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Background: This study aimed to develop an efficient survival model for 
predicting event-free survival (EFS) in patients with Philadelphia chromosome 
(Ph)-like acute lymphoblastic leukemia (ALL).

Methods: Data related to Ph-like ALL were collected from the South China 
Children’s Leukemia Group (SCCLG) multicenter study conducted from October 
2016 to July 2021. A model for predicting the survival of patients with Ph-
like ALL was built using Cox proportional hazards regression, random forest, 
extreme gradient boosting, and gradient boosting machine techniques. By 
integrating indicators including the concordance index (C-index), 1-, 3-, and 
5-year area-under-the-receiver operating characteristics curve (AUROC), Brier 
score, and decision curve analysis, the predictive capabilities of each model 
were compared.
Results: The random forest algorithm demonstrated the most robust predictive 
performance. In the test set, the C-index of the random forest model was 0.797 
(95% CI: 0.736–0.821; P < 0.001). The AUROCs for 1, 3, and 5 years were 0.787 
(95% CI: 0.62–0.953; P < 0.001), 0.797 (95% CI: 0.589–1; P < 0.001), and 0.861 
(95% CI: 0.606–1; P < 0.001), respectively. The Brier scores for 1, 3, and 5 years 
were 0.102 (95% CI: 0.032–0.173; P < 0.001), 0.126 (95% CI: 0.063–0.19; P < 
0.001), and 0.121 (95% CI: 0.051–0.19; P < 0.001), respectively.

Conclusion: The random forest model effectively predicted the survival 
outcomes of patients with Ph-like ALL, which can aid clinicians to 
conduct personalized prognosis assessments in advance. Based on 
a web-based calculator, using random forest prediction models to
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calculate the prognosis of Ph-like ALL (https://songxiaodan03.shinyapps.
io/RFpredictionmodelforPHlikeALL/) could facilitate healthcare professionals in 
carrying out clinical evaluation.

KEYWORDS

Philadelphia chromosome-like acute lymphoblastic leukemia, machine learning, 
random forest, minimal residual disease, survival prediction 

1 Background

Philadelphia chromosome (Ph)-like acute lymphoblastic 
leukemia (ALL), a subtype of acute lymphoblastic leukemia, exhibits 
gene expression profiles and activated kinase signaling pathways 
similar to those of Ph + ALL yet notably lacks the BCR-ABL1 fusion 
gene (Harvey and Tasian, 2020; Yadav et al., 2021; Roberts, 2017). 
Although research indicates that ABL fusion and activation of the 
JAK-STAT signaling pathway are commonly present in this subtype 
(Roberts et al., 2017a; Roberts et al., 2012), some cases of Ph-like 
ALL do not have typical identifiable genetic abnormalities; this, 
to some extent, limits diagnostic accuracy based on traditional 
cell morphology and immunophenotypes (Tran and Tasian, 2022; 
Schwab and Harrison, 2018; Anagnostou et al., 2020; Tasian et al., 
2017). Compared with cases involving typical fusion genes, this 
situation renders the diagnosis and prognosis of Ph-like ALL more 
challenging. There are significant international differences in the 
incidence rate of Ph-like ALL. In pediatrics, the incidence rate ranges 
from 5% to 30% (Chiaretti et al., 2019; Hu et al., 2023; Roberts et al., 
2018), and the prognosis is relatively poor (Al Ustwani et al., 2016; 
Frisch and Ofran, 2019; Roberts et al., 2017b; Shiraz et al., 2020). The 
incidence rate of the disease also increases with age (Herold et al., 
2014), accounting for 15%, 21%, and 27% of children, adolescents, 
and young adults, respectively, with B-cell acute lymphoblastic 
leukemia (B-ALL) (Roberts et al., 2014a).

Current research on Ph-like ALL involves numerous complex 
scenarios that are influenced by multiple genetic variations 
and treatment outcomes under different treatment regimens 
(Roberts et al., 2017b; Iacobucci and Roberts, 2021; Abou Dalle et al., 
2019). For instance, various intensified chemotherapy regimens or 
combined tyrosine kinase inhibitors are employed to enhance the 
survival outcomes and optimize management strategies for patients 
with Ph-like ALL, primarily due to the poor prognosis of the 
disease. Arber, Roberts, and other researchers posit that intensified 
therapies (including transplantation) are pivotal in treating Ph-
like ALL. Although some patients demonstrate higher levels of 
minimal residual disease (MRD) at the end of induction therapy, 
their survival rates remain comparable to those of non-BCR/ABL1-
like ALL patients (Arber et al., 2016; Roberts et al., 2014b). 
Stock et al. (2019) and Chiaretti et al. (2021) found that the genetic 

Abbreviations: SCCLG, South China Children’s Leukemia Group; AUROC, 
area-under-the-receiver operating characteristics curve; ALL, acute 
lymphoblastic leukemia; Ph-like ALL, Philadelphia chromosome-like acute 
lymphoblastic leukemia; MRD, minimal residual disease; RF, random forest; 
GBM, gradient boosting machine; XGBoost, extreme gradient boosting; 
ET, extramedullary tumor; PR, prednisone response; BMR, response rate of 
bone marrow; EFS, event-free survival; DCA, decision curve analysis; SHAP, 
Shapley additive explanations.

molecular features of Ph-like ALL are associated with lower survival 
rates and pose a risk factor for event-free survival (EFS) in these 
patients. However, other large-scale clinical trials have reached 
different conclusions. After analyzing the clinical trial data of 
the Australian and New Zealand Children’s Hematology/Oncology 
Group (ANZCHOG) ALL8, Heatley et al. (2017) discovered that 
even with risk-stratified treatment based on MRD evaluation, the 
recurrence of Ph-like ALL in children remained high, which in turn 
affected the EFS time. Therefore, research on the prognosis of Ph-like 
ALL is still in progress and aims to clarify the true factors affecting 
it. Effective prognostic assessment can accurately determine which 
patients can benefit from aggressive treatment options such as bone 
marrow transplantation and which patients may be more suitable for 
standard treatment (Yadav et al., 2021), thereby providing them with 
more precise and personalized treatment options.

Machine learning, a form of artificial intelligence, comprises 
various algorithms. These algorithms can continuously improve 
performance through iteration and make predictions analogous to 
human decisions (Handelman et al., 2018). In recent years, the 
application of machine learning in the medical field has become 
increasingly prevalent, particularly in processing large clinical datasets 
to address complex medical problems, with significant advantages in 
high-dimensional data processing, nonlinear model construction, and 
predictive algorithm development. Existing research has demonstrated 
that it is feasible to use machine learning for deep learning analyses 
of lesion imaging patterns and immunohistochemical presentations, 
combined with clinical indicators or omics data for early disease 
diagnosis and computational analyses (Handelman et al., 2018; 
Choi et al., 2020; Greener et al., 2022). 

Based on the above circumstances, integrating machine learning 
modeling to predict the prognosis of Ph-like ALL is feasible. This 
study intends to utilize random forest (RF), gradient boosting machine 
(GBM), extreme gradient boosting (XGBoost), and traditional Cox 
hazard regression algorithms to analyze the genetic and clinical features 
of Ph-like ALL and construct a model for predicting the survival 
rate of the disease. The optimal prediction model was determined by 
comparing the performance of each model. 

2 Methods

2.1 Study subjects and data collection

2.1.1 Study subjects
A retrospective multicenter study was conducted from October 

2016 to July 2021 on children newly diagnosed with ALL at 13 
affiliated hospitals participating in the South China Children’s 
Leukemia Group (SCCLG)-ALL-2016 multicenter study. The 
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FIGURE 1
Consort diagram for Ph-like ALL selection, chosen clinical variables, and study workflow.

treatment protocol of this study strictly adhered to the SCCLG-
ALL-2016 guidelines for ALL (version 20191101.5). This study 
was reviewed and approved by the Ethics Committee of Sun Yat-
sen Memorial Hospital, Sun Yat-sen University. All research was 
conducted in accordance with the International Code of Medical 
Ethics of the World Medical Association (Declaration of Helsinki). 
Additionally, this study was registered in the Chinese Clinical Trial 
Registry (Chi-CTR; https://www.chictr.org.cn/; registration number 
ChiCTR2000030357). 

2.1.2 Inclusion and exclusion criteria for the 
SCCLG-ALL-2016 multicenter study

The inclusion criteria (Harvey and Tasian, 2020) required 
participants to be 18 years old or younger (Yadav et al., 2021). 
Based on the 2008 World Health Organization classification criteria, 
in combination with various results such as bone marrow smear 
morphology, immune phenotype, cytogenetics, and molecular 
genetics, the clinical manifestations were consistent with ALL, and 
patients were diagnosed with B-ALL (Roberts, 2017). Patients must 
be pediatric patients experiencing their first episode of the disease.

Exclusion criteria (Harvey and Tasian, 2020) comprised patients 
with T-lineage leukemia, mature B-cell leukemia, or acute mixed 
leukemia (Yadav et al., 2021), patients with secondary leukemia 
resulting from immunodeficiency (Roberts, 2017), patients with a 
history of a second malignancy (Roberts et al., 2017a), patients with 
Down syndrome (Roberts et al., 2012), and patients who had used 
glucocorticoids for more than 1 week within the month prior to 
enrollment. 

2.1.3 Diagnostic and exclusion criteria for 
Philadelphia chromosome-like acute 
lymphoblastic leukemia

According to the International Consensus Classification (ICC) 
of ALL, gene expression profiling is the most reliable approach 
for diagnosing Ph-like ALL. When comprehensive gene expression 

profiling testing was unavailable, techniques such as fluorescence 
in situ hybridization, polymerase chain reaction (PCR), reverse 
transcriptase PCR, flow cytometry, transcriptome sequencing, and 
whole-exome sequencing were employed to identify fusion genes 
(e.g., CRLF2, JAK2, EPOR, ABL1, ABL2, and PDGFRB) to aid 
in clinical diagnosis. Specific probes were used to detect common 
genetic abnormalities in Ph-like ALL, including rearrangements 
and mutations in genes such as SH2B3, JAK1/2/3, and IL7R. The 
exclusion criteria for Ph-like ALL were as follows: ALL patients who 
did not meet the diagnostic criteria for Ph-like ALL, Ph-like ALL 
patients who were lost to follow-up, and Ph-like ALL patients who 
lacked the aforementioned basic clinical data. 

2.1.4 Chemotherapy regimen
Treatment for Ph-like ALL patients was implemented according 

to the SCCLG-ALL-2016 protocol. At the time of enrollment, 
prednisone was initially administered for a 7-day pretreatment 
period, followed by diagnosis and sensitivity assessment. 
Subsequently, remission induction therapy based on vincristine, 
dexamethasone, L-asparaginase, and daunorubicin (VDLD) 
was performed, along with early intensified cyclophosphamide, 
cytarabine, 6-mercaptopurine, and L-asparaginase (CAM + L-
asparaginase) therapy. The consolidation regimen utilized high-dose 
methotrexate and 6-mercaptopurine, while the re-induction phase 
employed a delayed intensive VDLD regimen combined with CAM 
+ L-asparaginase. Maintenance therapy included chemotherapy 
and regular intrathecal injections, with specific dosages and risk 
assessment criteria detailed in Li et al. (2021) and Radu et al. (2020). 

2.1.5 Indications for transplantation and tyrosine 
kinase inhibitor regimen

Indications for transplantation encompassed the following 
scenarios: failure to attain remission after induction therapy 
(i.e., bone marrow morphology failed to meet remission criteria 
on day 33); MRD level ≥10−4 prior to consolidation treatment 
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TABLE 1  Patient features.

Fetures Model set Validation set

Number of 
patients 
(%)/Mean 
(Media)

Patients with 
EFS(%)

P Value Number of 
patients 

(%)/Mean 
(Media)

Patients with 
EFS(%)

  Total Number 226 192 (84.956) 36 28 (77.78)

 Gender 1

  Male 129 (57.1) 110 (57.3) 16 13 (46.2)

  Female 97 (42.9) 82 (42.7) 20 15 (53.8)

  Chromosomal
morphology typing

0.114

  Normal 180 (79.6) 149 (77.6) 26 (72.2) 22 (78.6)

  Abnormal 46 (20.4) 43 (22.4) 10 (27.8) 6 (21.4)

 ET 0.065

  No 212 (93.8) 183 (95.3) 34 (94.4) 26 (92.9)

  Yes 14 (6.2) 9 (4.7) 2 (5.6) 2 (7.1)

 IK6 mutation 0.352

  No 113 (50.0) 99 (51.6) 19 (52.8) 16 (57.1)

  Yes 113 (50.0) 93 (48.4) 17 (47.2) 12 (42.9)

 ABL fusion 1

  No 183 (81.0) 155 (80.7) 28 (77.8) 23 (82.1)

  Yes 43 (19.0) 37 (19.3) 8 (22.2) 5 (17.9)

  Kinase pathway 
abnormality

0.897

  No 134 (59.3) 113 (58.9) 20 (55.6) 19 (67.9)

  Yes 92 (40.7) 79 (41.1) 16 (44.4) 9 (32.1)

  Immunophenotype 0.609

  Pro-B 9 (4.0) 8 (4.2) 2 (5.6) 1 (3.6)

  Common B 194 (85.8) 166 (86.5) 27 (75) 25 (89.2)

  Pre-B 9 (4.0) 6 (3.1) 3 (8.3) 1 (3.6)

  Mixed phenotype 1 (0.4) 1 (0.5) 0 0

  Immature-B 13 (5.8) 11 (5.7) 4 (11.1) 1 (3.6)

 PR 0.081

  Sensitive 202 (89.4) 175 (91.1) 31 (86.1) 27 (96.4)

  Insensitive 24 (10.6) 17 (8.9) 5 (13.9) 1 (3.6)

 D15BMR 0.005

(Continued on the following page)
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TABLE 1  (Continued) Patient features.

Fetures Model set Validation set

Number of 
patients (%)/Mean 
(Media)

Patients with 
EFS(%)

P Value Number of 
patients (%)/Mean 

(Media)

Patients with 
EFS(%)

  M1 163 (72.1) 143 (74.5) 29 (80.6) 24 (85.7)

  M2 35 (15.5) 31 (16.1) 1 (2.8) 1 (3.6)

  M3 22 (9.7) 13 (6.8) 5 (13.8) 3 (10.7)

  M4 6 (2.7) 5 (2.6) 1 (2.8) 0

D33BMR <0.001

  M1 211 (93.4) 184 (95.8) 33 (91.6) 27 (96.4)

  M2 4 (1.8) 2 (1.0) 2 (5.6) 1 (3.6)

  M3 2 (0.9) 0 (0.0) 1 (2.8) 0

  M4 9 (4.0) 6 (3.1) 0 0

Age year 4.20 [1.65, 7.30] 4.00 [2.60, 6.90] 0.006 3.25 [2.85,8.25] 3.3 [2.5,5.4]

  WBC 109/L 12.02 [4.84, 42.38] 10.20 [4.56, 36.47] 0.009 8.615 [4.18,22.233] 7.81 [3.46,12.55]

 Blasts % 38.50 [6.00, 75.00] 32 [4.00, 67.50] <0.001 22.3 [4.825,45.5] 17 [4.3,30.4]

 HB g/L 72.38 ± 20.93 72.04 ± 21.50 0.559 70.5 ± 22.75 59.1 ± 23.608

 PLT 109/L 45.00 [17.12,100.25] 46.5 [18.15, 113.25] 0.095 46.5 [13.57,120.92] 57 [21,153]

  D15MRD % 0.92 [0.08, 8.60] 0.68 [0.07, 4.73] <0.001 0.505 [0.065,5.225] 0.31 [0.05,1.12]

  D33MRD % 0.00 [0.00, 0.02] 0.00 [0.00, 0.01] 0.001 0 [0,0] 0 [0,0]

(week 12); early bone marrow relapse (occurring within 6 months 
after treatment cessation or within 36 months of diagnosis). 
Regarding the TKI regimen, once a patient was diagnosed with 
Ph-like ALL, dasatinib or imatinib was incorporated into the 
standard chemotherapy regimen starting on the 15th day of 
induction therapy, and the treatment was continued until the 
maintenance phase. 

2.1.6 Clinical data collection
Clinical characteristics data of pediatric patients were collected 

utilizing electronic medical record systems from multiple hospitals. 
These data included gender, age, peripheral blood leukocyte 
count at diagnosis, peripheral blood platelet count at diagnosis, 
hemoglobin concentration at diagnosis, proportion of bone marrow 
primitive white blood cells plus immature white blood cells 
(blasts) at diagnosis, chromosome morphology classification, 
immunophenotypes (Pro-B-ALL, common B-ALL, Pre-B-ALL, 
mixed phenotype B-ALL, immature B-ALL), extramedullary tumor 
(ET), IK6 mutation or deletion, ABL fusion, kinase pathway 
dysregulation, prednisone response (PR) on day 8 (sensitive: 
peripheral blood blasts <1 × 109/L, insensitive: peripheral blood 
blasts >1 × 109/L), bone marrow response rate on day 15 (D15 
BMR; M1: ratio of primitive cells to naive cells <5%, M2: 5%–25%, 

M3: >25%, M4: bone marrow depression), bone marrow response 
rate on day 33 (D33 BMR; M1: ratio of primitive cells to naive cells 
<5%, M2: 5%–25%, M3: >25%, M4: bone marrow depression), and 
measurable residual disease status on days 15 and 33 (D15 MRD 
and D33 MRD). Flow cytometry was employed to detect MRD. The 
standard criterion for a negative MRD result after the first induction 
therapy was MRD level <0.01%. The follow-up end date was 30 
June 2022. The duration of EFS was recorded, and it was defined 
as the time from the date of diagnosis to the failure of induction 
therapy, disease recurrence, the occurrence of a secondary tumor, 
or patient death. 

2.2 Data processing

2.2.1 Statistical methods
The collected data were processed using R software (version 

4.4.1). The development and evaluation of machine learning models 
were performed using the mlr3verse, tidyverse, and mlr3extralearners
packages. Normally distributed quantitative data were represented 
as mean ± standard deviation, and a t-test was used for inter-
group comparison. Non-normally distributed quantitative data were 
represented by the median (first quartile, third quartile), and the 
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TABLE 2  Cox proportional hazards regression analysis.

Feature Regression coefficient β 5-year EFS
HR (95% CI)

SE Z value p value

ET

  No 1.00

  Yes 1.827 6.218 (1.74–22.247) 0.65 2.81 0.005

PR

  Sensitive 1.000

  Insensitive 1.177 3.245 (0.935–11.267) 0.635 1.854 0.064

D15BMR

  M1 1.000

  M2 −2.561 0.077 (0.014–0.441) 0.889 −2.88 0.004

  M3 −3.153 0.043 (0.005–0.357) 1.083 −2.912 0.004

  M4 −9.160 0.002 (0.001–0.007) 2.138 −4.284 0

Age 0.004 1.042 (0.929–1.168) 0.058 0.700 0.484

D15MRD 0.079 1.082 (1.05–1.121) 0.018 4.425 0

D33MRD 0.067 1.069 (1.04–1.099) 0.014 4.74 0

blasts 0.008 1.008 (0.992–1.024) 0.008 0.984 0.325

PLT −0.003 0.999 (0.994–1.004) 0.003 −0.458 0.647

WBC 0.002 1 (0.995–1.005) 0.003 0.081 0.936

non-parametric Mann–Whitney U rank-sum test was used for inter-
group comparison. Categorical data were presented as number (%), 
and the comparison between groups was conducted using the χ2 test. 
The Cox proportional hazards regression model was validated using 
the Logrank test. A two-sided P < 0.05 was considered statistically 
significant. 

2.2.2 Preprocessing of feature variables
In the univariate selection process, variables with P < 0.1 

were selected. Subsequently, correlation analysis was conducted 
on these variables using the recipes package. If the correlation 
coefficient between two features exceeded 0.7, one of the features 
was removed to avoid multicollinearity affecting the model. To 
improve model efficiency and prevent overfitting, zero-variance 
features were removed. 

2.2.3 Machine learning model training and tuning
The data were divided into a training and a test set (8:2 ratio) 

using the stratified random sampling method to ensure that there 
were no significant differences in characteristics and results between 
the two sets (Supplementary Figure S2 P = 0.83). Models were built 
using the training set and validated on the test set. When building 
machine learning models, grid search or random search methods 

were used for hyperparameter tuning, and the optimal parameter 
set was determined by searching through predefined parameter 
combinations. 

2.2.3.1 Random forest
The number of generated decision trees was set between 200 

and 500, with 2–10 features considered for each node and a 
minimum sample size of 2–21 for leaf nodes. Grid search was used 
for optimization, the resolution was set to 5, and the model was 
evaluated using five-fold cross-validation. Using the survival index 
C-index as the evaluation metric, without setting a stop condition, 
the tuner was allowed to continue running until all combinations 
had been tried. The resampling method for tree growth was “swor”, 
the splitting rule was random Logrank, and the number of random 
split points was set to 10. 

2.2.3.2 Gradient boosting machine
For the GBM model, the number of boosting iterations was 

set between 100 and 500. The maximum depth of each tree was 
1–3, and the minimum number of observations for terminal nodes 
was 5–7. The learning shrinkage rate of each tree’s contribution 
to the final prediction result was set between 0.001 and 0.1. The 
Kaplan–Meier method was used for survival analysis estimation, 
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FIGURE 2
Variable importance rankings for 1/3/5-year predictions. (A) Variable importance in Cox proportional hazards regression model. (B) Variable importance 
in RF model.

FIGURE 3
Hyperparameter tuning for machine learning models. (A) Hyperparameter tuning for RF. (B) Hyperparameter tuning for GBM. (C) Hyperparameter 
tuning for Xgboost.
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FIGURE 4
Comparison between machine learning models and Cox proportional hazards regression model. (A) Evaluation of models’ AUC on the training set: RF 
model demonstrates superior performance in AUC for 1/3/5-year predictions, achieving values of 0.787, 0.797, and 0.861, respectively. GBM model 
attains AUC values of 0.784, 0.747, and 0.789 for the corresponding time points, while Xgboost achieves 0.646, 0.7, and 0.764. In contrast, Cox 
proportional hazards regression model achieves AUC values of 0.661, 0.538, and 0.529 for the respective prediction intervals. (B) Assessment of 
models’ Brier scores: RF model yields the lowest brier scores for 1/3/5-year predictions, recording values of 0.102, 0.126, and 0.121, respectively. GBM 
model follows with Brier scores of 0.117, 0.162, and 0.162, and Xgboost with scores of 0.131, 0.195, and 0.183. Cox proportional hazards regression 
model exhibits Brier scores of 0.183, 0.19, and 0.146 for the corresponding prediction intervals. (C) Comparative analysis of models’ DCA curves: RF 
model demonstrates the largest area under the DCA curve across predictions, indicating its superior performance in DCA.

with the Cox proportional hazards regression model as the formula 
type. We used the C-index as the evaluation metric and grid search as 
the adjustment method, with a resolution of 3; model performance 
evaluation adopted five-fold cross-validation. 

2.2.3.3 Extreme gradient boosting
For the XGBoost model, the number of iterations was set 

between 50 and 800, the maximum tree depth was 1–20, the 
learning rate was 10−6 to 1, and it used “Kaplan” as the estimator 
and “ph” as the model form. An automatic tuner was built for 
parameter search to effectively determine the optimal parameter 
combination, thereby improving model performance and prediction 
accuracy. Four parameter combinations were searched each time, 
and CV cross-validation was used to evaluate the model. The 
C-index was used as the evaluation index, and the evaluation 
stopping conditions were adjusted. A total of 40 evaluations
were conducted. 

2.3 Model validation

The effectiveness of the model was evaluated using cases from 
the First Affiliated Hospital of Guangxi Medical University as 

external data (n = 36). The model’s performance was evaluated 
through the C-index and the area under the receiver operating 
characteristics curve (AUROC). 

3 Results

3.1 Baseline data and univariate screening

From October 2016 to May 2022, 2,453 children were treated 
and followed up according to the SCCLG-ALL-2016 guidelines for 
ALL (version 20191101.5). A total of 231 patients were diagnosed 
with Ph-like ALL. Five were excluded because of loss to follow-up 
and the absence of important clinical features. Ultimately, 226 Ph-
like ALL patients were included (Figure 1). D15 BMR, D33 BMR, 
D15 MRD, D33 MRD, and the number of bone marrow blasts at 
diagnosis were significantly higher in the event-occurring group 
than in the non-event group (Table 1). Based on the statistical 
results, age, white blood cell count, platelet count, proportion of 
blasts, ET, PR, D15 MRD, D33 MRD, D15 BMR, and D33 BMR were 
identified as potentially correlated with EFS (P < 0.1). These feature 
variables were then used for subsequent Cox hazard regression or 
machine learning model development. 
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FIGURE 5
ROC comparison of predictions on the training set at different time points among various models. (A) Predictions of four models for 1-year EFS. (B)
Predictions for 3-year EFS. (C) Predictions for 5-year EFS. For predictions at the aforementioned three time points, RF consistently demonstrates the 
best performance among the models.

3.2 Feature variable preprocessing

No multicollinearity was detected among the included features
(Supplementary Figure S1). However, D33 BMR was removed as a 
sparse variable with zero-variance. 

3.3 Cox hazard regression model

The final prediction model indicated that D15 BMR, D15 MRD, 
D33 MRD, and ET were statistically significant factors (Logrank 
score = 65.81, P < 0.01—Table 2), and the C-index was 0.515. In the 
test set, the predictive accuracies of EFS at 1, 3, and 5 years after the 
diagnosis of Ph-like ALL were 0.661, 0.538, and 0.529, respectively. 
The importance of each feature is shown in Figure 2A. 

3.4 Machine model parameter tuning

As illustrated in Figure 3, the optimal prediction model of 
the RF algorithm has a C-index of 0.794. The model consisted 
of 350 decision trees, with each node considering two features 

and each leaf node containing at least 21 samples. The out-of-bag 
continuous ranking probability score of this model was 0.097, with a 
performance error of 0.246. In the GBM model, when there were 100 
decision trees, the tree depth was 1, the leaf nodes contained at least 
five samples, the shrinkage value was 0.001, and the C-index reached 
its highest value of 0.79. In the XGBoost model, after 150 iterations, 
the maximum C-index was 0.757, the maximum tree depth was 18, 
and the tree weight update amplitude control parameter η for each 
iteration was 0.158. 

3.5 Model comparison

The four models were evaluated using receiver operating 
characteristic (ROC) curves, AUROC, Brier scores, and decision 
curve analysis (DCA) (Figures 4, 5). The RF model outperformed 
other models in these evaluation metrics, particularly in predicting 
EFS. In the test set, the RF model achieved a prediction accuracy of 
approximately 80% for EFS at 1, 3, and 5 years after the diagnosis 
of Ph-like ALL, which was significantly higher than those of the 
traditional Cox regression, GBM, and XGBoost algorithms. The 
RF model had the lowest Brier score, indicating relatively high 
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FIGURE 6
(A) Risk SHAP values for continuous variables in the RF model. (B) Mean SHAP values of variables in the RF model.

FIGURE 7
Impact of D33 MRD on event-free survival in Ph-like ALL. MRD 
negativity is achieved post-first induction, defined as MRD <0.01%.

prediction accuracy. In DCA curve analysis, the RF model had the 
largest area under the curve, suggesting that using the RF model to 
predict Ph-like ALL can yield maximum benefits. 

3.6 Analysis of feature variables in the 
random forest model

SHapley Additive exPlanations (SHAP) is a method used to 
interpret the output results of machine learning models. This 
method assigns a contribution score to each feature by assessing its 
impact on the model output. In the RF machine learning model, 
variables such as D33 MRD, D15 MRD, and the proportion of blasts 

FIGURE 8
Performance of AUROC in external validation dataset.

were correlated with the prediction of EFS at 1, 3, and 5 years after 
the diagnosis of Ph-like ALL (Figure 2B). According to the SHAP 
risk analysis, patients with MRD and a low proportion of blasts after 
treatment showed higher EFS rates. High levels of MRD and a high 
proportion of blasts increased the probability of adverse events after 
diagnosis (Figure 6A). Survival analysis based on whether MRD 
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turns negative also confirmed that D33 MRD was an important 
clinical indicator affecting prognosis (Logrank test, χ2 = 8.894, P < 
0.01—Figure 7). Notably, age significantly influenced the prediction 
of 3-year EFS (Figure 2B), with older children having a higher 
probability of adverse events than younger patients. Additionally, 
lower levels of platelet count were found to trigger adverse events 
(Figure 6A). Figure 6B shows the average SHAP values of individual 
clinical features in the RF model for prediction accuracy. As it shows, 
compared with the Cox proportional hazards regression model, the 
impacts of ET and D15 BMR on the model’s predictive capabilities 
were relatively small, as indicated by their SHAP values. 

3.7 Model validation

The C-index of the external validation dataset was 0.753 (95% 
CI: 0.55–0.904, P < 0.01); Figure 8 shows the AUROC performance 
at 1, 3, and 5 years. 

4 Discussion

In the Ph-like ALL data of our collaborative group, the clinical 
features evaluated by the model include common molecular genetic 
abnormalities, age, MRD, BMR, and immunophenotyping in Ph-
like ALL. Ultimately, the clinical features that play a major role 
in accurate classification and prediction are MRD, age, and blasts 
rather than molecular genetic abnormalities. Among these features, 
MRD has the most significant impact on the model. There have 
been many studies and evaluations regarding the impact of MRD 
response-based intensified treatments on the survival prognosis 
of Ph-like ALL. A research team from the American Anderson 
Cancer Center reported that MRD negativity after induction therapy 
has no significant impact on the long-term survival of adult 
patients with Ph-like ALL (31). A study by St. Jude’s Children’s 
Research Hospital found that risk-oriented treatment based on 
MRD could significantly improve the poor prognosis of Ph-
like ALL (Jeha et al., 2021). Cho et al. (2021) also advocated 
MRD monitoring as a criterion for further treatment assessment, 
especially in determining whether patients with Ph-like ALL require 
allogeneic hematopoietic stem cell transplantation, highlighting its 
significant evaluative value. In the RF survival prediction model 
of this study, both D33 MRD and D15 MRD made significant 
contributions to 1-, 3-, and 5-year survival predictions, with D33 
MRD being particularly prominent.

Published studies have shown that specific genetic molecular 
changes in Ph-like ALL may have varying effects on treatment 
outcomes. Studies on adult patients have shown that compared to 
patients without related rearrangements, CRLF2 or JAK2/EPOR 
rearrangements are associated with lower survival rates 
(Roberts et al., 2017b). JAK mutations, as common genetic 
molecular abnormalities in Ph-like ALL, are believed to be 
associated with poor prognosis (Mullighan et al., 2009; Herold et al., 
2017). Another study on adult Ph-like ALL patients found that 
CRLF2 overexpression is associated with poor prognosis, with a 
5-year survival rate of less than 20% (Roberts et al., 2014a; Jain et al., 
2017). However, in research on a cohort of children with Ph-like 
ALL, van der Veer et al. (2013) reported that IKZF1 deletion rather 

than CRLF2 overexpression was one of the factors leading to poor 
prognosis. In Ph-like ALL cases, some studies have shown that IK6 
deletion has an independent prognostic impact, tripling the risk 
of treatment failure (Hu et al., 2023; Stanulla et al., 2018), while 
others suggest that IKZF1 deletion is not significantly correlated 
with disease relapse or long-term survival (Cho et al., 2021). These 
different or contradictory outcomes may be related to variations 
in patient age, race, sample size, and treatment protocols. In the RF 
prediction model based on the Ph-like ALL data of our collaborative 
group, IK6 deletion and molecular genetic changes involving kinase 
pathways, such as CRLF2 rearrangement or overexpression, JAK 
mutations, or JAK fusion proteins, have no significant impact on 
the prognosis of Ph-like ALL. This may be related to the targeted 
therapy or intensified chemotherapy regimen received by Ph-like 
ALL patients in our group’s treatment plan, which eliminated the 
adverse effects of these genetic molecular abnormalities on EFS, 
thus demonstrating the effectiveness of these treatment methods 
from another perspective.

In the RF model’s prediction of 3-year EFS, age is also one of 
the factors affecting EFS. In Ph-like ALL cases with adverse events, 
the average age at diagnosis was higher than in cases without events. 
As shown in Figure 4, as age increases, the adverse effects on survival 
gradually increase, and the probability of a decrease in survival rate 
also increases. In view of the increasing incidence rate of Ph-like 
ALL before adulthood and the diverse changes in genetic molecules, 
new fusion genes or gene mutations are constantly being found. 
When cases cannot be clearly classified as Ph+ ALL, mixed lineage 
leukemia rearrangement, ETV6-RUNX1 fusion, and other subtypes, 
the diagnosis of Ph-like ALL should be emphasized. Moreover, 
during the treatment process for older children with Ph-like ALL, 
MRD should be closely monitored, and the treatment plan and 
intensity should be actively adjusted to effectively reduce MRD levels 
and improve EFS rates.

The widespread application of machine learning techniques such 
as RF, GBM, and XGBoost in medical research has demonstrated 
excellent performance in survival prediction, particularly when 
processing high-dimensional data, indicating significant potential. 
Currently, machine learning is widely employed in the diagnosis and 
prognosis of numerous diseases (Asadi et al., 2021; Walker et al., 
2022; Gel et al., 2023). In addition to the above algorithms, this 
study also constructed machine learning models using K-nearest 
neighbors, Lasso regression, and support vector machine methods. 
However, the performance of these three algorithms was suboptimal. 
RF, an ensemble algorithm, is composed of multiple decision trees. 
The results of each tree are derived from randomly sampled training 
instance sets and feature subsets. Compared with single decision 
trees, this approach is more robust and has a greater ability to prevent 
overfitting. During disease diagnosis or prognosis evaluation, RF 
can identify factors such as genes, biomarkers, and clinical features 
that exhibit significant differences (Barberis et al., 2022; Ghosh and 
Cabrera, 2022). For each feature, RF assesses its importance by 
calculating the average impurity reduction of that feature across all 
decision trees. The RF prediction model constructed in this study 
can predict the EFS probability of Ph-like ALL relatively accurately. 
After evaluation from multiple dimensions, such as C-index, ROC 
curve, AUROC, Brier score, and DCA curve, it was found that the RF 
prediction performance for Ph-like ALL is superior to that of other 
machine learning models and traditional Cox proportional hazards 
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regression models. In data analysis, the Cox proportional hazards 
regression model identifies D15 BMR, ET, and MRD as independent 
risk factors influencing EFS. In the RF model, the contributions 
of D15 BMR and ET gradually decline as survival time lengthens. 
Based on the unique distribution patterns observed in the data of 
this study, machine learning models demonstrate more accurate 
predictive capabilities. It is therefore evident that the RF model is 
proficient in constructing intricate models to analyze multifactorial 
impacts on treatment outcomes. Consequently, the constructed 
RF model was deployed as a web-based calculator (https://
songxiaodan03.shinyapps.io/RFpredictionmodelforPHlikeALL/). It 
can offer crucial references for tailoring personalized treatment 
strategies for patients.

However, the analysis in this study has certain limitations. In 
the retrospective analysis, patients with incomplete medical records 
and a small number of Ph-like ALL patients were excluded from the 
study because of treatment abandonment, poor treatment response, 
and failed referral or follow-up. This may introduce bias in the 
sample selection process. Additionally, since Ph-like ALL is not 
caused by a single molecular genetic mechanism, a small number 
of cases may not involve kinase pathway abnormalities or may result 
from new gene fusion. Such cases typically require expensive tests, 
such as panoramic gene sequencing, for diagnosis. However, there 
are variations in the completion rates of expensive tests, such as 
whole-exome sequencing and panoramic gene sequencing, among 
the 13 hospitals in the collaborative group located in regions with 
different economic levels. This inconsistency may result in delayed 
diagnosis and analysis of extremely rare Ph-like ALL subtypes. 

5 Conclusion

In a big data context, the importance and feasibility of 
integrating machine learning models into precision medicine are 
apparent. When compared with linear models, machine learning 
models are capable of offering more precise and dependable 
predictions and judgments. This study found that integrated 
machine learning models outperform traditional models in 
prediction accuracy, providing new perspectives and tools for future 
research. This study underscores the substantial advantage of the RF 
model in prediction accuracy, highlights the evaluative value of 
MRD in predicting the prognosis of Ph-like ALL patients, identifies 
the key factors influencing the survival prediction of Ph-like ALL, 
and fully validates the capability of machine learning in disease 
survival prediction. The outcome of this research offers a significant 
reference for future precision medicine research based on big data 
and complex datasets. Based on these findings, an RF machine 
learning model can offer personalized assessments and treatment 
recommendations for Ph-like ALL patients. As technology advances, 
machine learning models are being used more extensively in clinical 
practice for diagnosis classification, prognosis evaluation, and other 
tasks based on various clinical features.
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