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and is regulated by luteinizing
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Introduction: Several aquaporins (AQPs) are involved in the influx of water
to form follicular fluid, and AQP2 may play a crucial role in follicular growth.
However, the specific roles of Aquaporin (AQP) 2 and AQP6 in granulosa cells
(GCs) during follicular fluid (FF) formation, as well as their relationship with
gonadotropins (Gn), remain unclear.

Methods: Luteinized granulosa cells (LGCs) were isolated from follicles of
different diameters. Western blot indicated that AQP2 protein levels in LGCs
increased as follicles grew larger after luteinization. Immunohistochemistry
of human ovarian sections showed that AQP2 levels decreased as follicles
progressed from primordial to antral stages. Subsequently, isolated LGCs were
treated with varying concentrations of follicle-stimulating hormone (FSH),
luteinizing hormone (LH), and estradiol (E2); LH, but not FSH or E2, significantly
elevated AQP2 expression. To dissect the underlying signaling pathways, LGCs
were further cultured with LH, db-cAMP (a cAMP analog), or forskolin (an
adenylate cyclase activator). H89 (a PKA inhibitor) or PD98059 (an ERK1/2
signaling inhibitor) was applied in the presence of LH to evaluate crosstalk
between the Gn/cAMP and MAPK cascades.

Results: AQP2 levels in LGCs increased with follicle enlargement after
luteinization but decreased as follicles progressed from primordial to antral
stages. LH, but not E2, significantly induced AQP2 expression in LGCs in a dose-
dependent manner. Forskolin mimicked the stimulatory effect of LH on AQP2
expression. PD98059, but not H89, abolished LH-induced AQP2 up-regulation
and inhibited ERK1/2 phosphorylation, indicating potential crosstalk between
cAMP and MAPK signaling.

Discussion: This study provides the first evidence for the mechanisms by which
AQP2 influences follicular growth and FF formation, highlighting LH-driven,
ERK1/2-dependent regulation of AQP2. These findings offer new insights into
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the ovarian microenvironment and identify potential therapeutic targets for
follicle growth disorders.
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1 Introduction

Gonadotropins (Gn), including follicle-stimulating hormone
(FSH) and luteinizing hormone (LH), play essential roles in
follicular development (Dewailly et al., 2016; Messinis et al.,
2010; Oduwole et al., 2021). Based on their responsiveness to
gonadotropins, follicles can be classified into three distinct phases:
the Gn-independent phase (primordial, primary, and secondary
follicles), the Gn-responsive phase (preantral and early antral
follicles), and the Gn-dependent phase (antral follicles) (McGee and
Hsueh, 2000; Orisaka et al., 2009). During these phases, Gn exerts
different effects on follicular growth. In the early stages, FSH levels
rise between cycles, creating the “FSHwindow,” which is responsible
for cyclic recruitment and the selection of the dominant follicle
(McGee and Hsueh, 2000). As follicles develop, they become less
dependent on FSH and more dependent on LH (Mihm et al., 2006),
with a certain threshold of LH required for follicular maturation
(Franco et al., 2009; Jeppesen et al., 2012). The LH surge ultimately
triggers follicular luteinization and the production of progesterone
(Richards, 1994). When follicles enter the Gn-dependent phase
and become antral, follicular fluid (FF) is produced to maintain
the homeostasis of the follicular microenvironment, marked by
the formation of the antrum (Orisaka et al., 2009; Hillier et al.,
1994). This process is crucial for follicular development, as FF
provides essential nutrients and growth factors to the oocyte.
However, the exact mechanisms underlying FF formation remain
largely unknown.

Aquaporins (AQPs) are a family of transmembrane
proteins that facilitate the transport of water and small
solutes across cell membranes. Within the female reproductive
system, AQPs have emerged as critical regulators of fluid
homeostasis with distinct isoforms demonstrating tissue-
specific expression patterns and hormonal responsiveness
(Nascimento et al., 2023; Thoroddsen et al., 2011). While all
AQP subtypes except AQP10 have been detected throughout the
female reproductive tract, their functional significance in ovarian
physiology remains incompletely characterized.

Previous investigations have established important roles for
AQPs in various reproductive tissues. For example, AQP1, -2, -3, -5,
and -6 play roles in vaginal lubrication (Kim et al., 2011), AQP 1, -3,
-8 in cervix (Shi et al., 2012) and AQP1, -2, -3 in uterus (Feng et al.,
2008;Mobasheri et al., 2005). In the endometrium,AQP2 expression
demonstrates menstrual cycle-dependent variation (He et al., 2006)
and has been shown to be directly regulated by 17β-estradiol

Abbreviations: ART, Artificial reproductive technology; FF, Follicular fluid;
FSH, Follicle-stimulating hormone; GC, Granulosa cells; LGC, Luteinized
granulosa cells; LH, Luteinizing hormone; OPU, Oocyte pick-up; PBS,
Phosphate-buffered saline; TC, Theca cell.

(Kim et al., 2009) through an identified estrogen response element
in its promoter region (Zou et al., 2011). Similarly, AQP5 has been
implicated in embryo implantation processes in rodent models,
with its expression similarly modulated by estrogenic signaling
(Kobayashi et al., 2006). These findings collectively underscore the
intimate relationship between AQP-mediated fluid dynamics and
steroid hormone action in reproductive tissues (Kordowitzki et al.,
2020). Within the ovarian context, emerging evidence suggests that
AQPs may play particularly crucial roles in follicular development
and function. Multiple AQP isoforms, including AQP1, -2, -3, and
-4, have been identified in human ovarian granulosa and theca cells
(Thoroddsen et al., 2011), with their expression patterns potentially
linked to follicular stage and gonadotropin sensitivity. Our previous
work revealed stage-specific expression patterns of AQP2 and AQP6
in granulosa cells across follicular development (tong et al., 2023),
suggesting their involvement in follicular fluid production and
homeostasis (He et al., 2006; tong et al., 2023; Skowronski et al.,
2019). The hormonal regulation of these AQPs is particularly
noteworthy, with both FSH and LH demonstrating capacity to
modulate their expression, potentially through both genomic and
non-genomic mechanisms. Despite these advances, significant gaps
remain in our understanding of AQP biology in human ovarian
function. The precise mechanisms by which specific AQP isoforms
contribute to follicular fluid formation, antral follicle expansion,
and ultimately follicular rupture remain to be fully elucidated.
Furthermore, the potential clinical relevance of AQP dysregulation
in conditions such as polycystic ovary syndrome (Tian et al., 2018;
Xiong et al., 2019) or ovarian hyperstimulation syndrome (Jin et al.,
2012) warrants further investigation.

This study seeks to address several of these knowledge gaps
through comprehensive characterization of AQP2 and AQP6
expression patterns across human follicular development stages
and investigation of their regulation by gonadotropins in vitro.
By elucidating these relationships, we aim to provide novel
insights into the molecular mechanisms governing follicular fluid
dynamics and their potential implications for ovarian physiology
and pathophysiology.

2 Materials and methods

2.1 Patients

Our study included 26 women undergoing in vitro fertilization
(IVF) and intracytoplasmic sperm injection (ICSI) at Reproductive
Medicine Center of the First Affiliated Hospital of Sun Yat-sen
University between March and September 2022. We included
women aged 20–38 years, with a body mass index of 18–24 kg/m2,
and no history of hereditary or familial diseases. All patients
underwent the standard treatment of gonadotropin-releasing
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hormone antagonist (GnRH-ant) cycles (Chen et al., 2023) or
gonadotropin-releasing hormone agonist (GnRH-a) cycles as
indicated before (Liu et al., 2022).

The retrieved ovarian tissues were obtained from 14 patients at
the Department of Gynecology of the First Affiliated Hospital of
SunYat-senUniversity, who had undergone salpingo-oophorectomy
with or without hysterectomy for a uterine or unilateral ovarian
malignant tumor before chemotherapy or radiotherapy. All study
methods were approved by the Ethics Committee of the First
Affiliated Hospital of Sun Yat-sen University.

2.2 Human luteinizing GCs (LGCs) and
theca cell (TCs) isolation, culture, and
treatment

Cells isolated from follicular fluid during oocyte retrieval after
controlled ovarian stimulation (COS) and hCG trigger. Althoughwe
acknowledge that not all GCs in antral follicles undergo complete
luteinization before oocyte pick-up, the majority are exposed to
luteinizing signals (hCG) in our clinical protocol. Thus, following
precedents in literature (Wen et al., 2010; Lindeberg et al., 2007;
Sperduti et al., 2021), we refer to these cells as luteinizing GCs
(LGCs). For LGCs, the FF of each patient was collected in groups
according to follicle diameter: small follicle group (S, <13 mm),
medium follicle group (M, 13–18 mm), and large follicle group
(L, >18 mm). FF from each group and per patient was pooled
and centrifuged for 20–25 min at 1,065 × g to remove red blood
cells. LGCs were purified, as previously described (Chen et al.,
2016), using 50%Percoll (GE17-0891-01, Sigma, St. Louis,Missouri,
United States) by gradient centrifugation for 10 min at 650 × g.
The cells at the interface were removed, resuspended in phosphate-
buffered saline (PBS, YJ0014, Yongjin, Guangdong, China), and
centrifuged for 5 min at 450 × g. Ovarian tissue fragments were
then removed from the LGCs suspension with a 40-μM cell strainer
(CSS013040, Jet Bio, Guangdong, China). For TCs, all FF from
one patient was collected, and TCs were purified as previously
described (Chen et al., 2023). Briefly, FF was centrifuged for
10 min at 650 × g. The precipitate was reconstituted in PBS and
filtered with a 100-μm strainer (CSS013100, Jet Bio). The follicle
shells were repeatedly resuspended in PBS during filtration to
remove the GCs. The pieces of follicle shells that remained on
the filter membrane were collected and digested with 5 mg/mL
collagenase I (C8140, Solarbio, Beijing, China) solution at 37°C
for approximately 30 min and pipetted every 10 min to collect the
dispersed cells. After being washedwith PBS twice, and resuspended
in PBS, cell suspensions were mixed and filtered with a 40-
μm cell strainer to remove undigested tissue and centrifuged for
5 min at 650 × g.

Red bold cell lysis buffer (R1010, Solarbio) was added in
purified target cells, plated on a 12-well plate, and cultured in
Dulbecco’s modified Eagle medium/Ham’s F12 (C11330500BT,
Gibco, Grand Island, NE, United States) supplemented with
penicillin (100 U/mL), streptomycin (100 μg/mL) (15140122,
Gibco, Grand Island, NE, United States), and 10% fetal
bovine serum (FSP500, ExCell Bio, Jiangsu, China) in a 37°C
incubator with 5% CO2. Cells were cultured for 1 day and
exposed to 1.0 mIU/mL, 10 mIU/mL, and 100 mIU/mL FSH

(Puregon® , NV Organon, Oss, Netherlands); 0.5 IU/mL,
1.0 IU/mL, and 1.5 IU/mL LH (Luveris® , MerckSerono, Geneva,
Switzerland); 10–9 M, 10–8 M, and 10–7 M E2 (Sigma, St. Louis,
Missouri, United States); 500 μM dibutyryl-cyclic-adenosine
monophosphate (db-cAMP, HY-B0764, MCE); or 10 μM forskolin
(FSK, HY-15371, MCE) for 24 h, respectively, and 10 μM H89
dihydrochloride (H89, HY-15979A, MCE) or 10 μM PD98059 (HY-
12028, MCE) was added with 1.5 IU/mL LH for 10 min, 30 min,
60 min, and 120 min, respectively. Finally, cells were harvested,
and stored (−80°C) for mRNA expression analysis and protein
expression.

2.3 Western blot analysis

Total protein was isolated from LGCs or TCs using an ice-cold
radioimmunoprecipitation assay (RIPA, EpiZyme) containing a
protease inhibitor cocktail (GRF101, EpiZyme, Shanghai, China).
Proteins were electrophoresed on SDS-PAGE gels (PG112, EpiZyme,
Shanghai, China) and transferred onto Immobilon transfer
membranes (Millipore, MA, United States). After being blocked
in 5% skim milk for 1 h at room temperature, membranes were
incubated with primary antibodies at 4°C overnight. After washing
three times with TBS-T (TBS, with 0.1% Tween-20), the membranes
were incubated with horseradish peroxidase-conjugated secondary
antibodies against rabbit IgG for 1 h at room temperature. The
primary antibodies used in this study were Beta-actin (20536-
1-AP, Proteintech, Hubei, China), AQP2 (PA5-78808, Thermo
Fisher Scientific,Waltham,MA, United States), AQP6 (PA5-103615,
Thermo Fisher Scientific), ERK1/2 (11257-1-AP, Proteintech),
and Phospho-ERK1/2 (28733-1-AP, Proteintech). The secondary
antibodies used in this study were HRP-conjugated Affinipure Goat
Anti-Rabbit IgG (H + L) (SA00001-2, Proteintech).Themembranes
were treated with an ECL reagent (SQ203, EpiZyme), and the blots
were visualized using a iBright FL1500 Imaging System (Thermo
Fisher Scientific, Waltham, MA, United States). ImageJ software
(NIH, Bethesda, MD, United States) was used for quantification
of band intensity. Results were normalized to those of β-actin
(ACTB) and were presented as fold change to control groups
(regarded as 1).

2.4 RNA isolation and real-time
quantitative PCR (RT-qPCR)

Total RNAwas isolated using RNAiso Plus (9109, Takara, Tokyo,
Japan), according to the manufacturer’s instructions. HiScript III
RT SuperMix for qPCR (+gDNA wiper) (R323. Vazyme, Jiangsu,
China) was used for reverse transcription. Real-time PCR was
performed using Taq Pro Universal SYBR qPCRMaster Mix (Q712,
Vazyme) on a QuantStudio 5 Real-Time PCR System (Thermo
Fisher Scientific). Target gene Ct values were normalized to β-actin
Ct values, and the average normalized target gene Ct values were
calculated. Relative gene expression levels were comparedwith those
of controls, and all RT-qPCRs were performed in triplicate. Primers
used are listed in Supplementary Table S1.
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2.5 Immunohistochemistry (IHC)

Ovarian tissues obtained from each patient were divided
into 2-3 tissue blocks for paraffin embedding. From each tissue
block, two representative slides were prepared for Aquaporin
2 (AQP2) and Aquaporin 6 (AQP6) immunohistochemical
staining, respectively. Tissues were fixed in 4% formaldehyde,
embedded in paraffin, and sectioned at 4 μm thickness following
standard protocols. After deparaffinization and antigen retrieval,
sections were blocked with normal goat serum and incubated
overnight at 4°C with either rabbit anti-human AQP2 polyclonal
antibody (1:300 dilution, PA5-78808, Thermo Fisher Scientific)
or AQP6 polyclonal antibody (1:100 dilution, PA5-103615,
Thermo Fisher Scientific). Following primary antibody incubation,
slides were washed and incubated with horseradish peroxidase-
labeled goat anti-rabbit secondary antibody for 50 min, followed
by three 5-min washes with PBS. The peroxidase-antibody
complex was visualized using 3,3′-diaminobenzidine (DA1010,
Solarbio), and sections were counterstained with hematoxylin.
Negative control experiments were performed by omitting the
primary antibody.

The identification and classification of follicles were performed
according to the number of granulosa cell layers and the presence of
follicular antrum, as described in previous literature (Griffin et al.,
2006). For quantitative analysis, primordial and primary follicles
were rigorously counted only when the oocyte nucleus was clearly
visible in the histological section. Secondary follicles were identified
based on granulosa cell morphology regardless of oocyte nucleus
visibility, while antral follicles were classified by the presence of
distinct antral spaces. This conservative approach was adopted to
mitigate potential quantification errors arising from oocyte loss
during tissue processing or sectioning artifacts. To ensure precise
evaluation of granulosa cell-specific staining, immunostaining
quantification was performed only within explicitly demarcated
granulosa cell areas (indicated by red dashed lines in Figures 2A,B),
excluding oocytes and theca cell layers. Immunostaining of GCs was
semi-quantitatively assessed using a combined scoring system (0-12
points) that incorporated both staining intensity (0 = no staining; 1
=weak; 2 =moderate; 3 = strong) and the percentage of positive cells
(0 = 0%; 1 = 1–25%; 2 = 26–50%; 3 = 51–75%; 4 > 75%), as previously
described (Ni et al., 2021).

2.6 Immunofluorescence (IF)

To evaluate AQP2 and AQP6 deposition and distribution,
multiplex immunofluorescence was performed as previously
described (Liu et al., 2022). Ovarian sections were dewaxed and
treated with 0.01% (w/v) sodium citrate for 20 min for antigen
retrieval.

Sections were permeabilized with PBS containing 0.5% Triton-
X-100 (PBST) for 20 min and incubated for 1 h with 5% goat serum
(AR1009, Boster Biological Technology, Hubei, China) at 25°C.
The GCs were then probed with an AQP2 polyclonal antibody
diluted to 1:300, or AQP6 polyclonal antibody diluted to 1:100
overnight at 4°C. The sections were sequentially incubated with
Alexa Fluor 555-conjugated or 488-conjugated secondary antibody
diluted 1:200 (ab150144, ab150081, Abcam, Cambridge, United

Kingdom) for 1 h. The slides were counterstained with 4′,6-
diamidino-2-pheynylindole (ab18804, Abcam). Digital images were
acquired using a fluorescence microscope (Olympus, Japan).

2.7 Statistical analysis

All statistical analyses were performed using GraphPad Prism
software. Data are presented asmean ± SEM,with P < 0.05 considered
statistically significant. For Western blot analysis of AQP2 expression
in granulosa cells, paired t-tests were appropriately employed for
the following methodological considerations: (Dewailly et al., 2016):
When comparing follicular stages within individual patients, all
bands on the same membrane represented technical replicates
from the same patient sample; (Messinis et al., 2010); For in vitro
stimulation experiments, bands on eachmembrane contained pooled
samples from the same cohort of patients, enablingwithin-membrane
comparisonsagainstmatchedcontrols.Thispairedanalyticalapproach
accounts for inter-patient variability while maintaining statistical
power for detecting treatment effects.

3 Results

3.1 Expression of AQP2 and AQP6 in
human LGCs from follicles with different
diameters on oocyte pick-up (OPU) day

According to our previous study (tong et al., 2023), the mRNA
expression of AQP2 in LGCs increased significantly, and, although
without significant difference, the mRNA expression of AQP6
showed a downward trend with the increase of follicle diameter.
Here, we further detected the protein level of these two AQP
in LGCs. As previous described (tong et al., 2023), follicles were
divided into three groups according to their diameter on OPU
day under transvaginal ultrasound measurement: small, medium,
and large follicle groups, and GCs were purified and collected.
AQP2 expression levels in LGCs showed a positive correlation
with follicular size, with increasing expression observed as follicles
developed (Figure 1A). In contrast, our results showed the opposite
trend in the expression of AQP6. Contrary to initial observations,
quantitative analysis revealed reduced AQP6 expression in the large
follicle group (L) compared to small follicles (S) after normalization
across three independent replicates, though this difference lacked
statistical significance (Figure 1B). Complete raw grayscale values and
normalized quantifications are provided in Supplementary Table S2.
Our Western blot quantification results demonstrate concordance
between AQP protein expression trends and the mRNA level changes
documented in prior studies (tong et al., 2023).

3.2 Expression of AQP2 and AQP6 in
human GCs from antral follicles to
primordial follicles

To determine whether AQP2 and AQP6 play a role in follicle
growth by producing FF, we characterized the expression of the
two proteins in follicles in different phases (primordial, primary,
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FIGURE 1
Expression of AQP2 and AQP6 in luteinized granulosa cells (LGCs) from different diameter follicles on oocyte pick-up (OPU) day. Follicles retrieved
from one woman on OPU day were divided into three groups: small (S), medium (M), and large (L), and corresponding LGCs were purified from
follicular fluid (FF). As individual heterogeneity, only when LGCs from the three groups were qualified, samples were delivered for analysis. Western blot
results for Aquaporin 2 (AQP2, n = 3, (A) and Aquaporin 6 (AQP6, n = 3, (B) in S, M, and L groups of LGCs. ImageJ software was used to determine the
band intensities. Results were normalized to those of β-actin (ACTB) and were presented as fold change to S groups (regarded as 1). The 27 kDa band
represents the non-glycosylated form of AQP2, and the 35 kDa band for glycosylated form. Results are shown as the mean ± SEM. ∗P < 0.05. S, small
follicle group; M, median follicle group; L, large follicle group; AQP, Aquaporin; ACTB, β-actin.

secondary, and antral follicles) of normal ovaries using IHC. The
expression of AQP2 and AQP6 in GCs at different follicular stages
varied among patients. Mild staining of AQP2 was detected in
GCs from secondary and antral follicles (Figures 2A,C). AQP2
staining was intense in the granulosa cell layer of primordial
and primary follicles, and the expression level between primordial
follicles and antral follicles was significantly different (the average
IHC score of AQP2 for primordial and antral follicles was
10.03, and 7.92, respectively, P = 0.0377). However, the most
abundant AQP6 staining was detected in antral follicles rather
than in primordial follicles. As the follicles grew from primordial
to antral follicles, AQP6 expression levels increased (Figure 2B),
and the increase was statistically significant (Figure 2D). The co-
localization analysis (Supplementary Figure S3) further excluded
hematoxylin interference.

Interestingly, AQP2 and AQP6 staining were observed to be
localized in oocytes as well as cells in the theca layer (OO and TC in
Figures 2A,B). Additional expression patterns in cumulus cells are
detailed in Supplementary Figure S4.

3.3 Influence of FSH, LH, and E2 on the
expression of AQP2 and AQP6 in cultured
human LGCs

To determine whether gonadotropins play a role in the
expression of AQP2 and AQP6 in LGCs, LGCs were treated with
FSH and LH for 24 h. LGCs expressed significantly lower levels of
AQP2 in response to FSH while higher levels to LH as compared
to the control (Figure 3A) in a dose-dependent manner. Similarly,
AQP2 protein levels increased in LGCs treated with a relatively

higher concentration of LH (Figure 3D), but not in the FSH
treatment group (Figure 3C). Neither FSH nor LH influenced the
expression of AQP6 in LGCs (Figure 3B).

To clarify whether the effect of LH on AQP2 was induced by
E2, we measured AQP2 mRNA levels in LGCs treated with different
concentrations of E2 for 24 h. A dose-dependent decreasing trend
was observed in AQP2 mRNA expression level (Figure 3E).

3.4 Influence of db-cAMP, forskolin, H89,
and PD98059 on the LH-induced
expression of AQP2 in LGCs

Todeterminewhether the cyclic adenosinemonophosphate/protein
kinase A (cAMP/PKA) signal transduction pathway plays a role in
the regulation of LH-induced AQP2 increase in LGCs, dibutyryl-
cyclic-adenosine monophosphate (db-cAMP), a stabilized cyclic
AMP (cAMP) analog, and forskolin (FSK), an inducer of
intracellular cAMP formation, were added to the culture medium
for 24 h. As shown in Figure 4A, FSK significantly increased the
AQP2 mRNA level in LGCs, as LH did, but not db-cAMP.

H89 dihydrochloride (H89) acts as an inhibitor for PKA
(Mihm et al., 2006; Ni et al., 2021) and was added to the culture
medium with LH. As is shown in Figure 4B, H89 did not affect
the increased mRNA level of AQP2 induced by LH in LGCs. To
investigate the ERK1/2 pathway in LGCs, PD98059, an ERK1/2
signaling inhibitor, was used. Our results showed that PD98059
counteracted LH induction in LGCs (Figure 4B). The ratio of the
phosphorylated ERK1/2 (PERK) to ERK1/2 (pERK1/2:ERK1/2) was
found to be significantly increased with LH treatment, and was
significantly decreased by PD98059 (Figures 4C,D).
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FIGURE 2
Expression of AQP2 and AQP6 in various phases of follicles. Follicles were retrieved from women undergoing ovariectomy and divided into four
phases: primordial (AQP2: N = 12, n = 388; AQP6: N = 11, n = 371), primary (AQP2: N = 14, n = 199; AQP6: N = 13, n = 124), secondary (AQP2: N = 6, n
= 16; AQP6: N = 9, n = 17), and antral (AQP2: N = 12, n = 281; AQP6: N = 11, n = 172) follicles. (A,B) Representative images of IHC staining for AQP2 (A)
and AQP6 (B). Yellow/brown staining indicates positive signals of the targeted proteins and all sections were lightly stained with hematoxylin (blue) for
nuclear indicating. The red dashed line outlines the granulosa cell layer with positive signals indicated by arrowheads. Scale bar, 50 μm. GC, granulosa
cells; TC, theca cells; OO, oocyte. (C,D) The intensity scores for Aquaporin 2 (AQP2, (C) and Aquaporin 6 (AQP6, (D) were measured using IHC in GCs
from various phases of follicles. Results are shown as the means ± SEM. ∗P < 0.05, ∗∗∗P < 0.001. N, patients size; n, follicle size.

3.5 Influence of FSH, LH, and E2 on
expression of AQP2 in cultured human TCs

As TCs had a high level of AQP2 expression in ovarian slides
(Figure 2B), we gathered primary TCs and applied different levels
of FSH, LH, and E2 to determine the role of these hormones in the
expression AQP2 in TCs. As indicated in Figure 5, the level of AQP2
expression increased significantly after LH treatment, not only in
mRNA level, but also protein level; however, neither FSH nor E2
influenced the expression of AQP2 in TCs. AQP2 in TCs presented
as a glycosylated form (Kim et al., 2011) at approximately 60 kDa,
apparently distinct from GCs.

4 Discussion

The formation of the follicle antrum marks the transition from
preantral to antral follicles, after which the follicle antrum increases
rapidly (Skowronski et al., 2019), with the largest volume of the
human follicle reaching a size of approximately 20 mm in diameter.
The rapid increase in follicular diameter is closely related to the
increase in FF (He et al., 2006; Skowronski et al., 2019), and water
influx is mainly transcellular andmediated by AQPs (Messinis et al.,

2010). Animal experiments have shown that FF generation is
related to AQP5, AQP7, AQP8, and AQP9 (Dewailly et al., 2016;
Oduwole et al., 2021; Mihm et al., 2006; Hillier et al., 1980). In
humans, AQP7 and AQP9 are present at relatively high levels in
LGCs (Franco et al., 2009), and evidence shows that the significant
increase in the follicle antrum during ovulation was related to
AQP2 and AQP3 (Jeppesen et al., 2012). In our previous study,
mRNA levels of AQP2 and AQP6 were found to be changed as
follicular diameter increased, and the change was likely related to
Gn. Herein, we further validate the changes in the protein levels of
AQP2 and AQP6 and describe them in GCs from preantral to antral
follicles and the regulation of gonadotropin-related changes.

We found that LGCs had higher protein levels of AQP2 and
stable levels of AQP6 in follicles with larger diameters, which was
consistent with the previous finding of mRNA expression. Gn plays
a vital role in the development of ovarian follicles (Richards, 1994;
Chen et al., 2023; Chen et al., 2016), while its regulation of AQPs at
the aspect of FF formation is still unclear.

By using LGCs, we found that FSH as well as E2 inhibited
AQP2 expression, while LH had an increasing effect, consistent with
the results of Thoroddsen et al. (Thoroddsen et al., 2011). In their
study, a marked increase in AQP2 mRNA levels during the early
ovulatory phase (EO, 12–18 h after rhCG) was found, compared to
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FIGURE 3
Effect of gonadotropin hormones on the expression of Aquaporin 2 (AQP2) and Aquaporin 6 (AQP6) in human luteinized granulosa cells (LGCs). LGCs
purified from all follicle fluid regardless of follicle diameter obtained from artificial reproductive technology (ART) patients were cultured for 24 h and
then treated with different concentrations of gonadotropin hormones. (A,B) The levels of mRNA for Aquaporin 2 (AQP2, (A), n = 7) and Aquaporin 6
(AQP6, (B), n = 7) were measured by quantitative PCR (qPCR), normalized to the levels of reduced glyceraldehyde-phosphate dehydrogenase (GAPDH)
mRNA in each sample and were presented as fold change to the control group (CON, regarded as 1). (C,D) AQP2 was detected using western blots in
LGCs cultured in different concentrations of follicle-stimulating hormone (FSH, (C), n = 4) and luteinizing hormone (LH, (D), n = 4). ImageJ software
was used to determine the band intensities. Results were normalized to those of β-actin (ACTB) and were presented as fold change to the control
group (CON, regarded as 1). (E) The level of mRNA for AQP2 was measured by qPCR, normalized to the levels of GAPDH mRNA (n = 7), and was
presented as a fold change to the control group (CON, regarded as 1). Results are shown as the means ± SEM. ∗P < 0.05; ∗∗P < 0.01. CON, control
group; AQP, Aquaporin; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, estradiol.

the preovulatory phase (PO, the size of the dominant follicle ranged
between 14 and 17.5 mm), which remained elevated throughout the
ovulation period in the median levels of the late ovulatory (LO,
18–24 h after rhCG) and postovulatory (PSO, 44–77 h after rhCG)
phases, respectively (Thoroddsen et al., 2011). In our experiment,
LGCs were gathered at the time of oocyte extraction, which was
approximately 36 h after the LH peak, as well as triggered ovulation.
With the growth of follicles, follicles with FSHdependence gradually
become more dependent on LH, which may explain the increased
AQP2. Furthermore, after the LH peak, E2 decreases; that is,
the inhibition of AQP2 is reduced, playing a synergistic role in
promoting AQP2 expression with LH. Thus, our results suggest a
role for AQP2 in the mechanisms leading to FF accumulation and
follicular rupture.

The function of LH depends on the stage of follicular
development (Liu et al., 2022) and is crucial for the transition
from preantral to antral follicles and the success of ovulation
(Kim et al., 2011; Ni et al., 2021; Gosden et al., 1988). LH
binding to its receptors can initiate a G-protein-coupled signaling
cascade that changes in gene expression in GCs (Hirshfield, 1991;
McConnell et al., 2002).This also inducesmigration and cytoskeletal
shape changes in isolated GCs (Lee et al., 2020; Yang et al., 2005)
by mediating several pathways, such as the cyclic AMP-protein
kinase A (cAMP/PKA) pathway (McConnell et al., 2002; Balasch
and Fábregues, 2006; Lee et al., 2016), the ERK cascade (Jaffe and
Egbert, 2017; Liu et al., 2014), AKT phosphorylation, JAK-STAT

signaling pathway (Owen and Jaffe, 2024), and HIPPO pathway
(Amsterdam et al., 2003; Godin et al., 2022). Notably, there is
a crosstalk between Gn/cAMP and the MAPK signaling cascade
(Lindeberg et al., 2007; Priyanka and Medhamurthy, 2007), which
can be found in KGN, the granulosa cell line (Tani et al., 2004), and
other cells (Kandaraki et al., 2018). In our study, forskolin increased
AQP2 mRNA levels in GCs by activating PKA, as indicated in the
principal cells of collecting tubules (Donadeu and Ascoli, 2005),
and the increase was similar to that of LH. However, 500 μM db-
cAMP displayed no effect on the AQP2 mRNA level, indicating that
db-cAMP may not be suitable for investigation on AQP2 in GCs,
or that a higher dosage should be explored. Interestingly, H89 did
not influence AQP2 mRNA levels, whereas PD98059 antagonized
the LH effect significantly, but not thoroughly. The obtained results
indicated that there may be crosstalk between the cAMP andMAPK
pathways, and LH may regulate AQP2 directly via the cAMP-
ERK1/2 pathway. However, further experiments concerning Raf-1
and higher db-cAMP concentration are necessary.

In natural follicle growth, AQP2 decreased from primordial,
primary, and secondary to antral follicles, as revealed by our IHC
data. This trend was opposite to our in vitro LGCs experiments,
but was not contrary to the speculated role of LH in AQP2
regulation. Follicles from primordial to secondary are present in
the Gn-independent or Gn-responsive phase, when Gn is not
necessary for follicular growth. As follicles begin to form follicular
antrum, the TC layer is formed, which is a key event that occurs
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FIGURE 4
Effect of forskolin, db-cAMP, and PD98059 on the expression of Aquaporin 2 (AQP2) in cultured human luteinized granulosa cells (LGCs). (A,B) After
being treated with 1.5 IU/mL luteinizing hormone (LH), 500 μΜ dibutyryl-cyclic-adenosine monophosphate (db-cAMP), 10 mΜ forskolin (FSK) (A, n =
12), 1.5 IU/mL LH with 10 μΜ H89 dihydrochloride (H89), or 10 μΜ PD98059 (B, n = 8), the level of mRNA for Aquaporin 2 (AQP2) was measured by
quantitative PCR (qPCR), normalized to the levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA in each sample, and were presented
as fold change to the control group (CON, regarded as 1). (C,D) ERK1/2 and phospho-ERK1/2 (p-ERK1/2) were detected using western blots in LGCs
treated with 1.5 IU/mL, with or without 10μΜ PD98059 at different times. ImageJ software was used to determine the band intensities. Results were
normalized to those of ERK1/2 and were presented as fold change to control groups (CON, regarded as 1) (n = 4). Results are shown as the mean ±
SEM. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001. AQP, Aquaporin; CON, control group; LH, luteinizing hormone; ERK, extracellular regulated kinase; pERK,
phospho-ERK; db-cAMP, dibutyryl-cyclic-AMP; FSK, forskolin; H89, H89 dihydrochloride, inhibitor for protein kinase A (PKA); PD98059, selective MEK
inhibitor and ERK1/2 inhibitor.

during the transition stage when follicular growth increases and a
steroidogenic response to Gn occurs (Liu et al., 2022; Godin et al.,
2022; Carvalho et al., 2003). According to the two-cell-two-
gonadotropin theory (Tajima et al., 2003), TCs and GCs interact,
and E2 synergistic regulation to AQP2 can be shown. However, the
regulation of AQP2 before the Gn-dependent phase remains to be
clarified.

As both the results of Jeppesen et al. (2012) and our IHC
data showed abundant expression of AQP2 in the TC cell layer,
we conducted brief experiments on TCs. We found a LH-related
increase of AQP2, which is similar to GCs, implying the syntactic
function of TCs andGCs during FF formation and follicular rapture;
further experiments should be conducted to confirm the related
pathways in TCs.

In our IHC findings regarding the high density of AQP2 in
cumulus cells, cumulus andmuralGCs have different transcriptomic
profiles (Tani et al., 2004; Fan et al., 2009; Stork and Schmitt,
2002), especially in the distribution of LH receptors, mRNA
coding for LH receptors and steroidogenic capabilities, and in
mRNAs encoding cholesterol side-chain cleavage cytochrome
P450 and cytochrome P450 aromatase (Latham et al., 1999).
Cumulus expansion is essential to support the metabolic needs
of oocytes and plays an important role in regulating meiotic
arrest and resumption (Dumesic et al., 2015). The high density
of AQP2 in cumulus cells (Supplementary Figure S4) and their
LH-responsive pattern suggest a functional role in ovulation.

However, due to the limited availability of intact cumulus-
oocyte complexes in our specimens, current observations preclude
robust statistical quantification. Future studies employing optimized
isolation protocols (e.g., cumulus cell retrieval during ART
procedures) are warranted to validate these findings at both protein
and transcriptional levels, thereby elucidating AQP2’s precise role in
cumulus cell physiology.

The current study represents the first comprehensive
demonstration of AQP2 and AQP6 expression across human
follicular stages, fromprimordial to antral follicles, as well as the first
in vitro evaluation ofGnRHagonist (Gn) effects on bothAQPs.Akey
limitation involves potential differences between isolated luteinized
GCs (LGCs) and physiologically intact GCs. Although minor
contamination by non-luteinized GCs may theoretically exist in our
LGC preparations, the standardized controlled ovarian stimulation
(COS) protocol and hCG trigger in our study design suggest
that follicular fluid-derived GCs are predominantly undergoing
luteinization. Thus, we contend that any residual non-luteinized
GCs constitute a negligible, functionally insignificant population
that does not compromise inter-group comparability.

Methodologically, antral follicle classification by diameter alone
carries inherent biological variability, preventing precise categorical
divisions. Future studies employing in vitro maturation (IVM)-
derived non-luteinized GCs could further validate our findings,
while additional investigations remain essential to clarify AQP2’s
mechanistic roles in follicular fluid formation and follicle rupture.
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FIGURE 5
Effect of gonadotropin hormones on the expression of Aquaporin 2 (AQP2) in theca cells (TCs). TCs purified from all follicle fluid regardless of follicle
diameter obtained from artificial reproductive technology (ART) patients were cultured for 24 h and then treated with different concentrations of
follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2). (A) The levels of mRNA for Aquaporin 2 (AQP2, n = 9) were measured
by quantitative PCR and normalized to the levels of reduced glyceraldehyde-phosphate dehydrogenase (GAPDH) mRNA in each sample. (B) AQP2 was
detected using western blots in TC cultured in different concentrations of FSH, LH, and E2. Results are shown as the mean ± SEM. ∗∗P < 0.01, ∗∗∗P <
0.001. CON, control; AQP, Aquaporin; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, estradiol.

In summary, the present study demonstrates an LH-induced
increase inAQP2 expression in humanLGCs.Moreover, we revealed
for the first time that AQP2 decreased, while AQP6 increased
as follicles grew from primordial, primary, and secondary to
antral follicles. This essential finding reveals a possible mechanism
for FF formation during follicle growth. However, it remains
to be determined whether the crosstalk between cAMP and
ERK1/2 is responsible for LH-induced regulation. Future studies
are needed to confirm the role of AQP2 in GC during the
preantral follicle phase and in TC. Nonetheless, the present
study provides further experimental evidence that AQP2 plays a
significant role in the mechanisms that lead to FF accumulation
and follicular rupture. The current novel findings provide
fundamental information that can be valuable to understand FF and
follicle growth.
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