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Background: Newborns undergo rapid metabolic and organ adaptations after 
birth, which are compromised in premature newborns, leading to adverse 
health outcomes. Molecular mechanisms underlying these transitions remain 
poorly understood due to limited tissue availability. To address this gap, we 
characterized tissue transcriptomes using autopsy samples from a unique 
newborn cohort.
Methods: We analyzed liver (LI), heart (HM), and skeletal muscle (SM) 
transcriptomes using RNA sequencing in 41 predominantly premature newborns 
who died shortly after birth. Nearly 14,000 protein-coding gene transcripts per 
tissue were detected.
Results: Tissues exhibited distinct expression profiles, with LI showed the 
highest number of tissue-specific genes. SM gene expression correlated strongly 
with gestational age at birth (i.e., the prenatal development), while LI was 
influenced by the duration of postnatal survival (i.e., the postnatal development). 
HM displayed minimal changes, suggesting stable myocardial metabolism 
during the perinatal transition. Weighted Gene Co-expression Network Analysis 
(WGCNA) identified tissue-specific gene co-expression modules linked to 
clinical traits such as gestational age, birth weight, survival duration, nutrition, 
and exposure to catecholamine treatment. The key functional annotations, 
validated by differential expression analysis, revealed that LI and SM modules 
were enriched for mitochondrial metabolism and oxidative phosphorylation 
genes, with more pronounced prenatal development in SM, and a postnatal 
increase in both tissues. Data suggests that energy metabolism in SM matures 
first, followed by the development of muscle functions. Hepatic modules 
were associated with a postnatal increase in the steroid hormone/xenobiotic 
metabolism, and a decline in hematopoietic activity. Robust annotations 
to ribosome activity suggested tissue-specific changes in protein synthesis, 
which declined prenatally in SM, postnatally in HM. Notably, the supply of 
exogenous glucose and nutrition type were strongly associated with hepatic
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gene expression, highlighting the central role of the liver in postnatal metabolic 
adaptation.
Conclusion: Overall, our study highlights tissue-specific perinatal gene 
regulation, with mitochondrial maturation emerging as a crucial driver 
of postnatal adaptation, explaining vulnerabilities in preterm infants. We 
provide a unique resource for characterizing developmental changes in tissue 
transcriptomes during the fetal-to-neonatal transition in human newborns.

KEYWORDS

tissue transcriptome, human, premature newborn, WGCNA, mitochondria 

Introduction

The perinatal period in humans represents a very dynamic part 
of ontogenesis. Like other altricial species, humans are born relatively 
immature compared to precocial placental neonates. Maturation of 
most organs and systems in humans occurs postnatally (Ferner et al., 
2017). Sufficient organ development during fetal life, interlinked with 
physiological postnatal adaptation to the extrauterine environment, 
including, e.g., the ambient temperature (Cannon and Nedergaard, 
2004) or nutrition (Koldovsky et al., 1995), is a prerequisite for a 
newborn’s health (Hillman et al., 2012). 

Despite inherent complexity, early postnatal human development 
commonly proceeds without major complications. However, about 
10% of newborns are born prematurely, i.e., before the 37th week 
of gestation (GW 37) (Lawn et al., 2023). The threshold of fetal 
viability is around GW 22–23. Preterm birth and its complications 
are the leading causes of death in children under 5 years of age 
(Perin et al., 2022; Lawn et al., 2023). Newborns delivered before GW 
28 (i.e., “extremely preterm newborns”) often have long-term health 
problems, including developmental, neurological, and metabolic 
disorders (Lawn et al., 2023; Deprez et al., 2024). The risk of 
chronic adverse health outcomes increases significantly with lower 
gestational age at birth (referred to further as Gestation). Molecular 
correlates of early postnatal human development physiology and 
pathology are poorly characterized due to the limited availability of 
the appropriate tissue samples. 

Quantitative analysis of the whole transcriptome using RNA-
sequencing (RNA-Seq) provides a reliable tool to characterize the 
development of organs and tissues. This approach is widely used 

Abbreviations: DE, differential expression; DEGs, diferentally expressed 
genes; DESeq2, software package in bioinformatics for analyzing RNA 
sequencing data to identify differentially expressed genes; Gestation, 
gestational age at birth; Glc_su_total, total exogenous glucose supply during 
the last 3 days of life (for calculation, see Supplementary Table S1); GO, Gene 
Ontology; GW, gestational week; HM, left ventricle myocardium; LI, liver; 
log2FC, log2 fold change; MM3, mother’s milk any time during the last 3 days 
of life; Mit_genes, mitochondrial transcript abundance; NOISeq analysis, 
robust differential expression analysis of RNA-seq data inclucing control for 
false discovery rates, used here to depict genes with preferential expression 
in a given tissue; ORA, Over-representation analysis; OXPHOS, oxidative 
phosphorylation; PCA, Principal component analysis; PL, parenteral nutrition 
enriched with lipids any time during the last 3 days of life; RIN, RNA Integrity 
Number; RNA-Seq, RNA sequencing; Selected module, gene co-expression 
module identified using WGCNA, with eigenegene correlating with at least 
one of the tested traits, or the trait-module correlation proved using a linear 
regression approach; SM, skeletal muscle; Survival, length of survival after 
birth; WGCNA, Weighted Gene Co-expression Network Analysis. 

in animal research, e.g., in characterizing mouse liver development 
from fetal to adult stages (Li et al., 2009; Renaud et al., 2014). 
However, data on the ontogeny of the whole transcriptome of 
human tissues and organs are scarce. Developmental changes of the 
transcriptome across several organs of six mammalian species and 
a bird were characterized (Cardoso-Moreira et al., 2019); this study 
also included humans, with samples collected from fetuses between 
GW 4–20, infants aged 6–9 months, and older healthy individuals. 
The ongoing Genotype-Tissue Expression project (GTEx) aims to 
characterize tissue-specific transcriptomes from 54 non-diseased 
tissue sites across nearly 1,000 adult individuals [Mele et al. (2015); 
https://www.gtexportal.org/home/]; changes in gene expression 
in multiple tissues during development will also be studied; 
however, no results are available yet. Other studies characterized 
gene expression in the human heart (Iruretagoyena et al., 2014; 
Pervolaraki et al., 2018; Cui et al., 2019; Cao et al., 2020), liver 
(Yu et al., 2001; Popescu et al., 2019; Segal et al., 2019; Cao et al., 
2020), kidney (Menon et al., 2018; Wang et al., 2018; Hochane et al., 
2019; Cao et al., 2020), retina (Lu et al., 2020), brain (Darmanis et al., 
2015), and some other tissues (Gao et al., 2018; Cao et al., 2020) 
collected mostly from abortions during the first half of intrauterine 
life, and very seldom between GW 20–33 (Gao et al., 2018; 
Wang et al., 2018; Lu et al., 2020).

To our knowledge, no previous studies have examined the whole 
human tissues’ transcriptome during the critical first hours and days 
after birth, when rapid metabolic and organ changes occur. To bridge 
this gap, we took here advantage of a unique biobank of autopsy 
tissue samples from mostly premature newborns. All died within 
3 months, mostly within several hours or days after birth (Brauner et al., 
2001; Brauner et al., 2002; Brauner et al., 2006; Hondares et al., 
2014; Janovska et al., 2025). Expression of only selected genes has 
been analyzed across various tissues using this biobank, documenting 
the influence of Gestation, length of survival after birth (referred 
to further as Survival), and newborn nutrition on gene expression 
(Brauner et al., 2001; Brauner et al., 2002; Brauner et al., 2006; 
Hondares et al., 2014; Janovska et al., 2025). Here, we examined 
transcriptomes of the liver (LI), left ventricle myocardium (heart 
muscle, HM), and skeletal muscle (SM; musculus quadriceps femoris) 
of the newborns using RNA-Seq. We aimed to characterize the 
spectrum and dynamics of protein-coding genes (PCGs) expression 
across the selected tissues, examining their dependence on Gestation, 
Survival, and other traits. The primary goal of this study was to 
provide a previously unavailable data resource to further elucidate 
various aspects of early postnatal human development. Focusing 
here on complex dataset analysis, we prioritized tissue-specific gene 
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expression differences and their trait interactions within defined 
gene co-expression modules rather than exploring deep underlying 
biological mechanisms. However, our recent study on the postnatal 
decline of hepatic hematopoiesis builds upon this work using the 
information about selected transcripts (Janovska et al., 2025). 

Materials and methods

Human tissues

The workflow of this study is shown in Figure 1. Autopsy samples 
of LI, HM, and SM were obtained from human newborns (n = 41; 
mostly premature newborns) within 2–3 h after death. Autopsies 
were performed obligatorily in these cases. These newborns died 
during the years 2000–2006 due to various causes, relatively early after 
delivery at the Division of Neonatology, Department of Obstetrics 
and Gynecology, General Faculty Hospital and the first Faculty 
of Medicine, Charles University, Prague, Czech Republic (Table 1; 
Supplementary Table S1A; Supplementary Figure S1). See also our 
previous publications based on this biobank (Brauner et al., 2001; 
Brauner et al., 2002; Brauner et al., 2006; Hondares et al., 2014; 
Janovska et al., 2025), in which some of the cases used in this study were 
examined (n = 35; Table 1). Tissues from newborns of mothers with 
endocrinological disorders or drug abuse were not included. The study 
protocol conforms to the ethical guidelines of the 1975 Declaration of 
Helsinki, and it was approved a priori by the Committees of Medical 
Ethics at all the collaborating institutions (see the Code of the Ethics 
Committee of the General University Hospital Prague: 70/18 Grant 
AZV VES 2019 1. LF UK). Written informed consent was obtained 
from the parents. Tissue samples were stored in RNAlater (Ambion, 
Austin, TX, United States) at −80 °C. Some LI samples are also stored 
in paraffin blocks for histology (Brauner et al., 2001; Janovska et al., 
2025). The biobank is located at the Institute of Physiology of the Czech 
Academy of Sciences, Prague. 

RNA isolation and quality control

Total tissue RNA was isolated using the RNeasy Mini Kit 
(Qiagen, Valencia, CA, United States). Typically, 30–100 µg total 
RNA was obtained from 40 to 50 mg of the tissue. Its quality 
was checked using 250 ng RNA and the Agilent 2100 Bioanalyzer 
(Agilent Technologies, Inc., Santa Clara, CA, United States) to obtain 
the RNA Integrity Number (RIN) as the marker. Only samples with 
RIN > 6.1 were used for RNA-Seq. 

RNA-seq analysis

Complementary DNA library preparation KAPA RNA HyperPrep 
Kit with RiboErase KK8560 (F. Hoffmann-La Roche, Basel, 
Switzerland) was used for RNA-Seq library preparation with 1 µg 
RNA per sample. Sequencing was performed using NovaSeq6000 
(Illumina, San Diego, CA, United States). The resulting FASTQ 
files were subjected to QC control and trimmed using Atropos 
(version 1.128). An average of 28.38 million 2 × 100 bp paired-
end reads were generated per sample, and more than 97% of these 

reads were mapped to the human reference genome HG38 using 
STAR aligner (version 2.7.8a). In total, 56% exonic, 36% intronic, 
and 8% intergenic regions were identified. Gene-level abundances 
were estimated using Salmon (version 1.3) with the Ensembl gene 
definition version 94. This resulted in the detection of transcripts 
corresponding to 51,625 unique Ensembl gene IDs, which included 
19,938 only PCGs and 7,629 long noncoding RNAs. In order to reduce 
the number of false-positive results, transcripts with the sum of raw 
read counts under 500, calculated across all samples for each gene, 
were excluded. Thus, only a limited number of transcripts for PCGs 
were considered for the subsequent analyses, 15,471 PCGs in total, 
i.e., 14,237 PCGs in LI, 14,260 PCGs in HM, and 14,169 PCGs in 
SM; long noncoding RNAs were not included. Levels of UCP3 and 
SLC2A4 transcripts measured using qPCR previously (Brauner et al., 
2006), similarly as the analysis of PDK4, LIPE and FASN levels in 
this project, correlated with the values obtained here using RNA-
seq (Supplementary Figure S2). The RNA-Seq data were deposited in 
the ZENODO database under accession number 14045261 [https://
doi.org/10.5281/zenodo.14045261; (Stranecky and Kopecky, 2024)]. 

All downstream calculations were performed in the R 
environment, version 4.3.0. The PCAtools R package (https://
github.com/kevinblighe/PCAtools) was used for PCA on the top 500 
variable genes selected from rlog-transformed data. Normalization, 
rlog transformation, and differential expression (DE) analyses were 
performed within the DESeq2 R package (Love et al., 2014). This 
procedure included the median of ratios method, when read counts 
were divided by sample-specific size factors. Normalized counts were 
used for DE analysis with the Wald test and Benjamini–Hochberg p-
value adjustment. Genes with adjusted p-value < 0.05 were considered 
significant; no log2 fold change (log2FC) cut-off was applied in case 
of continuous independent variables, while absolute value of log2FC 
> 0.5 was applied as cut-off after tests with factorized varibales. As 
the main parameters of interest, Gestation, Survival, and sex were 
used as independent variables for separate statistical tests. Additional 
DE analyzes included other traits, specifically, BW, APG, MM3, 
PL, Glc_su_total, Catech, and Mit_genes (see Abbreviations). For 
Gestation, Survival, BW, APG, Glc_Su_total and Mit_genes, treated as 
continuous variables, a standard DESeq2 design formula was specified. 
DESeq2 fits a generalized linear model for each gene, estimating the 
association between gene expression and the continuous variable; the 
Wald test is applied to the coefficient of the continuous variable, and 
the reported log2 fold change corresponds to change in expression per 
unit increase. To determine genes with preferential expression in one 
of the tissues, NOISeq analysis (Tarazona et al., 2015) was applied to 
DESeq2-normalized data. The type of replicates was set as “biological.” 
Expression of genes in one tissue was compared with expression in the 
other two tissues. Genes with q-value > 0.95 and absolute value of 
log2FC > 2 were considered tissue-specific. 

Mitochondrial transcripts abundance

Total transcriptional output originating from mitochondrial 
genes was expressed as a percentage of sequencing 
reads aligned to the mitochondrial genome relative to 
all reads mapped [Mit_genes; Garcia et al. (2017);
Supplementary Table S1B]. 
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FIGURE 1
Overview of the experimental and analytical approach used in this study. The schematic depicts sample grouping based on gestational age at birth 
(Gestation) and length of survival after birth (Survival). RNA-Seq analysis was performed on samples from LI, HM, and SM. Data analysis included: (Step 
1) tissue-specific gene profiling and PCA; (Step 2) differential expression analysis to identify DEGs associated with various traits, followed by functional 
enrichment analyses using the entire dataset; (Step 3) WGCNA to identify key tissue-specific modules related to tested traits and the associated 
biological pathways and processes in each tissue; and (Step 4) validation of DEGs contained within these modules.
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TABLE 1  Cases examined.

Case Sex Gestational 
age at birth 

(weeks + 
days)

Birth weight 
(g)

Survival 
(days)a

Multiple birth Tissue sample 
for RNA-seq

Clinical and 
pathological 
diagnoses

LI HM SM

Extremely preterm newborns (< GW 28)

 A97b F 20 + 3 350 0 + + + LBNS

 A100b M 22 + 0 510 4 G + + + RDS, ICH

 A93b M 22 + 2 500 1.9 G + + + IA, RDS, ICH

 A94b M 22 + 4 450 11.6 + + RDS, S, MOF, ICH

 A108b M 22 + 4 590 0.6 G + + + RDS, ICH

 A107b F 22 + 5 460 6.7 G + + + RDS, PDA, NEC, S, 
ICH

 A82b M 23 + 2 690 14.1 + + + RDS, PH, S, M

 A113b M 23 + 3 520 0 + + + LBNS, IA, P

 A104b F 23 + 4 530 0 + + + LBNS

 A96b M 23 + 6 700 1.9 + + RDS, ICH

 A72b M 24 + 0 680 26.7 + + IA, ICH, NEC, MOF

 A106b M 24 + 0 620 3.2 + + + IA, RDS, S, ICH

 A99b F 24 + 1 320 0 + + LBNS

 A71b M 24 + 3 680 2 + + LH, PPROM, RF, 
ICH

 A101b F 24 + 3 580 6.9 T + + + RDS, PDA, ICH

 A102b F 24 + 3 610 20 T + + + RDS, PDA, BPD, S, 
ICH

 A77 b M 24 + 4 690 3.5 G + + + RDS, ICH

 A90b M 24 + 4 985 17.3 G + + + RDS, PH, S, ICH

 A84b F 24 + 6 630 18.8 + + + RDS, ICH

 A74b F 25 + 0 380 5.7 + FGR, PDA, PH, S, 
ICH

 A73b M 25 + 2 435 69.4 G + FGR, RDS, ICH

 A112b F 25 + 2 700 35 + + + RDS, S, M, ICH

 A114b M 25 + 5 750 10.9 + + + RDS, S, NEC

 A105 F 26 + 4 830 36.1 G + + + RDS, PDA, NEC

 A92b M 27 + 1 820 29.6 + + + RDS, RF, ICH

 A111 M 27 + 2 870 3.7 + + + RDS, S, ICH

(Continued on the following page)
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TABLE 1  (Continued) Cases examined.

Case Sex Gestational 
age at birth 

(weeks + 
days)

Birth weight 
(g)

Survival 
(days)a

Multiple birth Tissue sample 
for RNA-seq

Clinical and 
pathological 
diagnoses

LI HM SM

Very preterm newborns (GW 28 to < GW 32)

 A87b M 28 + 2 980 2.7 + + + PPROM, S, ICH

 A95 M 28 + 4 780 2.6 G + + + IA, LH, PH, VA

 A110b M 28 + 4 1,000 20.6 + + + RDS, PDA, NEC, 
MOF

 A91b M 29 + 5 830 2.4 + + + IA, FGR, ICH

 A117 F 30 + 0 1,150 2.6 + + + RDS, ICH

 A75b M 30 + 2 1,295 9.6 + + + M, S

Moderate to late preterm newborns (GW 32 to < GW 37)

 A115b M 32 + 0 2060 1.7 + + + RDS, S, ICH

 A76b M 32 + 1 750 6.9 G + + + DS, S

 A98b M 32 + 3 1840 0.4 G + + + LBNS, JS, RF

 A70b F 34 + 6 1950 13 + + MOF, NEC, ICH, 
RDS

 A85 M 35 + 2 560 10 min G + + LBNS, IA, FGR, ICH

 A109b M 35 + 2 1860 0.1 + + + LH, RF

 A88b F 36 + 3 1790 89.7 G + + + FGR, RF

Term newborns (> GW 37)

 A86 F 37 + 5 1,690 13.3 + + FGR, LH, NEC

 A103b F 38 + 5 1,500 0.8 + + + FGR, LH, PH, RF

Cases in the cohort (n = 41) were sorted and classified according to gestational age at birth (Gestation; https://www.who.int/news-room/fact-sheets/detail/preterm-birth).
Abbreviations: F, female; M, male; GW, gestational week; G, gemini; T, trimini; BPD, bronchopulmonary dysplasia; DS, Down syndrome; FGR, fetal growth restriction; IA, intrauterine asphyxia; 
ICH, intracranial hemorrhage; JS, Jeune syndrome; LBNS, live-born infant not supported after delivery; LH, lung hypoplasia; M, meningitis; MOF, multiorgan failure; NEC, necrotizing 
enterocolitis; P, pneumonia; PDA, patent ductus arteriosus; PH, pulmonary hemorrhage; PPROM, preterm premature rupture of membranes; RDS, respiratory distress syndrome; RF, respiratory 
failure; S, sepsis; VA, VATER syndrome.
aIn days, except when indicated otherwise (in bold type); “0” marks newborns showing signs of life, in which resuscitation was withheld for various reasons.
bCases (n = 35) examined in our previous studies (Brauner et al., 2002; Brauner et al., 2006; Hondares et al., 2014).
+ Samples of LI (n = 35), HM (n = 39), and SM (n = 37) used for RNA-Seq, after the exclusion of degraded RNA isolates (RIN < 6.1). For quality and codes of the RNA isolates, and for various 
clinical traits, see Supplementary Table S1; for the diagnoses frequency, see Supplementary Figure S1D.

Gene co-expression analysis and 
interpretation of RNA-seq data

Analysis of gene expression profiles was performed using 
Weighted Gene Co-expression Network Analysis [WGCNA; ref 
(Langfelder and Horvath, 2008; Zhao et al., 2010)] based on 
clustering and correlation approaches. A total bulk of the expressed 
PCGs in each tissue was segregated into co-expression modules. We 
performed a “signed” type of co-expression network construction 
that considered the sign of the correlation information for each 

pair of individual gene profiles. Thus, each module consisted of 
clustered PCGs with similar dynamics across tissue. Within each 
tissue analysis, the procedure assigns each PCG to only one module.

Next, eigengenes were calculated, representing a weighted average 
of the gene expressions in each module (Langfelder and Horvath, 
2008; Zhao et al., 2010), and their profiles were tested for correlation 
with all recorded traits, such as Gestation, Survival and other 
clinical parameters, and mitochondrial transcript abundance, using 
Spearman’s method. Correlation was considered significant at r-
value > 0.5 or < − 0.5, and p-value < 0.05. Co-expression modules 
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with eigengene profiles, positively or negatively correlating with the 
tested parameters (referred to further as Selected modules), were 
filtered for further annotation. The same approach was used to 
analyze correlations between tested traits and between eigengenes. 
A multifactorial linear regression-based approach (Haghani et al., 
2023) was also applied, including (i) module eigengene as a dependent 
variable, (ii) either Gestation or Survival as an independent variable, 
and (iii) sex as a random factor. In addition, we tested the interaction 
between Gestation and Survival of the neonate using a separate model 
that included both these parameters. 

Annotation of groups of PCGs from co-expression modules 
was performed using Over-representation analysis (ORA) 
from clusterProfiler R package (Wu et al., 2021). Information 
about pathways and terms was extracted from the KEGG 
(https://www.genome.jp/kegg/) and Gene Ontology (GO; https://
geneontology.org/) databases.

Results

Large heterogeneity of cases examined

The studied cohort was composed of 41 born-alive infants 
of both sexes (15 females and 26 males), who all died, 
primarily due to severe prematurity and related pathologies during 
2000–2006. These newborns differed concerning Gestation (GW 
20.4–38.7) and corresponding birth weight (320–2060 g; Table 1; 
Supplementary Table S1A). Regarding the international standards 
(Villar et al., 2014), about 25% of the newborns were “small 
for gestational age” (Supplementary Figure S1A), which is a higher 
incidence compared with surviving preterm newborns (5). Most of 
the newborns (n = 26; 63%) were “extremely preterm newborns” 
(< GW 28), while only two of them (∼5%) were born at term (≥ 
GW 37; Table 1; Supplementary Figure S1B). The deaths occurred 
within 24 h (n = 9; 22%), mainly between 1 day and 1 month (n
= 28; 68%), or between 1 and 3 months (n = 4; 10%) after birth 
(Table 1; Supplementary Figure S1C). 

The cases were very heterogeneous regarding clinical and 
pathological diagnoses (Table 1). Frequency of various pathological 
conditions and their combined presence increased with lower 
Gestation (Supplementary Figure S1D). Thus, both intracranial 
hemorrhage and respiratory distress syndrome were diagnosed in 
85% of the extremely preterm newborns, with 58% of these newborns 
exhibiting a combination of these two pathologies. Also, the frequency 
of sepsis increased with prematurity. On the other hand, the number of 
newborns with fetal growth restriction and lung hypoplasia correlated 
positively with Gestation (Lawn et al., 2023). All the above data 
document the extremely pronounced heterogeneity of the studied 
newborns, inherent with the nature of this unique clinical cohort. 

RNA-seq of LI, HM, and SM identified 
15,471 largely overlapping transcripts: 
tissue-specific expression patterns

Total RNA isolated from autopsy tissue samples was used 
for RNA-Seq to characterize LI, HM, and SM transcriptomes 

(Figure 1). Despite the prolonged storage of the samples, the 
quality of 94% of RNA isolates (Supplementary Table S1B) 
was sufficient for the analysis (Table 1). In each tissue, 
close to 14,000 transcripts for PCGs were considered (see
Materials and methods).

First, we focused on the characterization of the general 
pattern of gene expression across tissues (Figure 1 – Step 1). 
About 84% of all these PCGs were expressed in all three tissues, 
while hundreds of PCGs were expressed exclusively in a given 
tissue, with a relatively large number in LI, and 15,471 in total 
considered (Figure 2A). Linear regression analysis of variation 
within gene expression data indicated a higher contribution 
of the tissue type factor than the individual (44% vs. 10% 
of variance explained). NOISeq analysis identified genes non-
exclusive to any tissue but with predominant expression in one 
(Figure 2B; Supplementary Table S2). The number of these genes 
was approximately twice as high in LI as in HM, with the lowest 
number observed in SM. Overall, the number of such genes found 
in newborns in this study was higher than in adult humans
(Mele et al., 2015).

The variation among the tissues was confirmed using Principal 
component analysis (PCA; Figure 2C). The principal component 
1 (PC1, representing 77% of variability) separated the tissues 
depending on the germ layer of their origin, i.e., (i) LI originated 
from both endoderm and mesoderm; and (ii) HM and SM, 
which developed from mesoderm. Separation by PC2 reflected 
more subtle differences in tissue transcriptomes, probably reflecting 
muscle fiber structure and metabolism (Blaauw et al., 2013; 
Lindskog et al., 2015). Plots of top and bottom loadings extracted 
from PCA results indicated the most discriminating transcripts 
between LI and muscle tissues (PC1) (Figure 2D), and between HM 
and SM (PC2) (Figure 2E), respectively. PCGs contributing the most 
to PC1 encoding hepatic proteins, involved in blood coagulation 
(SERPINC1, KNG1, FGB, FGA), plasma transport (TF, ALB), lipid 
metabolism (APOC3, APOA1, APOB), detoxification (CYP3A7), 
acute-phase response (ORM1, HP); and muscle proteins, crucial 
for its contraction (TTN, MYH7, ACTC1, ACTA1, MYL2, TNN1, 
TNNC1), structure (DES, LDB3, NRAP, FLNC), energy metabolism 
(CKM, MB), and cytoskeleton organization (ACTN2, HSPB7, CSRP3, 
XIRP1, XIRP2). The major contributors to the PC2 involved PCGs 
specific for skeletal muscle proteins, such as MYBPC1, MYH2, and 
SERCA1 (ATP2A1); and myocardium proteins, such as MYBPC3, 
MYL7, and NPPA.

The analyses above indicated a relatively high variation in the 
expression of PCGs among LI, HM, and SM of the newborns, 
with a relatively high spectrum of LI-specific genes and a major 
difference between the hepatic and muscle transcriptomes. These 
data align with the developmental origins and functions of
these tissues. 

Interactions between tissue transcriptomes 
and major traits: SM transcriptome as the 
most affected

To assess the effects of the recorded traits on whole tissue 
transcriptomes and related functions (Figure 1 – Step 2), global 
two-dimensional hierarchical clustering of gene expression was 
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FIGURE 2
Global patterns of tissue transcriptomes. (A) Venn diagram showing the total number of PCG transcripts considered based on RNA-Seq of LI (n = 35), 
SM (n = 37), and HM (n = 39) samples (Table 1), and their overlap across tissues. (B) Bar plot displaying the number of genes with tissue-preferential 
expression, as determined by NOISeq analysis. The expression level in a given tissue was compared with its combined expression level in the other two 
tissues. FC refers to log2FC (Supplementary Table S2). (C) PCA of gene expression profiles, showing the separation of LI, SM, and HM samples based on 
the top 500 variable genes in three tissues. The first two principal components (PC1 and PC2), explaining the largest proportion of variance, are plotted.
(D, E) Bar plots showing the genes with the most extreme positive (red) and negative (blue) loadings, indicating genes with the largest contributions to 
sample separation along PC1 (D) and PC2 (E), respectively.

performed for each tissue separately. In LI, cases are segregated 
into distinct clusters reflecting Survival. However, Survival had 
no apparent effect in either HM or SM (Figures 3A–C). In any 
tissue, the clustering pattern could not be unequivocally explained 

by Gestation, sex (Figures 3A–C), or any other recorded trait 
(not shown).

Therefore, next, we sought to characterize directly global 
changes in tissue transcriptomes with the two major clinical traits, 
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FIGURE 3
Differential effects of Gestation and Survival on transcriptomes across three tissues. (A–C) Two-dimensional hierarchical clustering analyses were 
performed separately for LI, HM, and SM (dendograms, top). Below each dendrogram is a heatmap representing selected traits: Gestation and Survival 
are indicated by color intensity (darker shades correspond to higher values), while Sex is denoted by filled cells (males) for each individual sample. In LI, 
clusters (C1–C4) show a clear association with Survival: C1, median of 0.4 days; C2, >29 days; C3, median of 14.1 days; and C4, median of 3.2 days (see 
Table 1). (D, E) DEGs were identified in each tissue using DESeq2, with Gestation and Survival used as continuous independent variables; for a list of 
genes, see Supplementary Table S3. (F, G) Venn diagrams illustrate the overlap of the DEGs associated with Gestation (F) and Survival (G) among the 
three tissues (using data from (D, E)).

i.e., Gestation and Survival, using DESeq2 analysis (Figures 3D–G; 
Supplementary Table S3). The number of diferentially expressed 
genes (DEGs) linked to Gestation was the highest in SM, 
intermediate in HM, and lowest in LI. On the other hand, LI 
showed the highest number of DEGs linked with Survival, with 
SM showing less, and HM almost no effect. Considering the effect 
of both Gestation and Survival together, the SM transcriptome 
was the most affected, while the HM transcriptome represented 
the opposite (with 24%, 16%, and 6% of PCGs affected in SM, 
LI, and HM). DEGs linked to Gestation (Figure 3F) and Survival 
(Figure 3G), respectively, partially overlapped among the tissues, 
most prominently the DEGs linked to Gestation between SM 
and HM, indicating their similar trajectories during prenatal 
development (Figure 3F).

Functional annotation of the top DEGs related to Gestation 
and Survival, respectively, performed using KEGG and GO 
databases (Figures 4A,B; Supplementary Table S4) suggested 

tissue-specific association of numerous biological activities 
with both traits, namely, (i) “mitochondrial activity,” annotated 
by terms relating to oxidative phosphorylation (OXPHOS), 
mitochondrial metabolism, thermogenesis, and aerobic respiration, 
and associated cellular processes such as muscle contraction 
and ribosome activity (KEGG, GO) with Gestation in SM; (ii) 
cell cycle, ECM-receptor interaction (KEGG), regulation of 
chromosomal/DNA activity and blood cells formation (GO) with 
Survival in LI; and (iii) ribosome activity (KEGG, GO) with 
Survival in HM.

Taken together, the analyses above suggested predominantly (i) 
prenatal maturation of mitochondrial energy metabolism linked 
with the muscle contractile system and perhaps other energy-
demanding mechanism in SM, and (ii) postnatal changes in cell cycle 
progression possibly linked with hepatic hematopoiesis in LI. HM 
transcriptome exhibited only a minimal modulation, limited to the 
effect of Gestation. 
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FIGURE 4
Functional annotation of DEGs associated with Gestation and Survival (corresponding to Figures 3D,E) using ORA. Tissues are shown in columns and 
annotations in rows. (A) The annotation focused on biochemical pathways using KEGG database (B) The annotation using GO database across three 
main categories: Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). The most significant GO terms were selected based 
on adjusted p-values from ORA and their representation across multiple datasets. For complete results of the annotations, see Supplementary Table S4.

Tissue-specific sex-biased gene expression 
linked to infectious diseases of the 
newborns

We identified 76 PCGs across all three tissues with global 
sex-biased expression, mostly in LI (50 PCGs) and a lower 
number in HM and SM (28 and 33 PCGs, respectively; Figure 5; 
Supplementary Table S5A, B). Of these PCGs, 13 were expressed 
in each tissue (two on chromosome X, eight on chromosome Y, 
and one in the pseudo-autosomal region). All the PCGs on sex 

chromosomes, except for four identified before in adult humans 
(EIF2S3, SMC1A, STS, UBA1) by Melé and colleagues (Mele et al., 
2015), are localized in the pseudo-autosomal region or escape 
X-inactivation and have their paralog on the Y-chromosome. 
These Y-chromosome paralogs, mostly associated with chromosome 
remodelation and gene expression machinery, are highly expressed 
in males in all tissues to compensate for the enzyme dosage of X-
linked genes. These genes are usually found as sex-biased in most of 
the association studies (Zhang et al., 2011; Mele et al., 2015; Cardoso-
Moreira et al., 2019).
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FIGURE 5
PCGs differentially expressed by sex in LI, HM and SM. For each tissue, bar plots show the top genes with the highest abs (log2FC) between mean 
transcript levels in males (M) and females (F). Genes are color-coded according to their chromosomal location: Autosome, any chromosome that is 
not a sex chromosome; Chr, chromosome; PAR, genes of the pseudo-autosomal region. For details, see Supplementary Table S5.

Functional annotation using the KEGG database of all PCGs 
with sex-biased expression across all three tissues revealed 12 
pathways, with 9 of them related to infectious diseases and 
2 to the immune system (Supplementary Table S5C). Next, we 
performed functional annotation of a subset of 53 PCGs identified 
exclusively in newborns in this study, and not previously in 
adults [Mele et al. (2015); Supplementary Table S5D]. Out of 11 
annotated KEGG pathways, 10 were associated with infectious 
diseases or innate immunity, supporting a hypothesis that these 
associations reflected in part polymorbidity of the newborns 
studied, namely, the interaction between the effects of sex and 
infection on gene expression (see Discussion). Indeed, infectious 
diseases represent a frequent complication and common cause of 
death in preterm infants (Garvey, 2024). However, very few PCGs 
with sex-biased expression showed a statistically significant effect of 
sepsis (not shown). 

Tissue-specific modulation of gene 
co-expression networks by multiple traits: 
most of PCGs involved

To recognize trait interactions with tissue transcriptomes 
in more detail (Figure 1 – Step 3), we used the unsupervised
WGCNA (Langfelder and Horvath, 2008; Zhao et al., 2010), 

which clusters most of the expressed PCGs into co-expression 
modules with similar gene profile. Thus, in each tissue, 12–20 
modules were identified (Figures 6A–C). The smallest one contained 
63 PCGs (in SM), while the largest module contained 2,693 
genes (in HM; Supplementary Table S6). The gene sets composition 
assigned to the modules partially overlapped among tissues 
(Figure 6D). The eigengene was calculated for each module 
as a marker of the expression of all its genes. Inter-tissue 
correlations between eigengenes of all modules decreased in the 
following order: (LI vs. SM): > (HM vs. SM) > (LI vs. HM) 
(Figure 7; Supplementary Table S7A), documenting the relatively 
strong link between LI and SM metabolism.

Eigengenes of 29 tissue-specific modules correlated with at least 
one of the recorded traits, i.e., 16 primarily clinical parameters and 
mitochondrial transcripts abundance (Supplementary Table S1). 
Conversely, 9 traits related to at least one of the modules (Figure 8). 
The identified correlating modules (referred to further as Selected 
modules; including those identified additionally using the linear 
regression approach, see below), i.e., 10 in LI, 7 in HM, and 
12 in SM, were assigned unique IDs (the bottom of panels in 
Figure 8; Supplementary Table S6). These modules contained 65% 
(LI), 47% (HM), and 77% (SM) of PCGs considered in the 
respective tissues.

Also in accordance with a relatively low number of 
PCGs with sex-biased expression (see above; Figure 5; 
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FIGURE 6
Identification of tissue-specific gene co-expression modules using WGCNA and all RNA-Seq data. (A–C) Hierarchical clustering dendrograms 
representing gene co-expression modules identified in LI, HM, and SM. These modules contained 12,745 genes in LI, 11,760 genes in HM, and 12,764 
genes in SM, i.e., 90%, 82%, and 90% of PCGs analyzed per respective tissue. For individual PCGs contained in the modules, see Supplementary Table S6.
(D) Venn diagram showing the overlap of gene sets among the modules identified in LI, HM, and SM (data from (A–C)).

Supplementary Table S5), sex itself did not show a significant 
correlation with eigengene of any tissue-specific WGCNA-modules. 
However, a linear regression-based approach that included module 
eigengene and sex as a random factor, in combination with either 
Gestation or Survival as a fixed factor (Supplementary Table S8), 
confirmed the link of several modules to the two tested traits, 
and revealed additional associations, namely, between Survival and 
several SM modules (Figure 8).

Gestation related to a majority of Selected modules in 
SM, while the number of related modules in both LI and 
HM was lower (Figure 8). Several SM modules, and one LI 
module correlated with both Gestation and birth weight. 
The broader impact of Gestation than birth weight on SM 
transcriptome is in agreement with the fact that Gestation is 
more predictive of newborn outcomes than birth weight alone 
(Del Rio et al., 2020). Most prominently, the major positive effect 

of Gestation observed in SM, linked also with the effect of birth 
weight, Survival, and mitochondrial transcripts abundance, was 
associated with SM_12 module (Figure 8). Thus, this SM gene 
co-expression module, containing 1,345 PCGs, represents a hub 
for the above traits, which are mutually correlated (except for 
Survival; Figure 9A).

Survival mostly correlated with LI modules, unless sex 
was also considered (Figure 8; see above). Eigengenes of 3 
hepatic modules (LI_5, LI_6, and LI_7) correlated positively 
with both Survival and total supply of exogenous glucose 
(Glc_su_total; for calculation, see Supplementary Table S1), 
marking the need for glucose supplementation (see Discussion). 
This trait showed almost unique link with LI transcriptome. 
This indicated that the correlation between Survival and 
Glc_su_total, which was the strongest observed correlation 
between the traits (Spearman’s r = 0.92; Figure 9A; 
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FIGURE 7
Relationships between WGCNA co-expression modules across tissues. Chord diagram illustrating pairwise Spearman’s correlations between module 
eigengenes identified in different tissues: 28, LI vs. SM; 19, HM vs. SM; and 13, LI vs. HM. Chords represent significant correlations between eigengenes 
of different tissue modules (see Supplementary Table S7A).

Figure 9B; Supplementary Table S7B), reflected in large the hepatic 
metabolism.

Regarding the newborn nutrition (during the last 3 days of 
life; see Supplementary Table S1), an exclusive correlation between 
intake of mother’s milk (MM3) and eigengene of a single hepatic 
“nutritional” LI_2 module, containing a relatively high number of 
genes (i.e., 2,437 PCGs) was observed, which correlated also with 
parenteral nutrition enriched with lipids (PL), Glc_su_total, and 
Survival; all these correlations were negative (Figure 8) and mutually 
correlated (Figure 9A).

Hepatic LI_4 module negatively correlated with a unique set of 
traits, namely, Gestation, birth weight, Survival, and Glc_su_total, 
which reflected separate strong positive correlations between (i) 
Gestation and birth weight (Figure 9A), and (ii) Survival and 
Glc_su_total (Figures 9A,B; see above). The relatively low number 
of genes in the LI_4 module (329 PCG) suggests that these genes 
underlie a relatively small number of functional activities with 
differential regulation before and after birth (see below).

The routine clinical assessment of neonatal vitality and postnatal 
adaptation of the newborn using the so-called Apgar score (APG) 
related to only one module in each LI and HM, with both of them 
related to Survival (Figure 8). The minor effect of APG was consitent 

with the lack of a correlation between APG and the other traits 
(Figure 9A; Supplementary Table S7B).

Almost exclusively in SM, a substantial proportion of Selected 
modules were associated with either (i) catecholamine treatment or 
(ii) mitochondrial transcripts abundance. The latter reflects both the 
abundance of mitochondria and the activity of mitochondrial DNA 
transcription (Garcia et al., 2017). However, the related modules 
were mostly different (Figure 8). The transcriptome signature of 
catecholamine treatment, which is frequently used to support the 
circulatory conditions of the preterm newborns (Ezaki and Tamura, 
2012), could reflect the decrease in muscle blood perfusion resulting 
from dopamine-induced vasoconstriction. On the other hand, that 
mitochondrial transcripts abundance (Figure 8) correlated with 
both, Gestation, and birth weight (Figure 9A) agreed with the 
annotation of DEGs associated with Gestation in SM with OXPHOS 
and mitochondrial metabolism (Figures 4A,B).

Taken together, the above analysis at the level of gene 
co-expression modules revealed robust associations between 
(i) Gestation and SM transcriptome, and (ii) Survival and LI 
transcriptome, with a less pronounced association between Survival 
and SM transcriptome. This is consistent with the results DESeq2 
analysis of global changes in tissue transcriptomes (Figures 3D–G). 
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FIGURE 8
Characterization of Selected modules across tissues. Each column represents a distinct gene co-expression module, each assigned a color according 
to WGCNA convention. Unique module identifiers and the number of genes per module are indicated at the bottom of each panel (for gene 
composition of modules, see Supplementary Table S6). Top: Correlations of Selected modules eigengenes and tested traits were assessed using both 
Spearman’s rank correlation and linear-regression analyses (see Supplementary Table S8). @, module significantly associated with the Gestation or 
Survival in linear regression (adjusted for sex), but not in correlation analysis;∗, modules identified as significant by both approaches. Traits represented 
in the rows: Gestation, gestational age at birh; BW, birth weight; Survival, survival after birth; APG, Apgar score; MM3 and PL, supplementation with 
mother’s milk or parenteral nutrition enriched with lipids, respectively, any time during the last 3 days of life; Glc_su_total, the total supply of 
exogenous glucose during the last 3 days of life; Catech, treatment with catecholamines any time during the last week of life; and 
 (Continued)
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FIGURE 8 (Continued)
Mit_genes, mitochondrial transcript abundance (Supplementary Table S1). Bottom. Functional annotation of each module was performed using 
ORA and KEGG database (lines); pathways associated with infectious diseases or immunity were not included (Supplementary Table S9; for the 
corresponding annotation using the GO database; see Supplementary Table S10). Labels in cells: verified effects of Gestation (G), Survival (S), or 
overlap of both parameters (X; see Supplementary Figure S4; Supplementary Table S11).

FIGURE 9
Relationships between traits. (A) Chord diagram illustrating pairwise Spearman’s correlations among the traits related to co-expression 
modules (see Supplementary Table S7B). The width and intensity of the connecting chords indicate the strength of positive correlations between trait 
pairs. (B) Scatter plot showing the relationship between total glucose uptake rate and Survival, with each point representing an individual sample. 
Spearman’s correlation coefficients (r) and p-values are indicated.

Links between most of the other recorded traits and modules across 
tissues were detected, including the correlation directions between 
traits and module eigengenes. The results are also highlighting the 
role of LI in glucose metabolism. 

Functional annotations of genes of 
selected modules: pronounced 
tissue-specificity

The comprehensive mapping of trait interactions with tissue 
transcriptomes at the gene co-expression module level offered 
deeper insights into the biological significance of the genes involved. 
To this end, we conducted a functional annotation of the modules 
genes using ORA, sourcing pathway information from the KEGG 
(Figure 8) and the GO (Supplementary Figure S3) database (for 
detailed annotations, see Supplementary Tables S9 and 10).

To minimize potential confounding effects, we excluded gene 
annotations related to infectious diseases or immune function 
(Figure 8; Supplementary Figure S3) since infectious disease are of 
common occurrence in preterm infants [see above, the sex-biased 
expression; and (Garvey, 2024)]. Despite this conservative filtering 
approach, a substantial number of annotations were retained. 
Notably, only a subset of these biological activities could be 
confidently linked to the specific phenotypic traits associated with 
each gene module.

Thus, the functional analyses of the gene set contained in the 
SM_12 module, which positively correlated with Gestation and 

several other traits (see above; Figure 8), suggested pronounced 
“mitochondrial activity,” annotated by terms relating to OXPHOS, 
mitochondrial metabolism, thermogenesis, fatty acid degradation, 
carbon metabolism, TCA cycle, pyruvate metabolism, etc., as 
well as peroxisome metabolism, glycolysis/gluconeogenesis, and 
development of muscle contractile system. The SM_12 module’s 
robust association with mitochondrial functions, justified its 
designation as the “mitochondrial” SM_12 module.

On the other hand, prominent negative effects of both Gestation 
and mitochondrial transcripts abundance, observed in muscle SM_1 
and SM_2 modules, were linked with ribosomal (SM_1), cell cycle, 
axon guidance and other activities (SM_2), suggesting a parallel 
decrease in overall protein synthesis and muscle cells division 
prenatally. The association of SM_1 module with both Gestation and 
Survival suggests its annotated ribosome activity (protein synthesis) 
may persist to decline postnatally.

The major effect of Survival, observed in LI, could be 
explained in part by its negative correlations with several activities, 
which declined postnatally, namely, (i) cell cycle, chromatine 
remodelation and related activities, including p53 signaling 
pathway, which were associated with the “nutritional” LI_2 
module; and (ii) hematopoiesis and related activities, which were 
associated with LI_4 module, thus representing a “hematopoietic” 
module. Both modules correlated with multiple traits (see
above; Figure 8).

On the other hand, hepatic activities correlated also positively 
with Survival. These annotations were namely, represented 
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by (i) interlinked activities involved in metabolism of steroid 
hormones and xenobiotics [refs. (Faa et al., 2012; Grijalva and 
Vakili, 2013; Charni-Natan et al., 2019), see Discussion], which were 
associated with LI_7 and LI_8 modules. While the first module 
was also annotated with ABC transporters activity (reflecting 
probably handling of cholesterol, the precursor in synthesis of 
steroids), the latter module, which was much bigger (312 PCGs 
vs. 2581 PCGs in LI_7 and LI_8 module, respectively), was linked 
with more activities, including peroxisomal, mitochondrial, fatty 
acid and amino acid metabolism; mitochondrial functions were 
also annotated with LI_10 module. Thus, the dichotomy of the 
effect of Survival showing both negative and positive correlations 
with LI gene co-expression modules could be explained by the 
simultaneous occurrence of different developmental programs in 
various cell populations in LI during early postnatal development
(see Discussion).

The single prominent annotated activity in HM, i.e., the 
ribosomal activity, was robustly associated with the HM_3 
module, which correlated negatively with Survival and two other 
related traits, suggesting a strong postnatal decline in protein 
synthesis in HM.

Taken the above results together, the functional annotation at the 
level of gene co-expression modules revealed groups of genes that 
underly distinct biological activities, which are differentially linked 
to tested traits, depending also on the tissue. 

Verification of biological activities linked to 
gestation and survival in selected modules

Finally (Figure 1 – Step 4), we focused on verifying Gestation- 
and Survival-related biological activities by intersecting Gestation- 
and Survival-related DEGs at the whole-tissue transcriptome 
level (Figures 3D,E; Supplementary Table S3) with gene sets 
contained in all Selected modules (Figure 8; for the source 
data, see Supplementary Table S6). Functional annotation of the 
overlapping genes was perfomed using ORA and KEGG database 
(Supplementary Table S11; Supplementary Figure S4). In both 
LI and SM, about a half of the activites annotated to Selected 
modules were verified, while in HM, only the robust negative 
effect of Survival on ribosome activity in HM_3 module has been
proven (Figure 8).

Some annotations were verified even when the overlapping 
gene set represented only a small fraction of all module’s 
genes (Supplementary Table S11). This was observed for the LI_8 
module (multiple activities, linked with Survival), and even in 
the absence of significant trait-module correlations, as for the 
HM_3 module (ribosomal activity, linked with Survival) and 
the SM_11 module (proteasome activity, linked with Gestation;
Figure 8).

A detailed validation of the activities of two prominent 
modules is presented in Figures 10A,B. The “hematopoietic” 
LI_4 module shows substantial overlap with DEGs related to 
Survival, while the “mitochondrial” SM_12 module overlaps 
mainly with DEGs associated with Gestation. For the LI_4 
module, three activities involved in hematopoiesis were verified. 
All three activities were affected by Gestation, whereas only 
two were influenced by Survival (Figure 10C). This occurred 

despite the fact that the percentage of overlapping genes was 
higher for Survival than for Gestation in the LI_4 module 
(Figure 10A). The most significant association with both 
traits was detected with ECM-receptor interactions, which 
are integral to hepatic hematopoiesis, particularly during fetal 
development (Agrawal et al., 2024).

For the SM_12 module, more activities were influenced 
by Gestation than by Survival (Figure 10D). The strongest 
associations for both traits were observed with mitochondrial 
functions, including OXPHOS, thermogenesis, and the TCA cycle, 
as well as with muscle contraction, cytoskeletal organization 
in muscle cells, and adrenergic signaling. These findings also 
indicated that prenatal SM development is primarily linked to 
the maturation of mitochondrial function, the establishment 
of glycolysis and gluconeogenesis, and the activation of several 
signaling pathways. After birth, the main activity in SM 
is the maturation of its contractile mechanism. However, 
development of mitochondrial functions after birth was
also verified.

Discussion

Here, we provide a resource of tissue transcriptome data 
of 41 mostly premature human newborns. All of them died 
soon, primarily during 28 days after birth. This dataset, obtained 
using RNA-Seq of LI, HM, and SM autopsy samples, provides 
information about changes in tissue transcriptomes depending 
on (i) fetal development during almost the whole second half 
of the physiological gestational period (i.e., Gestation), (ii) early 
postnatal development (i.e., Survival), and (iii) several other clinical 
traits. Robust effects of Gestation and Survival on whole tissue 
transcriptomes, gene co-expression modules and their annotated 
activities have been uncovered. To the best of our knowledge, 
such comprehensive characterization of tissue transcriptomes 
during early postnatal human development is currently lacking 
worldwide, primarily due to the scarcity of appropriate biological 
samples. Our dataset is complementary to the existing resources 
(Mele et al., 2015; Cardoso-Moreira et al., 2019). Only our dataset 
is based on the analysis of tissues from born-alive newborns during 
a relatively narrow time window after birth, which is critical for the 
postnatal adaptation.

We characterized the development of gene expression in 
selected tissues during the second major transcriptional change 
in somatic organs during ontogeny. While the first period occurs 
during embryonic development and early organogenesis, the second 
period features increased expression of late organ-specific genes 
and decreased expression of genes involved in cell division and 
morphogenesis (Cardoso-Moreira et al., 2019). The variation 
in PCGs expression among tissues aligned with previous data 
on adult humans, but individual variability in newborns was 
relatively high (Mele et al., 2015). This reflects extensive changes 
in developing organisms compared to adults. The most variable 
was SM transcriptome, with DEGs linked to both Gestation 
and Survival. Lower number of DEGs was observed in LI, with 
almost all of them correlating with Survival. The most stable 
was HM transcriptome, affected more by Gestation than by 
Survival. These differences reflected organogenesis, with the heart 
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FIGURE 10
Verification of Gestation- and Survival-associated genes in selected LI and SM modules. (A, B) Venn diagrams depict the overlap of gene sets assigned 
to the LI_4 module (A) or SM_12 module (B), and the sets of DEGs associated either with Gestation (DEGs-Gestation) or Survival (DEGs-Survival) as 
identified in whole tissue transcriptome (see Supplementary Table S6 for module genes; Supplementary Table S3 for DEGs lists). (C, D) Bar plots 
showing KEGG pathways enriched in overlapping genes within the LI_4 module (C) and SM_12 (D) module, presented separately for the gene overlaps 
associated with Gestation and Survival, respectively. Gene counts on the x-axis indicate the number of overlapping genes present in each highlighted 
pathway (see also Supplementary Table S11 and Supplemetary Supplementary Figure S4).

developing first during fetal life (Tan and Lewandowski, 2020) and 
maturation of SM proceeding mainly during the second trimester of 
Gestation, and finishing after birth (Schiaffino et al., 2015). Hepatic 
hematopoiesis transfers entirely to the bone marrow postnatally, 
coinciding with the maturation of hepatocyte energy metabolism
(Brauner et al., 2001).

Namely, the use WGCNA to detect gene co-expression 
modules proved useful for the interpretation of the extremely 
heterogeneous data. Despite the differential effect of Gestation 
and Survival on LI and SM transcriptome, the correlation between 
eigengenes of tissue-specific co-expression modules was highest 
between LI and SM, followed by HM and SM, and lowest 
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between LI and HM (Figure 7). This suggests that LI and SM 
share more common regulatory mechanisms or metabolic links
compared to HM.

The transition to the extrauterine environment following 
birth provides a substantial physiological stimulus for a whole-
body adaptive response, including a switch from energy 
metabolism based on glycolysis in fetal life to metabolism 
relying mainly on OXPHOS (Valcarce et al., 1994; Singer 
and Muhlfeld, 2007; Krizova et al., 2021) fueled increasingly 
by the mother’s milk lipids. Preterm birth is associated 
with functional impairment of mitochondria as documented 
in rat liver by reduced mitochondrial content, OXPHOS 
activity, and ATP production (Valcarce et al., 1994). In 
humans, evidence remains largely indirect [reviewed in 
(Bartho et al., 2020; Mohammadi et al., 2022)].

Transcriptomic analyses in SM performed here identified a 
key “mitochondrial” module (SM_12) annotated with OXPHOS 
and other mitochondrial functions, and mitochondrial transcripts 
abundance, which positively correlated with Gestation, birth 
weight, and Survival. The “mitochondrial” annotation was 
verified by the overlap with DEGs linked to both Gestation 
and Survival, showing the enrichment of these overlaps for 
OXPHOS and mitochondrial metabolism genes. Moreover, results 
indicated prenatal maturation of glycolysis/gluconeogenesis 
and other intermediary metabolism pathways, and their 
regulatory mechanisms, and that muscle contractile system 
becomes the major mechanism to be developed postnatally 
(Figure 10C). These findings demonstrate that during the perinatal 
period, the energy metabolism matures first, followed by the 
subsequent development of muscle functions dependent on it, 
the energy-dependent locomotion (Schiaffino et al., 2015) and 
thermogenesis (Bardova et al., 2024).

In contrast with SM, LI modules with mitochondrial annotation 
(LI_8 and LI_10) correlated only with Survival but not with 
Gestation, and their mitochondrial annotation was relatively 
weak. However, the postnatal increase of ATP production by 
mitochondrial OXPHOS is needed for involvement in energy-
demanding metabolic activities in the LI, namely, glycogen 
synthesis, gluconeogenesis, and ketogenesis are essential for 
the postnatal adaptation of newborns (Hawdon et al., 1992; 
Singer and Muhlfeld, 2007). These findings underscore tissue-
specific mitochondrial maturation patterns, with SM exhibiting 
stronger developmental ties to gestational age compared to LI, 
along with an increase in capacity for lipid catabolism and 
glucose metabolism prenatally (see LI_8 module in Figure 8), 
ensuring sufficient OXPHOS capacity for postnatal switch 
from glycolysis to fatty acid oxidation in SM of full-
term newborns.

Preterm newborns have labile glucose levels, with a more 
pronounced decline within the first hours after birth, likely 
explained by inefficient supply of glucose by both hepatic 
glycogenolysis and gluconeogenesis in LI (Grijalva and Vakili, 2013). 
Management of hypoglycemia using glucose infusion (Sharma et al., 
2017), as well as parenteral nutrition (Robinson et al., 2023), are 
the key elements in the early care of preterm newborns. Indeed, 
our results have shown that the supply of exogenous glucose 
(Glc_su_total) to maintain euglycemia was primarily linked to 

the hepatic transcriptome, confirming that insufficient release of 
glucose from LI was the primary cause of hypoglycemia requiring 
the glucose supply. The glucose supply and Survival correlated with 
multiple common hepatic gene co-expression modules, including 
those linked with mitochondrial metabolism (as noted above), 
though the primary genetic drivers underlying these relationships 
remain unresolved. In this context, our results also revealed a strong 
hepatic transcriptome signature associated with parenteral nutrition 
and mother’s milk intake.

Postnatal adaptation is controlled in large by steroid hormones, 
which regulate metabolism, cardiovascular, and respiratory systems. 
Prenatally, circulating steroid levels are high, and they decrease 
sharply after birth (Dukic and Ehlert, 2023). This dynamics reflects 
the neuroprotective role of the steroid hormones (Hirst et al., 2008) 
and their essential effect in suppressing myometrial contractions 
(Haoui et al., 2025). Hepatic metabolism of steroid hormones is 
interlinked with that of xenobiotics through the common use of 
cytochromes P450 and related enzymes (Faa et al., 2012; Grijalva and 
Vakili, 2013; Charni-Natan et al., 2019). However, our knowledge 
about steroid hormones metabolism in LI and its systemic role 
during the perinatal period is limited (O’Shaughnessy et al., 
2013). Two hepatic modules (LI_7 and LI_8), which correlated 
positively with Survival, verified by the overlap with DEGs, 
were annotated with steroid hormone/drug metabolism; e.g., the 
LI_8 module contained CYP3A4 encoding the most abundant 
cytochrome P-450 isoenzyme, which is essential for elimination 
of many drugs and participates in the biosynthesis of steroid 
hormones (Charni-Natan et al., 2019). Low levels of this protein 
makes the neonates particulary susceptible to overdosage by many 
pharmaceuticals (Faa et al., 2012). Moreover, hepatic LI_2 module, 
which correlated negatively with Survival, was annotated with 
p53 signalling pathway, which plays a central role in cell fate 
regulation (i.e., cell-cyle arrest, senescence and differentiation) 
and also controls hepatic steroidogenesis (Charni-Natan et al., 
2019). These data suggested that further characterization of the 
gene composition of the LI_7, LI_8, and LI_2 modules and 
the temporal trajectories of these gene expressions will help to 
understand better the perinatal development of the interlinked 
hepatic activities engaged in the metabolism of both xenobiotics 
and steroids. They indicated that hepatic metabolism of steroid 
hormones might contribute to controlling the circulating level 
of these hormones. Moreover, the LI_8 module represented the 
hepatic hub for several activities with verified link to Survival, 
including peroxisome activity, metabolism of several amino acids, 
and biosynthesis of cofactors (Figure 8), providing a dataset 
for the characterization of postpartum development of these 
activities in LI.

Besides the key role of LI in the above described activities, 
LI also performs hematopoietic functions. In contrast to the 
metabolic role of LI, hepatic hematopoiesis is important for fetus 
and declines postnatally. It is peaking around GW 24–28, before 
ceasing within the first week after birth as the bone marrow takes 
over the hematopoiesis (Brauner et al., 2001). In this study, hepatic 
hematopoiesis was linked with LI_4 module, and possibly also 
with LI_2 module, which was annotated with cell cycle and related 
activities; both modules negatively correlated with Survival, while 
the LI_2 module also correlated with the nutritional components, 
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and LI_4 module also correlated with Gestation/body weight 
(Figures 8, 10C).

The dynamics of hematopoietic cell lineages during postnatal 
hepatic hematopoiesis decline remained poorly characterized. 
To address this, we analyzed cell lineage fate using selected 
gene expression data from the dataset (Janovska et al., 2025) 
before presenting the full dataset in this study. We have found 
coordinated expression of the “erythropoietic marker” TFRC
and the genes for regulatory and metabolic factors associated 
with erythropoiesis (SLC4A1, KLF1, SLC2A1, TAL1, GFI1B, 
AHSP, UCP2, ZFPM1, HBA2, and HBA1); all of them with their 
expression correlated with Survival and mapped to the LI_2 module 
(Supplementary Table S6), verifying association of this module 
with hematopoiesis. Expression of the “megakaryopoietic/platelet 
marker” ITGB3 correlated with both Gestation and Survival 
and it was mapped to LI_4 module (Supplementary Table S6), 
in accordance with the annotation of this module with 
Platetelet activation (Figure 8). Moreover, expression of the 
“granulopoietic marker” MPO and all transcription factors 
controlling granulopoiesis tested (CEBPE, CSF3R, GFI1, and 
ELANE) was mapped to yet another LI module (i.e., pink module 
in all detected modules; Supplementary Table S6). Together with 
immunohistochemical analysis of the liver of the newborns, 
characterization of temporal trajectories of the selected genes, based 
on the dataset described here, revealed that prenatal and early 
postnatal hepatic hematopoiesis is dominated by erythropoietic 
cells. These cells are rapidly suppressed within 3 days after birth, 
contrasting with granulopoiesis’s gradual decline (Janovska et al., 
2025). This first detailed characterization of human neonatal 
hepatic hematopoiesis highlights this resource’s importance and 
possible uses for characterization of many aspect of human
perinatal development.

Robust annotation with ribosome activity revealed pronounced 
changes in the rate of protein synthesis during perinatal 
development in each tissue. Negative correlation with Survival 
in HM (Figure 8) suggests a decline in protein synthesis 
following what was likely a transient, stress-induced increase 
during adaptation to extrauterine life, which may not have been 
detected due to sampling timing. Negative correlation with 
Gestation in SM suggests a decrease in the activity before birth
(Figure 8).

We found here a relatively high number of genes with sex-biased 
expression compared to adult humans, particularly in LI (Mele et al., 
2015). Most of these PCGs were linked to infectious disease or 
immune pathways, suggesting a possible interaction between sex 
and infectious disease in affecting gene expression in the newborns. 
However, such mechanism could not be confirmed because most 
infants in our cohort had recognized or unrecognized infections, 
a common cause of death in preterm babies infants (Garvey, 
2024). The observed pattern may instead reflect developmental 
shifts in the immune system gene expression after birth, 
independent of infection. Evidence from animal studies supports 
both possibilities (Klein and Flanagan, 2016), while comparable 
human data - especially at the tissue level - are not available
(Winckelmans et al., 2017).

Using WGCNA to analyze highly heterogeneous data 
allowed us to identify tissue-specific gene co-expression modules 
linked to the traits studied, assign functional annotations to 

these modules, and evaluate their biological relevance through 
module–trait correlations. While this approach is effective 
for a broad yet detailed overview, it was complemented by 
analyzing the effects of individual parameters (i.e., Gestation, 
Survival, and sex–the routinely used clinical characteristics 
in neonatology; Figures 3, 5) on whole-tissue transcriptomes. 
Such analyses not only validated module-level functional 
annotations but also revealed broader interactions between 
biological activities and traits (see the Results). Therefore, for 
possible usefulness in understanding the regulation of various 
functional activities, this complementary approach was performed 
for all the remaining parameters recorded (i.e., birth weight, 
APG, MM3, PL, 1017 Glc_su_total, Catech, and Mit_genes) 
by analyzing their effect on the whole transcriptome of each 
tissue separately, as documented by Supplementary Figure S5
and Supplementary Tables S12 and 13.

Despite significant advancements in the clinical care of preterm 
newborns, particularly extremely preterm infants with unique 
vulnerabilities, further improvements are needed. For example, 
in Europe, 61% of mortality of newborns (infants under 28 
days of age) was attributable to preterm birth in 2020–2021 
(Lawn et al., 2023). The gene expression data presented here 
could aid in identifying targets for better therapies, e.g., if 
mitochondrial function can be optimized through nutritional 
or pharmacological interventions, it may enhance the postnatal 
adaptation of preterm infants by affecting major energy-dependent 
metabolic pathways involved in both LI and SM. However, 
any therapy will not be without a risk of adverse side effects. 
Thus, intervention using catecholamines, used to support the 
circulation of the preterm newborns (Ezaki and Tamura, 2012), was 
shown here to broadly interfere with SM transcriptome suggesting 
large tissue remodeling. Clinical relevance of this effect should
be clarified.

Limitations of the study: Various pathological states and 
the causes of death probably have a significant confounding 
effect. Although functional annotations related to infectious 
diseases or immunity were not explicitly included in the 
data analysis, their effects may still be reflected in other 
functional annotations - particularly within modules where 
they were predominantly mapped (i.e., LI_5, HM_3, and SM_3 
modules; see Supplementary Tables S5, S9). Interactions between 
all these factors and the absence of “healthy controls” make 
interpretation of the data challenging. Transcriptome signatures of 
various diseased states could not be characterized due to their large 
number and the relatively small cohort of newborns. Storage of the 
autopsy tissue samples in RNAlater (Ambion, Austin, TX, United 
States) did not allow for the characterization of transcriptome at the 
single cell level. Furthermore, due to the inherent characteristics 
of our cohort and the observational design of the study, several 
important variables could have influenced the tissue transcriptomes. 
Specifically, a majority of the mothers and/or newborns received 
pharmacological treatments such as prenatal glucocorticoids, as 
well as postnatal interventions including glucose administration 
and antibiotic therapy. Most of the newborns in our cohort were 
exposed to one or more of these clinical interventions, which may 
have contributed to variations observed in hepatic and muscle gene
expression profiles.
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In conclusion, transcriptome analysis of LI, HM, and SM 
in predominantly preterm newborns, namely, at the gene co-
expression module level, revealed major differences between 
hepatic and muscle gene expression. LI metabolism matures 
significantly after birth, while SM metabolism develops mainly 
before birth, with mitochondria playing a crucial role in both 
tissues for postnatal adaptation, underlying also the compromised 
adaptation in preterm newborns. The HM transcriptome 
was the most stable, indicating that myocardium metabolism 
changes little during the fetal to neonatal transition. This 
dataset, validated by targeted analysis of hematopoietic gene 
trajectories, provides a unique valuable resource for characterizing 
developmental changes in neonatal tissue metabolism and 
mechanisms operating during the late prenatal and early
postnatal period.
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SUPPLEMENTARY TABLE S1 |
Detailed description of the cohort, clinical traits, identification of tissue RNA 
isolates and RNA quality, mitochondrial transcript abundance, and verification of 
transcript quantification using RNA-Seq. (A) Detailed description of the cohort and 
clinical traits.∗Cases (n = 35) examined in our previous studies (Brauner et al., 
2003; Brauner et al., 2006; Hondares et al., 2014). F, female; M, male; APG, Apgar 
score at the10th minute after birth, arbitrary units; MG, multiple gestation (1) or 
not (0); Delivery, birth via Caesarean section (1) or vaginal birth (0); MM3, 
supplementation with mother's milk any time during the last 3 days of life (1) or 
not (0); PNnoF, parenteral nutrition without fat any time during the last 3 days of 
life (1) or not (0); PL, parenteral nutrition enriched with fat any time during the last 
3 days of life (1) or not [0; see Table 1 of ref. (Brauner et al., 2006)]; Catech, 
treatment with catecholamines (in all cases dopamine containing 
pharmaceuticals, namely Tenzamine, dopamine; rarely dobutamine and 
adrenaline) any time during the last week of life (1) or not (0); Corticoids, 
intervention with hydrocortisone (i.v.), any time during the last week of life (1) or 
not (0) - either supplementation due to adrenal insufficiency (Subst; 1.5 
mg/kg/day), or therapeutical doses (Pharm; >1.5 mg/kg/day); Insulin, treatment 
with insulin any time during the last 3 days of life (1) or not (0); Glc_load, mean 
glucose uptake via parenteral nutrition during the last 3 days of life (mg/kg/min); 
Glc_su_total, mean supply of exogenous glucose during the last 3 days of life 
(calculated as Glc_load + glucose provided with mother's milk; mg/kg/min). (B) 
Quality of RNA isolated from LI, HM, and SM of the individual cases, 
corresponding RNA- Seq data codes, and mitochondrial transcript abundance. LI 
RNA-Seq, HM RNA-Seq, and SM RNA-Seq, codes of RNA isolates and related 
RNA-Seq data/libraries (ZENODO database; accession number 14045261); RIN_LI, 
RIN_HM, and RIN_SM, RIN, RNA integrity number marking quality of the 
individual RNA isolates used for RNA-Seq (with 1 being the most degraded profile 
and 10 being the most intact one; LI: 6.2 − 8.8; SM: 7 − 8.9, HM: 6.1 − 9.3). LI 
Mit_genes, HM Mit_genes, and SM Mit_genes, mitochondrial transcript 
abundance with average contribution to global transcription in LI: 3.5 ± 0.9; HM: 
3.8 ± 1.0; SM: 2.3 ± 0.9%. This number was several-fold lower compared with 
previous studies in adult humans (Mercer et al., 2011; Mele et al., 2015), reflecting 
a methodological difference.

SUPPLEMENTARY TABLE S2 |
Genes with tissue-preferential expression detected using NOISeq.

SUPPLEMENTARY TABLE S3 |
DEGs associated with either Gestation or Survival identified using DESeq2. Values 
of log2FC reflected the rate of change in gene expression per unit of independent 
variable. Assignment of the individual genes to modules identified using 
WGCNA (see Supplementary Table S6) is also indicated.

SUPPLEMENTARY TABLE S4 |
Functional annotation of results of DE analysis using ORA, and KEGG and GO 
database. Functional annotation of the top DEGs associated with either Gestation 
or Survival (see Supplementary Table S3).

SUPPLEMENTARY TABLE S5 |
Genes with sex-biased expression in LI, HM, and SM and their functional 
annotation. (A) List of all genes with sex-biased expression found in each tissue 
and across all tissues. (B) Summary of results in A; M, male; F, female; 

Fold_change, fold change between mean transcript level in males vs. females. (C) 
Functional annotation of all 76 genes with sex-biased expression using ORA and 
KEGG database. (D) Functional annotation using ORA and KEGG database of all 
56 genes with sex-biased expression found here in newborns and not by Mele et 
al. in adults (Mele et al., 2015).

SUPPLEMENTARY TABLE S6 |
Genes of all tissue-specific co-expression WGCNA-modules and Selected 
modules. Modules identified in LI, HM, and SM were assigned different colours 
according to WGCNA convention. Selected module, tissue-specific WGCNA 
co-expression module, with eigengene correlating with at least one of the 
recorded clinical traits or mitochondrial transcript abundance (Supplementary 
Table S1), or which were identified using a linear regression approach (see legend 
to Figure 8 Upper panels; Supplementary Table S8); these modules were assigned 
unique IDs (Module_name).

SUPPLEMENTARY TABLE S7 |
Correlations between eigengenes of all gene co-expression modules (A) and 
between tested traits (B).

SUPPLEMENTARY TABLE S8 |
Linear model-based analysis of the association between module eigengenes and 
traits with sex as a random factor. Module eigengene and sex were used as a 
random factor in combination with either Gestation, or Survival, or their 
combination.

SUPPLEMENTARY TABLE S9 |
Functional annotation of genes comprising Selected modules in LI, HM, and SM 
using ORA and KEGG database.

SUPPLEMENTARY TABLE S10 |
Functional annotation of genes comprising Selected modules in LI, HM, and SM 
using ORA and GO database.

SUPPLEMENTARY TABLE S11 |
Functional annotations of genes in Selected modules with verified effect of 
Gestation or Survival. Genes overlapping between Gestation/Survival-associated 
DEGs (Supplementary Table S3) and genes in Selected modules (Supplementary 
Table S6), were analyzed using ORA and KEGG database to identify pathways 
enriched in both datasets.

SUPPLEMENTARY TABLE S12 |
DEGs associated birth weight, APG, MM3, PL, Glc_su_total, Catech, and 
Mit_genes identified using DESeq2.Values of log2FC reflected the rate of change 
in gene expression per unit of independent variable. For 
abbreviations, see Figure 8.

SUPPLEMENTARY TABLE S13 |
Functional annotation of results of DE analysis using ORA and KEGG database. 
Functional annotation of the top DEGs associated with various 
traits (see Supplementary Table S12).
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