mouse model that recapitulated key features of the human
disease—including characteristic ECG changes, increased left atrial
diameter, and reduced left ventricular function—qRT-PCR analysis
indicated that all six genes were significantly upregulated in
atrial tissue of AF mice compared to controls. These results
provide preliminary support for the relevance of these genes
in AF, though the associations observed here require further
mechanistic investigation. It should also be noted that mouse
models, while informative, may not fully reflect the complexity
of human AF.

Our single-cell analysis showed that the CLM-T subset,
characterized by enrichment in glycolytic and fatty acid metabolism
genes, was reduced in AF samples. Metabolic features partially
overlapping with CLM-T have been reported in exhausted T cells
in tumor microenvironments, hinting at potential parallels in
adaptation mechanisms under stress (Chen et al., 2025). We also
observed higher lactatemetabolism pathway activity in controlTh1-
MT cells compared to other T cell subsets, consistent with previous
reports implicating glycolysis in Th1 differentiation (Salles et al.,
2023; Zhang et al., 2023). However, the biological significance of the
observed changes in CLM-T and Th1-MT metabolic activity in AF
remains to be established, and further functional studies are needed
to clarify these findings (Lee et al., 2025).

CellChat analysis predicted enhanced CD45 and THBS
signaling pathways between CLM-T and other T cell subsets in
AF, suggesting possible alterations in intercellular communication.
The involvement of the CD45 pathway is noteworthy due to its
known role in T cell receptor signaling and immune regulation
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FIGURE 8
T cell heterogeneity and cellular communication in AF. (A,B) t-SNE plots of 3 T cell subsets; (C) Proportion differences between AF and control (∗∗p <
0.01, ∗∗p < 0.001, ns = not significant); (D) Heatmap of T cell subset markers; (E) Metabolic pathway activity (AUCell scores); (F,G) Interaction number
and strength; (H) Incoming/outgoing interaction strength; (I) Differential signaling pathways between groups.
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FIGURE 9
Experimental validation of key genes in an AF mouse model. (A) Flow chart of AF mouse model establishment. (B) Representative ECG traces showing
loss of P waves and irregular rhythm in AF mice. (C) Typical echocardiography of the heart in AF model group and control (CTRL) group. (D,E) Increased
left atrial diameter (LAD) and reduced left ventricular ejection fraction (LVEF) in AF mice versus controls, assessed by echocardiography. (F) qRT-PCR
analysis reveals significant upregulation of six key genes (SLC16A1, MRPL44, FLI1, COX16, COG3, CD46) in atrial tissue of AF mice compared to controls
(∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001).
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(Samarakoon et al., 2016). Likewise, THBS1-mediated interactions
may influence the pro-fibrotic microenvironment via effects on
TGF-β activation and T cell function (Kresoja et al., 2021; Wei et al.,
2024; Li et al., 2023). Similar dysregulation of these pathways in
other immune-mediated diseases, such as rheumatoid arthritis,
suggests the possibility of shared mechanisms (Rico et al., 2008;
Jiang et al., 2025; Rider et al., 2013). However, further studies are
needed to determine their functional relevance in AF.

Alterations in the lactate metabolism-related gene profile and T
cell subpopulation observed here may be comparable to findings in
other conditions, such as cancer and heart failure, where metabolic
stress is thought to drive immune dysregulation. Bidirectional
crosstalk involving lactate-modulated histone lactylation and
cytokine-driven metabolic shifts has been described (Naik et al.,
2025; Hu et al., 2024; Kim et al., 2025). Our results suggest that
such metabolic–immune interactions may also occur in AF, but
more work is needed to clarify these mechanisms and their clinical
implications.

5 Limitations

This study has several limitations. Although we validated
gene expression changes in an AF mouse model, we did not
directly assess the corresponding immune cell alterations, such as
T cell infiltration, in the atrial tissue. Direct functional studies
are needed to elucidate the mechanistic roles of these genes in
AF. The sample size was relatively small, which may affect the
robustness of subgroup analyses. In addition, we did not evaluate
the association of these biomarkers with clinical outcomes or
treatment response in human patients. Future studies should include
comprehensive functional validation using both in vitro and in
vivo models, larger patient cohorts, and mechanistic exploration
of the metabolic-immune axis in AF. Furthermore, it is important
to acknowledge that while this drug-induced model was effective
for validating our transcriptomic findings, a pharmacologically-
driven arrhythmia may not fully recapitulate the complex and
progressive structural and immune remodeling characteristic of
chronic human AF.

6 Conclusion

In conclusion, our comprehensive transcriptomic analysis
indicates that genes associated with lactate metabolism may
serve as potential biomarkers for AF, representing promising
targets for further exploration in diagnostic and therapeutic
contexts. Additionally, T cells exhibited alterations in metabolic
transcriptomics in the context of AF. These findings enhance our
understanding of AF pathogenesis; however, further validation
and functional studies are necessary before considering clinical
applications.
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