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Background: This study aimed to develop an efficient survival model for
predicting event-free survival (EFS) in patients with Philadelphia chromosome
(Ph)-like acute lymphoblastic leukemia (ALL).

Methods: Data related to Ph-like ALL were collected from the South China
Children’s Leukemia Group (SCCLG) multicenter study conducted from October
2016 to July 2021. A model for predicting the survival of patients with Ph-
like ALL was built using Cox proportional hazards regression, random forest,
extreme gradient boosting, and gradient boosting machine techniques. By
integrating indicators including the concordance index (C-index), 1-, 3-, and
5-year area-under-the-receiver operating characteristics curve (AUROC), Brier
score, and decision curve analysis, the predictive capabilities of each model
were compared.

Results: The random forest algorithm demonstrated the most robust predictive
performance. In the test set, the C-index of the random forest model was 0.797
(95% ClI: 0.736-0.821; P < 0.001). The AUROC:s for 1, 3, and 5 years were 0.787
(95% Cl: 0.62-0.953; P < 0.001), 0.797 (95% Cl: 0.589-1; P < 0.001), and 0.861
(95% Cl: 0.606-1; P < 0.001), respectively. The Brier scores for 1, 3, and 5 years
were 0.102 (95% Cl: 0.032-0.173; P < 0.001), 0.126 (95% ClI: 0.063-0.19; P <
0.001), and 0.121 (95% ClI: 0.051-0.19; P < 0.001), respectively.

Conclusion: The random forest model effectively predicted the survival
outcomes of patients with Ph-like ALL which can aid clinicians to
conduct personalized prognosis assessments in advance. Based on
a web-based calculator, using random forest prediction models to
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calculate the prognosis of Ph-like ALL (https://songxiaodan03.shinyapps.
io/RFpredictionmodelforPHlikeALL/) could facilitate healthcare professionals in
carrying out clinical evaluation.

KEYWORDS

Philadelphia chromosome-like acute lymphoblastic leukemia, machine learning,
random forest, minimal residual disease, survival prediction

1 Background

Philadelphia chromosome (Ph)-like acute lymphoblastic
leukemia (ALL), a subtype of acute lymphoblastic leukemia, exhibits
gene expression profiles and activated kinase signaling pathways
similar to those of Ph + ALL yet notably lacks the BCR-ABLI fusion
gene (Harvey and Tasian, 2020; Yadav et al., 2021; Roberts, 2017).
Although research indicates that ABL fusion and activation of the
JAK-STAT signaling pathway are commonly present in this subtype
(Roberts et al., 2017a; Roberts et al., 2012), some cases of Ph-like
ALL do not have typical identifiable genetic abnormalities; this,
to some extent, limits diagnostic accuracy based on traditional
cell morphology and immunophenotypes (Tran and Tasian, 2022;
Schwab and Harrison, 2018; Anagnostou et al., 2020; Tasian et al.,
2017). Compared with cases involving typical fusion genes, this
situation renders the diagnosis and prognosis of Ph-like ALL more
challenging. There are significant international differences in the
incidence rate of Ph-like ALL. In pediatrics, the incidence rate ranges
from 5% to 30% (Chiaretti et al., 2019; Hu et al., 2023; Roberts et al.,
2018), and the prognosis is relatively poor (Al Ustwani et al., 2016;
Frisch and Ofran, 2019; Roberts et al., 2017b; Shiraz et al., 2020). The
incidence rate of the disease also increases with age (Herold et al.,
2014), accounting for 15%, 21%, and 27% of children, adolescents,
and young adults, respectively, with B-cell acute lymphoblastic
leukemia (B-ALL) (Roberts et al., 2014a).

Current research on Ph-like ALL involves numerous complex
scenarios that are influenced by multiple genetic variations
and treatment outcomes under different treatment regimens
(Roberts et al., 2017b; Tacobucci and Roberts, 2021; Abou Dalle et al.,
2019). For instance, various intensified chemotherapy regimens or
combined tyrosine kinase inhibitors are employed to enhance the
survival outcomes and optimize management strategies for patients
with Ph-like ALL, primarily due to the poor prognosis of the
disease. Arber, Roberts, and other researchers posit that intensified
therapies (including transplantation) are pivotal in treating Ph-
like ALL. Although some patients demonstrate higher levels of
minimal residual disease (MRD) at the end of induction therapy,
their survival rates remain comparable to those of non-BCR/ABLI1-
like ALL patients (Arber et al, 2016; Roberts et al., 2014b).
Stock et al. (2019) and Chiaretti et al. (2021) found that the genetic

Abbreviations: SCCLG, South China Children’s Leukemia Group; AUROC,
area-under-the-receiver operating characteristics curve; ALL, acute
lymphoblastic leukemia; Ph-like ALL, Philadelphia chromosome-like acute
lymphoblastic leukemia; MRD, minimal residual disease; RF, random forest;
GBM, gradient boosting machine; XGBoost, extreme gradient boosting;
ET, extramedullary tumor; PR, prednisone response; BMR, response rate of
bone marrow; EFS, event-free survival; DCA, decision curve analysis; SHAP,
Shapley additive explanations.
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molecular features of Ph-like ALL are associated with lower survival
rates and pose a risk factor for event-free survival (EFS) in these
patients. However, other large-scale clinical trials have reached
different conclusions. After analyzing the clinical trial data of
the Australian and New Zealand Children’s Hematology/Oncology
Group (ANZCHOG) ALLS, Heatley et al. (2017) discovered that
even with risk-stratified treatment based on MRD evaluation, the
recurrence of Ph-like ALL in children remained high, which in turn
affected the EFS time. Therefore, research on the prognosis of Ph-like
ALL is still in progress and aims to clarify the true factors affecting
it. Effective prognostic assessment can accurately determine which
patients can benefit from aggressive treatment options such as bone
marrow transplantation and which patients may be more suitable for
standard treatment (Yadav et al., 2021), thereby providing them with
more precise and personalized treatment options.

Machine learning, a form of artificial intelligence, comprises
various algorithms. These algorithms can continuously improve
performance through iteration and make predictions analogous to
human decisions (Handelman et al, 2018). In recent years, the
application of machine learning in the medical field has become
increasingly prevalent, particularly in processing large clinical datasets
to address complex medical problems, with significant advantages in
high-dimensional data processing, nonlinear model construction, and
predictivealgorithm development. Existing research has demonstrated
that it is feasible to use machine learning for deep learning analyses
of lesion imaging patterns and immunohistochemical presentations,
combined with clinical indicators or omics data for early disease
diagnosis and computational analyses (Handelman et al., 2018;
Choi et al., 2020; Greener et al., 2022).

Based on the above circumstances, integrating machine learning
modeling to predict the prognosis of Ph-like ALL is feasible. This
study intends to utilize random forest (RF), gradient boosting machine
(GBM), extreme gradient boosting (XGBoost), and traditional Cox
hazard regression algorithms to analyze the geneticand clinical features
of Ph-like ALL and construct a model for predicting the survival
rate of the disease. The optimal prediction model was determined by
comparing the performance of each model.

2 Methods
2.1 Study subjects and data collection

2.1.1 Study subjects

A retrospective multicenter study was conducted from October
2016 to July 2021 on children newly diagnosed with ALL at 13
affiliated hospitals participating in the South China Children’s
Leukemia Group (SCCLG)-ALL-2016 multicenter study. The
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FIGURE 1

Consort diagram for Ph-like ALL selection, chosen clinical variables, and study workflow.

treatment protocol of this study strictly adhered to the SCCLG-
ALL-2016 guidelines for ALL (version 20191101.5). This study
was reviewed and approved by the Ethics Committee of Sun Yat-
sen Memorial Hospital, Sun Yat-sen University. All research was
conducted in accordance with the International Code of Medical
Ethics of the World Medical Association (Declaration of Helsinki).
Additionally, this study was registered in the Chinese Clinical Trial
Registry (Chi-CTR; https://www.chictr.org.cn/; registration number
ChiCTR2000030357).

2.1.2 Inclusion and exclusion criteria for the
SCCLG-ALL-2016 multicenter study

The inclusion criteria (Harvey and Tasian, 2020) required
participants to be 18 years old or younger (Yadav et al, 2021).
Based on the 2008 World Health Organization classification criteria,
in combination with various results such as bone marrow smear
morphology, immune phenotype, cytogenetics, and molecular
genetics, the clinical manifestations were consistent with ALL, and
patients were diagnosed with B-ALL (Roberts, 2017). Patients must
be pediatric patients experiencing their first episode of the disease.

Exclusion criteria (Harvey and Tasian, 2020) comprised patients
with T-lineage leukemia, mature B-cell leukemia, or acute mixed
leukemia (Yadav et al,, 2021), patients with secondary leukemia
resulting from immunodeficiency (Roberts, 2017), patients with a
history of a second malignancy (Roberts et al., 2017a), patients with
Down syndrome (Roberts et al., 2012), and patients who had used
glucocorticoids for more than 1 week within the month prior to
enrollment.

2.1.3 Diagnostic and exclusion criteria for
Philadelphia chromosome-like acute
lymphoblastic leukemia

According to the International Consensus Classification (ICC)
of ALL, gene expression profiling is the most reliable approach
for diagnosing Ph-like ALL. When comprehensive gene expression
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profiling testing was unavailable, techniques such as fluorescence
in situ hybridization, polymerase chain reaction (PCR), reverse
transcriptase PCR, flow cytometry, transcriptome sequencing, and
whole-exome sequencing were employed to identify fusion genes
(e.g., CRLF2, JAK2, EPOR, ABLI, ABL2, and PDGFRB) to aid
in clinical diagnosis. Specific probes were used to detect common
genetic abnormalities in Ph-like ALL, including rearrangements
and mutations in genes such as SH2B3, JAK1/2/3, and IL7R. The
exclusion criteria for Ph-like ALL were as follows: ALL patients who
did not meet the diagnostic criteria for Ph-like ALL, Ph-like ALL
patients who were lost to follow-up, and Ph-like ALL patients who
lacked the aforementioned basic clinical data.

2.1.4 Chemotherapy regimen

Treatment for Ph-like ALL patients was implemented according
to the SCCLG-ALL-2016 protocol. At the time of enrollment,
prednisone was initially administered for a 7-day pretreatment
period, followed by diagnosis and sensitivity assessment.
Subsequently, remission induction therapy based on vincristine,
and daunorubicin (VDLD)

was performed, along with early intensified cyclophosphamide,

dexamethasone, L-asparaginase,
cytarabine, 6-mercaptopurine, and L-asparaginase (CAM + L-
asparaginase) therapy. The consolidation regimen utilized high-dose
methotrexate and 6-mercaptopurine, while the re-induction phase
employed a delayed intensive VDLD regimen combined with CAM
+ L-asparaginase. Maintenance therapy included chemotherapy
and regular intrathecal injections, with specific dosages and risk
assessment criteria detailed in Li et al. (2021) and Radu et al. (2020).

2.1.5 Indications for transplantation and tyrosine
kinase inhibitor regimen

Indications for transplantation encompassed the following
scenarios: failure to attain remission after induction therapy
(i.e., bone marrow morphology failed to meet remission criteria
on day 33); MRD level >10™* prior to consolidation treatment

frontiersin.org
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TABLE 1 Patient features.

Fetures Model set Validation set
Number of Patients with Number of Patients with
patients EFS(%) patients EFS(%)
(%)/Mean (%)/Mean
(Media) (Media)

Total Number 226 192 (84.956) 36 28 (77.78)
Gender 1
Male 129 (57.1) 110 (57.3) 16 13 (46.2)
Female 97 (42.9) 82 (42.7) 20 15 (53.8)
Chromosomal 0.114
morphology typing
Normal 180 (79.6) 149 (77.6) 26 (72.2) 22 (78.6)
Abnormal 46 (20.4) 43 (22.4) 10 (27.8) 6(21.4)
ET 0.065
No 212(93.8) 183 (95.3) 34 (94.4) 26 (92.9)
Yes 14 (6.2) 9(4.7) 2(5.6) 2(7.1)
IK6 mutation 0.352
No 113 (50.0) 99 (51.6) 19 (52.8) 16 (57.1)
Yes 113 (50.0) 93 (48.4) 17 (47.2) 12 (42.9)
ABL fusion 1
No 183 (81.0) 155 (80.7) 28 (77.8) 23 (82.1)
Yes 43 (19.0) 37(19.3) 8(22.2) 5(17.9)
Kinase pathway 0.897
abnormality
No 134 (59.3) 113 (58.9) 20 (55.6) 19 (67.9)
Yes 92 (40.7) 79 (41.1) 16 (44.4) 9(32.1)
Immunophenotype 0.609
Pro-B 9 (4.0) 8(4.2) 2(5.6) 1(3.6)
Common B 194 (85.8) 166 (86.5) 27 (75) 25 (89.2)
Pre-B 9 (4.0) 6(3.1) 3(8.3) 1(3.6)
Mixed phenotype 1(0.4) 1(0.5) 0 0
Immature-B 13 (5.8) 11 (5.7) 4(11.1) 1(3.6)
PR 0.081
Sensitive 202 (89.4) 175 (91.1) 31(86.1) 27 (96.4)
Insensitive 24 (10.6) 17 (8.9) 5(13.9) 1(3.6)
DI15BMR 0.005

(Continued on the following page)
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Fetures Model set Validation set
Number of Patients with P Value Number of Patients with
patients (%)/Mean EFS(%) patients (%)/Mean EFS(%)
(Media) (Media)
Ml 163 (72.1) 143 (74.5) 29 (80.6) 24 (85.7)
M2 35 (15.5) 31 (16.1) 1(2.8) 1(3.6)
M3 22(9.7) 13 (6.8) 5(13.8) 3(10.7)
M4 6(2.7) 5(2.6) 1(2.8) 0
D33BMR <0.001
M1 211 (93.4) 184 (95.8) 33(91.6) 27 (96.4)
M2 4(1.8) 2(1.0) 2(5.6) 1(3.6)
M3 2(0.9) 0(0.0) 1(28) 0
M4 9 (4.0) 6(3.1) 0 0
Age year 4.20 [1.65,7.30] 4.00 [2.60, 6.90] 0.006 3.25 [2.85,8.25] 3.3[2.5,54]
WBC 10°/L 12.02 [4.84, 42.38] 10.20 [4.56, 36.47] 0.009 8.615 [4.18,22.233] 7.81 [3.46,12.55)
Blasts % 38.50 [6.00, 75.00] 32 [4.00, 67.50] <0.001 22.3 [4.825,45.5] 17 [4.3,30.4]
HB g/L 72.38 +20.93 72.04 + 21.50 0.559 70.5 +22.75 59.1 + 23.608
PLT 10°/L 45.00 [17.12,100.25] 46.5 [18.15,113.25] 0.095 46.5 [13.57,120.92] 57 [21,153]
DI15MRD % 0.92 [0.08, 8.60] 0.68 [0.07, 4.73] <0.001 0.505 [0.065,5.225) 0.31[0.05,1.12]
D33MRD % 0.00 [0.00, 0.02] 0.00 [0.00, 0.01] 0.001 0[0,0] 0[0,0]

(week 12); early bone marrow relapse (occurring within 6 months
after treatment cessation or within 36 months of diagnosis).
Regarding the TKI regimen, once a patient was diagnosed with
Ph-like ALL, dasatinib or imatinib was incorporated into the
standard chemotherapy regimen starting on the 15th day of
induction therapy, and the treatment was continued until the
maintenance phase.

2.1.6 Clinical data collection

Clinical characteristics data of pediatric patients were collected
utilizing electronic medical record systems from multiple hospitals.
These data included gender, age, peripheral blood leukocyte
count at diagnosis, peripheral blood platelet count at diagnosis,
hemoglobin concentration at diagnosis, proportion of bone marrow
primitive white blood cells plus immature white blood cells
(blasts) at diagnosis, chromosome morphology classification,
immunophenotypes (Pro-B-ALL, common B-ALL, Pre-B-ALL,
mixed phenotype B-ALL, immature B-ALL), extramedullary tumor
(ET), IK6 mutation or deletion, ABL fusion, kinase pathway
dysregulation, prednisone response (PR) on day 8 (sensitive:
peripheral blood blasts <1 x 10°/L, insensitive: peripheral blood
blasts >1 x 10°/L), bone marrow response rate on day 15 (D15
BMR; M1: ratio of primitive cells to naive cells <5%, M2: 5%-25%,
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M3: >25%, M4: bone marrow depression), bone marrow response
rate on day 33 (D33 BMR; M1: ratio of primitive cells to naive cells
<5%, M2: 5%-25%, M3: >25%, M4: bone marrow depression), and
measurable residual disease status on days 15 and 33 (D15 MRD
and D33 MRD). Flow cytometry was employed to detect MRD. The
standard criterion for a negative MRD result after the first induction
therapy was MRD level <0.01%. The follow-up end date was 30
June 2022. The duration of EFS was recorded, and it was defined
as the time from the date of diagnosis to the failure of induction
therapy, disease recurrence, the occurrence of a secondary tumor,
or patient death.

2.2 Data processing

2.2.1 Statistical methods

The collected data were processed using R software (version
4.4.1). The development and evaluation of machine learning models
were performed using the mir3verse, tidyverse, and mir3extralearners
packages. Normally distributed quantitative data were represented
as mean + standard deviation, and a t-test was used for inter-
group comparison. Non-normally distributed quantitative data were
represented by the median (first quartile, third quartile), and the
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TABLE 2 Cox proportional hazards regression analysis.

Feature Regression coefficient 5-year EFS Z value p value
HR (95% Cl)
No 1.00
Yes 1.827 6.218 (1.74-22.247) 0.65 2.81 0.005
PR
Sensitive 1.000
Insensitive 1.177 3.245 (0.935-11.267) 0.635 1.854 0.064
D15BMR
M1 1.000
M2 ~2.561 0.077 (0.014-0.441) 0.889 -2.88 0.004
M3 -3.153 0.043 (0.005-0.357) 1.083 -2.912 0.004
M4 -9.160 0.002 (0.001-0.007) 2.138 -4.284 0
Age 0.004 1.042 (0.929-1.168) 0.058 0.700 0.484
D15MRD 0.079 1.082 (1.05-1.121) 0.018 4.425 0
D33MRD 0.067 1.069 (1.04-1.099) 0.014 474 0
blasts 0.008 1.008 (0.992-1.024) 0.008 0.984 0325
PLT -0.003 0.999 (0.994-1.004) 0.003 -0.458 0.647
WBC 0.002 1(0.995-1.005) 0.003 0.081 0.936
non-parametric Mann-Whitney U rank-sum test was used for inter- ~ were used for hyperparameter tuning, and the optimal parameter

group comparison. Categorical data were presented as number (%),  set was determined by searching through predefined parameter
and the comparison between groups was conducted using the x* test.  combinations.

The Cox proportional hazards regression model was validated using

the Logrank test. A two-sided P < 0.05 was considered statistically =~ 2.2.3.1 Random forest

significant. The number of generated decision trees was set between 200
and 500, with 2-10 features considered for each node and a
2.2.2 Preprocessing of feature variables minimum sample size of 2-21 for leaf nodes. Grid search was used

In the univariate selection process, variables with P < 0.1 for optimization, the resolution was set to 5, and the model was
were selected. Subsequently, correlation analysis was conducted  evaluated using five-fold cross-validation. Using the survival index
on these variables using the recipes package. If the correlation  C-index as the evaluation metric, without setting a stop condition,
coefficient between two features exceeded 0.7, one of the features  the tuner was allowed to continue running until all combinations
was removed to avoid multicollinearity affecting the model. To  had been tried. The resampling method for tree growth was “swor”,
improve model efficiency and prevent overfitting, zero-variance  the splitting rule was random Logrank, and the number of random
features were removed. split points was set to 10.

2.2.3 Machine learning model training and tuning  2.2.3.2 Gradient boosting machine

The data were divided into a training and a test set (8:2 ratio) For the GBM model, the number of boosting iterations was
using the stratified random sampling method to ensure that there  set between 100 and 500. The maximum depth of each tree was
were no significant differences in characteristics and results between ~ 1-3, and the minimum number of observations for terminal nodes
the two sets (Supplementary Figure S2 P = 0.83). Models were built ~ was 5-7. The learning shrinkage rate of each tree’s contribution
using the training set and validated on the test set. When building  to the final prediction result was set between 0.001 and 0.1. The
machine learning models, grid search or random search methods ~ Kaplan-Meier method was used for survival analysis estimation,
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Hyperparameter tuning for machine learning models. (A) Hyperparameter tuning for RF. (B) Hyperparameter tuning for GBM. (C) Hyperparameter

tuning for Xgboost.
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with the Cox proportional hazards regression model as the formula
type. We used the C-index as the evaluation metric and grid search as
the adjustment method, with a resolution of 3; model performance
evaluation adopted five-fold cross-validation.

2.2.3.3 Extreme gradient boosting

For the XGBoost model, the number of iterations was set
between 50 and 800, the maximum tree depth was 1-20, the
learning rate was 107 to 1, and it used “Kaplan” as the estimator
and “ph” as the model form. An automatic tuner was built for
parameter search to effectively determine the optimal parameter
combination, thereby improving model performance and prediction
accuracy. Four parameter combinations were searched each time,
and CV cross-validation was used to evaluate the model. The
C-index was used as the evaluation index, and the evaluation
stopping conditions were adjusted. A total of 40 evaluations
were conducted.

2.3 Model validation

The effectiveness of the model was evaluated using cases from
the First Affiliated Hospital of Guangxi Medical University as
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external data (n = 36). The model’s performance was evaluated
through the C-index and the area under the receiver operating

characteristics curve (AUROC).

3 Results
3.1 Baseline data and univariate screening

From October 2016 to May 2022, 2,453 children were treated
and followed up according to the SCCLG-ALL-2016 guidelines for
ALL (version 20191101.5). A total of 231 patients were diagnosed
with Ph-like ALL. Five were excluded because of loss to follow-up
and the absence of important clinical features. Ultimately, 226 Ph-
like ALL patients were included (Figure 1). D15 BMR, D33 BMR,
D15 MRD, D33 MRD, and the number of bone marrow blasts at
diagnosis were significantly higher in the event-occurring group
than in the non-event group (Table 1). Based on the statistical
results, age, white blood cell count, platelet count, proportion of
blasts, ET, PR, D15 MRD, D33 MRD, D15 BMR, and D33 BMR were
identified as potentially correlated with EFS (P < 0.1). These feature
variables were then used for subsequent Cox hazard regression or
machine learning model development.
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3.2 Feature variable preprocessing

No multicollinearity was detected among the included features
(Supplementary Figure S1). However, D33 BMR was removed as a
sparse variable with zero-variance.

3.3 Cox hazard regression model

The final prediction model indicated that D15 BMR, D15 MRD,
D33 MRD, and ET were statistically significant factors (Logrank
score = 65.81, P < 0.01—Table 2), and the C-index was 0.515. In the
test set, the predictive accuracies of EFS at 1, 3, and 5 years after the
diagnosis of Ph-like ALL were 0.661, 0.538, and 0.529, respectively.
The importance of each feature is shown in Figure 2A.

3.4 Machine model parameter tuning
As illustrated in Figure 3, the optimal prediction model of

the RF algorithm has a C-index of 0.794. The model consisted
of 350 decision trees, with each node considering two features
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and each leaf node containing at least 21 samples. The out-of-bag
continuous ranking probability score of this model was 0.097, with a
performance error of 0.246. In the GBM model, when there were 100
decision trees, the tree depth was 1, the leaf nodes contained at least
five samples, the shrinkage value was 0.001, and the C-index reached
its highest value of 0.79. In the XGBoost model, after 150 iterations,
the maximum C-index was 0.757, the maximum tree depth was 18,
and the tree weight update amplitude control parameter n for each
iteration was 0.158.

3.5 Model comparison

The four models were evaluated using receiver operating
characteristic (ROC) curves, AUROC, Brier scores, and decision
curve analysis (DCA) (Figures 4, 5). The RF model outperformed
other models in these evaluation metrics, particularly in predicting
EFS. In the test set, the RF model achieved a prediction accuracy of
approximately 80% for EFS at 1, 3, and 5 years after the diagnosis
of Ph-like ALL, which was significantly higher than those of the
traditional Cox regression, GBM, and XGBoost algorithms. The
RF model had the lowest Brier score, indicating relatively high
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prediction accuracy. In DCA curve analysis, the RF model had the
largest area under the curve, suggesting that using the RF model to
predict Ph-like ALL can yield maximum benefits.

3.6 Analysis of feature variables in the
random forest model

SHapley Additive exPlanations (SHAP) is a method used to
interpret the output results of machine learning models. This
method assigns a contribution score to each feature by assessing its
impact on the model output. In the RF machine learning model,
variables such as D33 MRD, D15 MRD, and the proportion of blasts
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were correlated with the prediction of EFS at 1, 3, and 5 years after
the diagnosis of Ph-like ALL (Figure 2B). According to the SHAP
risk analysis, patients with MRD and a low proportion of blasts after
treatment showed higher EFS rates. High levels of MRD and a high
proportion of blasts increased the probability of adverse events after
diagnosis (Figure 6A). Survival analysis based on whether MRD
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turns negative also confirmed that D33 MRD was an important
clinical indicator affecting prognosis (Logrank test, x* = 8.894, P <
0.01—Figure 7). Notably, age significantly influenced the prediction
of 3-year EFS (Figure 2B), with older children having a higher
probability of adverse events than younger patients. Additionally,
lower levels of platelet count were found to trigger adverse events
(Figure 6A). Figure 6B shows the average SHAP values of individual
clinical features in the RF model for prediction accuracy. As it shows,
compared with the Cox proportional hazards regression model, the
impacts of ET and D15 BMR on the model’s predictive capabilities
were relatively small, as indicated by their SHAP values.

3.7 Model validation

The C-index of the external validation dataset was 0.753 (95%
CI: 0.55-0.904, P < 0.01); Figure 8 shows the AUROC performance
at 1, 3, and 5 years.

4 Discussion

In the Ph-like ALL data of our collaborative group, the clinical
features evaluated by the model include common molecular genetic
abnormalities, age, MRD, BMR, and immunophenotyping in Ph-
like ALL. Ultimately, the clinical features that play a major role
in accurate classification and prediction are MRD, age, and blasts
rather than molecular genetic abnormalities. Among these features,
MRD has the most significant impact on the model. There have
been many studies and evaluations regarding the impact of MRD
response-based intensified treatments on the survival prognosis
of Ph-like ALL. A research team from the American Anderson
Cancer Center reported that MRD negativity after induction therapy
has no significant impact on the long-term survival of adult
patients with Ph-like ALL (31). A study by St. Jude’s Children’s
Research Hospital found that risk-oriented treatment based on
MRD could significantly improve the poor prognosis of Ph-
like ALL (Jeha et al,, 2021). Cho et al. (2021) also advocated
MRD monitoring as a criterion for further treatment assessment,
especially in determining whether patients with Ph-like ALL require
allogeneic hematopoietic stem cell transplantation, highlighting its
significant evaluative value. In the RF survival prediction model
of this study, both D33 MRD and D15 MRD made significant
contributions to 1-, 3-, and 5-year survival predictions, with D33
MRD being particularly prominent.

Published studies have shown that specific genetic molecular
changes in Ph-like ALL may have varying effects on treatment
outcomes. Studies on adult patients have shown that compared to
patients without related rearrangements, CRLF2 or JAK2/EPOR
rearrangements are associated with lower survival rates
(Roberts et al,, 2017b). JAK mutations, as common genetic
molecular abnormalities in Ph-like ALL, are believed to be
associated with poor prognosis (Mullighan et al., 2009; Herold et al.,
2017). Another study on adult Ph-like ALL patients found that
CRLEF2 overexpression is associated with poor prognosis, with a
5-year survival rate of less than 20% (Roberts et al., 2014a; Jain et al.,
2017). However, in research on a cohort of children with Ph-like

ALL, van der Veer et al. (2013) reported that IKZF1 deletion rather
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than CRLF2 overexpression was one of the factors leading to poor
prognosis. In Ph-like ALL cases, some studies have shown that IK6
deletion has an independent prognostic impact, tripling the risk
of treatment failure (Hu et al., 2023; Stanulla et al., 2018), while
others suggest that IKZF1 deletion is not significantly correlated
with disease relapse or long-term survival (Cho et al., 2021). These
different or contradictory outcomes may be related to variations
in patient age, race, sample size, and treatment protocols. In the RF
prediction model based on the Ph-like ALL data of our collaborative
group, IK6 deletion and molecular genetic changes involving kinase
pathways, such as CRLF2 rearrangement or overexpression, JAK
mutations, or JAK fusion proteins, have no significant impact on
the prognosis of Ph-like ALL. This may be related to the targeted
therapy or intensified chemotherapy regimen received by Ph-like
ALL patients in our group’s treatment plan, which eliminated the
adverse effects of these genetic molecular abnormalities on EFS,
thus demonstrating the effectiveness of these treatment methods
from another perspective.

In the RF model’s prediction of 3-year EFS, age is also one of
the factors affecting EFS. In Ph-like ALL cases with adverse events,
the average age at diagnosis was higher than in cases without events.
As shown in Figure 4, as age increases, the adverse effects on survival
gradually increase, and the probability of a decrease in survival rate
also increases. In view of the increasing incidence rate of Ph-like
ALL before adulthood and the diverse changes in genetic molecules,
new fusion genes or gene mutations are constantly being found.
When cases cannot be clearly classified as Ph™ ALL, mixed lineage
leukemia rearrangement, ETV6-RUNXI1 fusion, and other subtypes,
the diagnosis of Ph-like ALL should be emphasized. Moreover,
during the treatment process for older children with Ph-like ALL,
MRD should be closely monitored, and the treatment plan and
intensity should be actively adjusted to effectively reduce MRD levels
and improve EFS rates.

The widespread application of machine learning techniques such
as RE GBM, and XGBoost in medical research has demonstrated
excellent performance in survival prediction, particularly when
processing high-dimensional data, indicating significant potential.
Currently, machine learning is widely employed in the diagnosis and
prognosis of numerous diseases (Asadi et al., 2021; Walker et al.,
20225 Gel et al,, 2023). In addition to the above algorithms, this
study also constructed machine learning models using K-nearest
neighbors, Lasso regression, and support vector machine methods.
However, the performance of these three algorithms was suboptimal.
RE, an ensemble algorithm, is composed of multiple decision trees.
The results of each tree are derived from randomly sampled training
instance sets and feature subsets. Compared with single decision
trees, this approach is more robust and has a greater ability to prevent
overfitting. During disease diagnosis or prognosis evaluation, RF
can identify factors such as genes, biomarkers, and clinical features
that exhibit significant differences (Barberis et al., 2022; Ghosh and
Cabrera, 2022). For each feature, RF assesses its importance by
calculating the average impurity reduction of that feature across all
decision trees. The RF prediction model constructed in this study
can predict the EFS probability of Ph-like ALL relatively accurately.
After evaluation from multiple dimensions, such as C-index, ROC
curve, AUROC, Brier score, and DCA curve, it was found that the RE
prediction performance for Ph-like ALL is superior to that of other
machine learning models and traditional Cox proportional hazards
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regression models. In data analysis, the Cox proportional hazards
regression model identifies D15 BMR, ET, and MRD as independent
risk factors influencing EFS. In the RF model, the contributions
of D15 BMR and ET gradually decline as survival time lengthens.
Based on the unique distribution patterns observed in the data of
this study, machine learning models demonstrate more accurate
predictive capabilities. It is therefore evident that the RF model is
proficient in constructing intricate models to analyze multifactorial
impacts on treatment outcomes. Consequently, the constructed
RF model was deployed as a web-based calculator (https://
songxiaodan03.shinyapps.io/RFpredictionmodelforPHlikeALL/). It
can offer crucial references for tailoring personalized treatment
strategies for patients.

However, the analysis in this study has certain limitations. In
the retrospective analysis, patients with incomplete medical records
and a small number of Ph-like ALL patients were excluded from the
study because of treatment abandonment, poor treatment response,
and failed referral or follow-up. This may introduce bias in the
sample selection process. Additionally, since Ph-like ALL is not
caused by a single molecular genetic mechanism, a small number
of cases may not involve kinase pathway abnormalities or may result
from new gene fusion. Such cases typically require expensive tests,
such as panoramic gene sequencing, for diagnosis. However, there
are variations in the completion rates of expensive tests, such as
whole-exome sequencing and panoramic gene sequencing, among
the 13 hospitals in the collaborative group located in regions with
different economic levels. This inconsistency may result in delayed
diagnosis and analysis of extremely rare Ph-like ALL subtypes.

5 Conclusion

In a big data context, the importance and feasibility of
integrating machine learning models into precision medicine are
apparent. When compared with linear models, machine learning
models are capable of offering more precise and dependable
predictions and judgments. This study found that integrated
machine learning models outperform traditional models in
prediction accuracy, providing new perspectives and tools for future
research. This study underscores the substantial advantage of the RF
model in prediction accuracy, highlights the evaluative value of
MRD in predicting the prognosis of Ph-like ALL patients, identifies
the key factors influencing the survival prediction of Ph-like ALL,
and fully validates the capability of machine learning in disease
survival prediction. The outcome of this research offers a significant
reference for future precision medicine research based on big data
and complex datasets. Based on these findings, an RF machine
learning model can offer personalized assessments and treatment
recommendations for Ph-like ALL patients. As technology advances,
machine learning models are being used more extensively in clinical
practice for diagnosis classification, prognosis evaluation, and other
tasks based on various clinical features.
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