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Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily
characterized by memory impairment and cognitive decline, for which
no curative treatment is currently available. Existing therapeutic strategies,
such as cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor
antagonists, can only provide limited symptomatic relief and fail to halt
disease progression. In recent years, stem cell therapy has emerged as
a promising approach for AD due to its multifaceted mechanisms of
action. The therapeutic effects of stem cells in AD are mainly attributed
to their ability to differentiate into functional neurons or glial cells, thereby
replacing damaged cells and repairing neural networks. In addition, stem cells
secrete neurotrophic and anti-inflammatory factors that contribute to the
improvement of the brain microenvironment. Furthermore, they can regulate
neuroinflammation, promote the clearance of p-amyloid (Ap) deposits, and
suppress neuroinflammation, thus potentially slowing disease progression.
However, several challenges remain, including low cell survival rates, immune
rejection, tumorigenic risks, and difficulties in crossing the blood-brain barrier.
Looking ahead, the integration of advanced technologies such as organoid
models, gene editing, artificial intelligence, and multi-omics approaches may
drive substantial progress in the clinical translation of stem cell therapies for
AD. Although still in its early stages, the future of this therapeutic strategy holds
great promise.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder primarily characterized by memory decline, cognitive
impairment, and behavioral dysfunction (Kn et al, 2021). It
significantly compromises patients’ quality of life and imposes a
substantial burden on social care systems. Its core pathological
features include the deposition of P-amyloid (AP) plaques, tau
protein hyperphosphorylation leading to neurofibrillary tangles,
synaptic loss, and neuroinflammation (Chen and Yu, 2023). Although
significant progress has been made in understanding the pathogenesis
of AD,
inhibitors (e.g., donepezil) and NMDA receptor antagonists (e.g.,

current clinical treatments—such as cholinesterase
memantine)—only provide symptomatic relief without halting or
reversing disease progression (Li et al., 2024). Recent clinical trials
have demonstrated that anti-Af monoclonal antibodies (such as
aducanumab), though capable of reducing cerebral AP burden,
exhibit controversial clinical benefits and are often associated with
serious adverse events (Villain et al., 2025; Petersen et al., 2025).
Consequently, there is an urgent need to develop novel therapeutic
strategies that target the underlying pathology of AD through
fundamentally different mechanisms.

As a breakthrough in the field of regenerative medicine, stem
cell therapy holds great promise for the treatment of neurological
disorders due to its unique capabilities in cell replacement, paracrine
regulation, and immunomodulation. Stem cells can differentiate into
functional neurons or glial cells, thereby replacing damaged cells and
reconstructing neural networks (Selvaraj et al., 2012; Bai et al., 2023).
Moreover, they secrete neurotrophic factors and anti-inflammatory
cytokines that modulate the brain microenvironment, promote
neuroregeneration, and facilitate synaptic remodeling (Li et al., 2025;
Mukhamedshina et al., 2019; Li et al., 2022; Miiller et al., 2021).
In addition, certain types of stem cells, such as mesenchymal stem
cells (MSCs), can modulate microglial phenotypes and enhance
their phagocytic capacity toward AP, thus exerting a multi-targeted
intervention on the pathological progression of AD (Shin etal., 2014).

Although stem cell therapy has demonstrated significant
efficacy in animal models of AD, its clinical translation still faces
numerous challenges, including low cell survival rates, immune
rejection, potential tumorigenicity, and delivery barriers (Marei,
2025). To overcome these obstacles, researchers are increasingly
incorporating advanced technologies such as gene editing, exosome-
based delivery, organoid modeling, and multi-omics analyses to
enhance therapeutic efficacy and safety.

This the
mechanisms, recent research progress, ongoing clinical trials, and

review  systematically elucidates underlying
key challenges in the clinical application of stem cell therapy for
Alzheimer’s disease, with a particular emphasis on its integration

with precision medicine and individualized therapeutic strategies.

Pathogenesis and current therapeutic
strategies of Alzheimer’s disease

AD is a progressive neurodegenerative disorder characterized by
cognitive decline and memory impairment (Kn et al., 2021; Breijyeh
and Karaman, 2020). Its pathogenesis is multifactorial, involving the
interplay of several pathological mechanisms (Figure 1). A central
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feature is the abnormal accumulation of AP peptides, particularly
AP42, which aggregates into soluble oligomers and insoluble plaques
(Ding et al., 2025; Takahashi et al., 2017; Kocahan and Dogan,
2017). These deposits exert direct neurotoxic effects and activate
glial cells, inducing chronic neuroinflammation and oxidative stress,
thereby disrupting synaptic function and neural network stability.
Concurrently, hyperphosphorylation of Tau protein leads to the
formation of neurofibrillary tangles, impairing axonal transport
and promoting neuronal apoptosis (Liu et al., 2020; Zhang et al.,
2009). Synaptic dysfunction and neuronal loss emerge early in
the disease course and are directly responsible for cognitive
deterioration. Moreover, deficits in the central cholinergic system,
including reduced acetylcholine synthesis, further impair attention
and memory processing (Herholz et al., 2008; Maurer and Williams,
2017; He et al, 2023). In addition, sustained release of pro-
inflammatory cytokines including TNF-a and IL-1p exacerbates
neuronal damage and compromises the blood-brain barrier (Galea,
2021). Oxidative stress, often driven by mitochondrial anomalies
resulting in increased reactive oxygen species (ROS) production,
contributes to widespread cellular injury (Cheignon et al., 2018).
Genetic factors, such as the presence of the APOE &4 allele and
mutations in APP, PSEN1, and PSEN2, also play a critical role
in disease susceptibility by affecting AB metabolism and immune
responses (Almkvist and Graff, 2021; Behl and Behl, 2023).

Despite extensive research, effective disease-modifying
therapies (DMTs) for AD remain very limited. Currently,
AD treatment mainly focuses on symptomatic management,
supplemented by DMTs and various supportive interventions,
aiming to delay disease progression, improve cognitive function, and
enhance quality of life (Nawaz et al., 2025; Zh et al., 2025; Wang et al.,
2024). The most commonly used drugs are cholinesterase inhibitors
(donepezil, rivastigmine, galantamine), which improve early
cognitive symptoms by inhibiting acetylcholine breakdown, and the
NMDA receptor antagonist memantine, which reduces glutamate-
mediated excitotoxicity in moderate to severe cases (Grossberg,
2003; Nafees et al.,, 2021; K et al., 2024). Although these drugs offer
short-term symptom relief, they do not prevent neurodegeneration
and have limited efficacy with notable side effects. Recently,
monoclonal antibodies targeting AP, such as aducanumab and
lecanemab, have demonstrated potential in reducing amyloid
pathology and received FDA accelerated approval; however, their
cognitive benefits remain controversial and they carry safety risks
like cerebral edema (Cummings, 2025). DMTs mainly target Ap and
Tau proteins, but anti-Tau therapies are still in early development,
and many approaches like BACEL1 inhibitors or neuroinflammation
modulators have been discontinued due to limited efficacy or safety
concerns (Iwatsubo, 2024). Beyond pharmacological treatment,
non-drug interventions—including cognitive training, exercise,
Mediterranean diet, psychological support, and multisensory
therapy—play a vital role in comprehensive AD management
by delaying functional decline, improving behavioral symptoms,
and enhancing overall patient wellbeing (LiX. et al, 2023;
Barros-Aragdo et al,, 2025; Liu et al., 2025; Soni et al., 2025).

Although traditional treatments can alleviate cognitive
symptoms and slow the progression of AD to some extent, their
efficacy is limited, they cannot reverse pathological changes, and
they are often accompanied by adverse effects. In particular,
given the complex and multifaceted pathological mechanisms
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FIGURE 1
The pathogenesis of Alzheimer's disease.

of AD, conventional therapies usually target a single pathway,
making it difficult to comprehensively regulate the disease process.
Therefore, researchers have increasingly turned their attention
to emerging therapies with multifunctional and regenerative
potential—such as stem cell therapy—aimed at opening novel
avenues for AD treatment through mechanisms including cell
replacement, immunomodulation, and neural repair.

Types and characteristics of stem cells

Stem cells currently explored in AD research and potential
therapeutic applications mainly include neural stem cells (NSCs),
mesenchymal stem cells (MSCs), and induced pluripotent stem cells
(iPSCs). These stem cell types differ in their sources, differentiation
potential, biological functions, and clinical application prospects.
Each has demonstrated significant value in various aspects of AD
research, including mechanistic studies, animal model development,
drug screening, and potential therapeutic interventions.

Neural stem cells (NSCs)

NSCs are characterized by their multipotency, allowing them to
both self-renew and differentiate into neuronal and glial lineages,
including neurons, astrocytes, and oligodendrocytes (Eckert et al.,
2017). They possess an inherent capacity for lineage-specific
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differentiation within the nervous system. Numerous studies have
demonstrated that transplanted NSCs can survive long-term in
brain regions closely associated with cognitive function, such as
the hippocampus and cortex, where they are capable of forming
synaptic connections with host neurons and integrating into existing
neural networks (Vishwakarma et al., 2014; Anderson, 2001;
Zhao and Moore, 2018). This integration contributes to partial
restoration of cognitive function and improvement in learning
and memory deficits. In addition, NSCs produce a range of
neurotrophic molecules, notably brain-derived neurotrophic factor
(BDNF) and nerve growth factor (NGF), which support endogenous
neurogenesis and synaptic remodeling, thereby helping to improve
the impaired neural microenvironment observed in AD (L et al.,
2021; Hsu et al, 2007; Salgado et al., 2015). Although current
research on NSCs remains largely at the preclinical animal study
stage, their multifaceted roles in structural repair and restoration
of function establish a promising basis for the future application of
cell-based replacement therapies in AD.

Mesenchymal stem cells (MSCs)

MSCs are a type of adult stem cell with broad tissue sources,
ease of acquisition, and minimal ethical concerns (Zhou and Shi,
2023). These cells can be obtained from bone marrow sources,
umbilical cord, adipose tissue, and other sources. Owing to their
strong immunomodulatory capacity, anti-inflammatory properties,
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and robust paracrine activity, MSCs have emerged as promising
candidates for AD therapy. Studies have shown that MSCs can
modulate the central immune microenvironment by promoting the
polarization of microglia from the pro-inflammatory M1 phenotype
to the anti-inflammatory M2 phenotype, thereby achieving the
anti-inflammatory objective (Krakenes et al.,, 2024). In addition,
MSC-secreted cytokines and growth factors promote synaptogenesis
and axonal repair, helping to alleviate neurodegeneration. Notably,
MSCs also release exosomes—nano-sized vesicles enriched with
functional RNAs (e.g., miRNAs, IncRNAs) and proteins—which can
cross the blood-brain barrier and persist in the nervous system
(Changetal., 2024; Ye et al., 2023; Feizi et al., 2024). These exosomes
exert therapeutic effects by regulating gene expression, suppressing
neuroinflammation, and promoting neuroprotection, indicating a
hopeful path toward cell-free therapeutic intervention. The efficacy
of MSCs has been extensively validated in animal models, providing
strong support for their future clinical translation.

Induced pluripotent stem cells (iPSCs)

Since Takahashi and Yamanaka first induced pluripotent stem
cells from mouse fibroblasts in 2006, this cell reprogramming
technology has remained a hot topic of research (Yamanaka and
Takahashi, 2006). iPSCs are reprogrammed cells with pluripotency
similar to embryonic stem cells, generated via the induction of key
transcriptional regulators such as Oct4, Sox2, Kl1f4, and c-Myc—into
adult somatic cells, such as dermal fibroblasts (Zhang et al., 2021;
Arrighi and Arrighi, 2018). iPSCs possess unlimited self-renewal
capacity and can differentiate into various functional cell types,
including neural cells. In AD research, iPSCs can be directionally
induced in vitro to generate specific neuronal subtypes, such as
cholinergic neurons, which may replace the large number of neurons
lost due to disease progression, thereby offering substantial potential
for regenerative therapy (WangJ. et al, 2025). Moreover, iPSCs
provide a valuable platform for patient-specific disease modeling. By
reprogramming somatic cells from AD patients, iPSCs can replicate
early pathological events of the disease, facilitating the study of
disease mechanisms and the screening of new therapeutic agents.
It is worth mentioning that Lish et al. developed a co-culture system
of neurons, astrocytes, and microglia based on traditional iPSCs and
discovered that disease-related microglia may be beneficial in the
early stages of familial AD (Figure 2) (Lish et al., 2025). However, the
clinical application of iPSCs still faces several challenges, including
high cellular heterogeneity, unstable differentiation efficiency, and
potential tumorigenicity (Moy et al, 2023). These issues call
for further advancements in genetic safety control, optimized
differentiation protocols, and transplantation strategies.

Mechanisms of stem cell therapy in
the treatment of Alzheimer’s disease

Cell replacement

One of the hallmark features of AD is the widespread loss
of neurons, particularly cholinergic neurons, which is closely
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associated with cognitive impairment (Ahmed et al., 2017; Ferreira-
Vieira et al,, 2016). The cholinergic system, especially the neuronal
populations originating from the basal forebrain, plays a critical
role in learning and memory. Dysfunction in this system is
considered a key contributor to AD pathogenesis (Wei et al., 2024;
Wang Z. et al., 2025; Wang et al., 2020). Although traditional
therapies such as cholinesterase inhibitors can temporarily increase
acetylcholine levels, they do not halt the progressive loss of
neurons (Grossberg, 2003; Khanam et al., 2016). Consequently,
recent research has focused on cell replacement therapies aimed at
replenishing or reconstructing lost neuronal populations to restore
neural network function (Telias and Ben-Yosef, 2015).

iPSCs and NSCs serve as important cellular sources for AD
cell replacement strategies (Yang et al, 2016a; Al Abbar et al.,
2020). iPSCs possess pluripotency and can differentiate into
virtually any neural cell type, whereas NSCs, with their inherent
neuroectodermal lineage bias, more readily give rise to neurons
and glial cells (Ardhanareeswaran et al., 2017). Various in vitro
differentiation protocols have been developed to efficiently induce
these stem cells into functional cholinergic neurons. In particular,
the introduction of key neurodevelopmental transcription factors
such as Neurogenin 2 (NGN2) and LIM homeobox 8 (LHX8)
significantly enhances directed differentiation into cholinergic
neurons of the cortex and hippocampus (Sun et al, 2001;
Liu et al., 2013; Tomioka et al., 2014). These transcription factors
are crucial for neuronal lineage commitment, migration, and axonal
growth, thereby improving differentiation efficiency toward the
cholinergic phenotype.

In mouse models of AD, transplantation of these differentiated
neurons has shown that they can survive, migrate within the host
brain, and form synaptic connections with endogenous neurons
(Hayashi et al., 2020; Yang et al., 2016b; Hermann and Storch,
2013). It has confirmed the expression of cholinergic markers such
as choline acetyltransferase (ChAT) and synaptophysin, as well as
the ability to release acetylcholine (Gu et al, 2015). Moreover,
as shown in Figure 3, EGFP fluorescence demonstrates that the
transplanted neurons are capable of generating action potentials,
suggesting functional integration into neural circuits (Wernig et al.,
2004a). Some studies have also reported behavioral improvements
in learning and memory tasks in treated animal models, indicating
preliminary functional recovery (Kim et al., 2015; Wang et al., 2015).

In addition to replacing cholinergic neurons, stem cells can
develop into key neural cell types, including astrocytes and
oligodendrocytes. Astrocytes are critical for maintaining the blood-
brain barrier, regulating glutamate metabolism, and supporting
synaptogenesis; their dysfunction is linked to excitotoxicity in AD
(Manu et al., 2023). Oligodendrocytes, responsible for myelin sheath
formation, are essential for efficient neural signal transmission,
and their loss contributes to cognitive decline (Yeung et al., 2014;
Jang et al., 2019). Research has shown that NSCs can differentiate
into mature glial cells under appropriate conditions and participate
in neural network reconstruction and remyelination following
transplantation (Tang et al., 2017; Yamaguchi et al., 2016).

Although cell replacement therapies for AD are still in the
experimental stage, their demonstrated neurorestorative effects in
animal models provide a strong foundation for future clinical
application. Advances in gene editing and tissue engineering may
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FIGURE 2

Selection of the optimal media for triculture of human iPSC-derived neurons, astrocytes, and microglia (A) Schematic of the iPSC differentiation
protocols for neurons (iNs), astrocytes (iAs), and microglia (iIMGs). iNs and iAs were generated by lentiviral expression of lineage-specific transcription
factors, while iIMGs were derived via a hematopoietic precursor (HPC) stage using non-viral methods. Cryopreservation days are indicated; each cell
type was fully differentiated before switching to triculture media (TCM). Key abbreviations: KSR, knockout serum replacement; N2B, neu robasal with
N2/B27; EM, expansion medium; FGF, fibroblast growth factor medium. (B) Table summarizing the composition of each cell-type-specific media and
TCM. (C—E) Representative immunostaining of neurons (C), astrocytes (D), and microglia (E) maintained in either their respective media or TCM.
Markers shown include TUJ1/NeuN for neurons, GFAP/S100B for astrocytes, and IBA1/INPP5D for microglia. Scale bars, 50 um. (F) Timeline of the
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FIGURE 2 (Continued)

triculture workflow. Cryopreserved iNs, iAs, and iMGs were thawed and matured separately; astrocytes and microglia were sequentially plated onto
neuron cultures on days 20 and 21 and then co-cultured for 3-6 days. The days in bold refer to the start of thawing the first stock of cryopreserved
cells, and the non-bolded days refer to the day of differentiation for each cell type. (G) Bar plot showing the relative percentages of NeuN +
(neurons), IBAL + (microglia), and CD44 + (astrocytes) cells at day 27, determined from immunostaining (n = 2 genetic backgrounds, three
differentiations, and two wells per differentiation). Error bars represent standard error. A representative field of view (FOV) is shown, with six FOVs per
well analyzed by blinded quantification. Scale bar, 200 um. (H) Representative triculture images (3-6 days of co-culture) labeled for CD44
(astrocytes), IBAL (microglia), and TUJ1 (neurons). Scale bars, 100 um. (1) Western blot of tricultures at days 3 and 6, probed for INPP5D, IBA1, TAUS,
CD44, and GAPDH, confirming the presence of all 3 cell types (Lish et al., 2025)

further Improve the accuracy and effectiveness of stem cell therapies
targeting Alzheimer’s disease.

Paracrine effects

In addition to directly replacing lost neurons, another
critical mechanism by which stem cell therapy exerts therapeutic
effects in AD is through paracrine signaling. Studies have
demonstrated that stem cells—particularly —mesenchymal
stem cells MSCs and NSCs—secrete a variety of bioactive
substances, including cytokines, exosomes, and non-coding
RNAs, which play significant roles in modulating the neural
microenvironment, promoting endogenous neuroregeneration,
and alleviating neuroinflammation (Han et al, 2022;
Kaminska et al., 2022).

Neurotrophic factors are key components of the paracrine
secretome of stem cells. Among them, BDNE, NGE and glial cell
line-derived neurotrophic factor (GDNF) are particularly crucial
(Changetal., 2021; Shen et al., 2019; Allen et al., 2013). These factors
not only support neuronal growth and survival but also enhance
synaptic plasticity and improve learning and memory capabilities.
Research has shown that the transplantation or injection of MSCs
and NSCs leads to a significant upregulation of BDNF and other
neurotrophic factors in brain tissue, which positively correlates with
cognitive improvements.

In addition, stem cells secrete various immunomodulatory
interleukin-10  (IL-10)
growth factor-beta (TGF-B), which can effectively suppress

factors, such as and transforming
the expression of pro-inflammatory cytokines like IL-1p and
TNF-a (Minev et al., 2024). This anti-inflammatory action mitigates
chronic neuroinflammation, a key driver of AD progression that
contributes to neuronal apoptosis, synaptic damage, and neural
network disruption. The anti-inflammatory effects of stem cells can
be further enhanced by promoting the polarization of macrophages
or microglia toward the M2 phenotype, which supports both
immunosuppression and tissue repair.

Exosomes released by stem cells are another vital vehicle of
their paracrine function. These nanovesicles contain high levels
of microRNAs, proteins, and lipids that can be internalized by
surrounding neurons or glial cells to modulate gene expression
and cellular function. For instance, exosomes derived from
MSCs contain miRNAs such as miR-124 and miR-21, which
have been shown to regulate inflammation, prevent neuronal
apoptosis, and enhance synaptic plasticity—ultimately contributing
to protecting hippocampal neurons from oxidative stress damage
(Figure 4) (Vakhshiteh et al, 2019; de Godoy et al., 2018;
Cheng et al., 2018).
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In summary, the paracrine effects of stem cells constitute a
major therapeutic mechanism, offering neuroprotective benefits
even when the transplanted cells are not fully differentiated or do
not persist long-term in the host tissue. Future strategies such as
optimizing cell culture conditions, employing genetic modifications,
or refining exosome purification techniques may further enhance
the paracrine potential of stem cells and improve therapeutic
outcomes in AD.

Pathological clearance

A hallmark of AD pathology is the accumulation of AP
plaques in brain parenchyma and vasculature, along with
hyperphosphorylation of Tau protein leading to the formation of
neurofibrillary tangles. These pathological changes disrupt synaptic
function, cause neuronal damage and apoptosis, and ultimately
result in cognitive decline. Therefore, targeting AP deposition
and regulating aberrant Tau conformation are crucial therapeutic
strategies in AD.

Recent studies have highlighted the potential of stem
cells, particularly NSCs and MSCs, in modulating microglial
activity and enhancing endogenous clearance mechanisms
(Xin et al, 2021). Microglia, the primary immune cells of the
central nervous system, display dual phenotypes in AD. The
pro-inflammatory M1 phenotype promotes neurotoxicity by
releasing cytokines, while the M2 phenotype exhibits enhanced
phagocytic activity and tissue repair functions (Orihuela et al.,
2016). Stem cells can secrete immunoregulatory cytokines such
as TGF-B, IL-4, and IL-10, promoting microglial polarization
toward the M2 phenotype (Guo et al., 2022; Kyurkchiev et al.,
2014). This transition enhances the clearance of AP plaques,
reduces local inflammation, and improves the neural
microenvironment.

Animal studies have demonstrated a significant reduction
in hippocampal AP burden following stem cell transplantation,
accompanied by behavioral improvements (D'Haese et al., 2020).
These effects are not only attributed to immune modulation
but may also involve the secretion of AP-degrading enzymes
such as neprilysin and insulin-degrading enzyme (IDE) by
stem cells. Additionally, stem cell-derived exosomes can carry
specific microRNAs that regulate the amyloid precursor protein
(APP) processing pathway, thereby reducing A production
(Huo et al., 2021; Shah et al., 2024).

In summary, stem cell therapy exerts multi-target, integrated
regulatory effects on both AP and Tau pathology, offering
new opportunities for disease-modifying treatments in AD.
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FIGURE 3

Incorporation of ES cell-derived neurons into the developing rat brain. (A—K) Engrafted donor cells identified by their EGFP fluorescence (E,G—-K) or

immunofluorescence with an antibody to EGFP (A-D,F) generate a variety of neuronal phenotypes. A, Twenty days after transplantation into the

ventricle of E16.5 rats, the cells formed intraventricular clusters and migrated as single cells into various host brain regions. (B—D) Higher power

microphotographs of areas indicated in (A) depicting incorporation into neocortex(B)and hypothalamus(D). Donor-derived cortical neurons were

found to extend long axons into the corpus callosum (C). (E-K) Confocal microscopy and digital reconstruction revealed that the transplanted

cells adopt a variety of morphologies, including simple bipolar cells resembling young migratory neurons (E, neocortex), complex phenotypes mimicking
(Continued)
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FIGURE 3 (Continued)
principal pyramidal neurons of the hippocampus (F, CAlpyramidalcelllayer), and multipolar cell types (G,H) neocortex; (1) septum; (J), thalamus; (K),

tectum). (L) Immunofluorescence analysis with an antibody to nestin depicts engrafted cells with immature, elongated phenotypes characteristic of
migratory precursor cells. The arrow points to the mouse-specific DNA in situhybridization signal used for donor cell identification (tectum, confocal
analysis). Scale bars: (A) 1 mm; (B) 200 m; (C) (D) 100 m; (E-L) 50 m (Wernig et al., 2004b).
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FIGURE 4
Oxidative stress in hippocampal neurons exposed to ABOs in the absence or presence of MSCs. Photomicrographs showing DCF fluorescence (green)

in hippocampal neurons exposed to vehicle (A—D) ABOs (500 nM) for (E—=H) or H202 (100 M) for 10min (I-L) in the absence or presence of MSCs, as
indicated. Scale bar, 100 m. Images were acquired on a Nikon Eclipse TE300 epifluorescence microscope with a 20 objective. Corresponding
bright-field images are shown beside each fluorescence image. (M—0) quantification of integrated DCF fluorescence intensity normalized by the total
number of cells. Panels show integrated fluorescence for ABO-exposed neurons (M) H202-exposed neurons (N) or MSCs cocultured with
hippocampal neurons and exposed to vehicle or ABOs, compared with hippocampal neurons alone (O). Data are represented as mean S.E. (error bars)
(n 6independentcultures, with triplicate coverslips in each experimental condition);*, p 0.05; two-way ANOVA followed by Tukey's post hoc test; RU,

relative units (de Godoy et al., 2018)

Future research should focus on elucidating the specific ~Vascular and synaptic remodeling

molecular mechanisms involved, particularly those mediated

by exosome-based signaling pathways, to facilitate clinical In addition to neurodegenerative changes, AD is often
translation. accompanied by cerebrovascular dysfunction, including cerebral
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hypoperfusion, capillary degeneration, and blood-brain barrier
(BBB) disruption (Love and Miners, 2016). These vascular
abnormalities exacerbate AP deposition and neuronal damage,
creating a vicious cycle. Moreover, synaptic loss and dysfunction
are direct causes of cognitive impairment in AD. Studies have
demonstrated a strong correlation between synaptic density and
cognitive performance, which may even surpass the correlation
with AP plaque burden (Mecca et al., 2022; DiFilippo et al., 2025).
Therefore, vascular repair and synaptic remodeling are critical
therapeutic targets of stem cell treatment in AD.

MSCs and NSCs have been shown to secrete various pro-
angiogenic factors including vascular endothelial growth factor
(VEGF), angiopoietin-1 (Ang-1), and basic fibroblast growth factor
(bFGF) (Han et al., 2022; Kniebs et al., 2020). These factors
promote capillary regeneration, restore BBB integrity, improve
cerebral microcirculation, and enhance local tissue oxygenation and
metabolic status. Additionally, TGF-f released by MSCs can inhibit
endothelial apoptosis and inflammatory infiltration, thereby slowing
cerebrovascular degeneration (de Aratjo Farias et al., 2018).

In summary, the combined effects of stem cells on vascular repair
and synaptic remodeling provide anatomical and physiological
foundations for cognitive restoration in AD. Through multiple
coordinated mechanisms, stem cells can modulate the neural
microenvironment, offering hope to significantly slow or even
reverse neurofunctional decline.

Progress in animal experiments and clinical
studies

Currently, a large body of research on stem cell therapy for
AD remains focused on animal experimental stages. The research
foundation mainly relies on various classic transgenic AD mouse
models, such as APP/PS1 double transgenic mice and 3xTg-
AD triple transgenic mice (Sasaguri et al., 2017; Filali et al,
2012). These models exhibit high reproducibility and stability in
simulating core pathological processes of AD, such as AP plaque
formation, phosphorylation of Tau protein, damage to synapses,
and cognitive impairment, providing an ideal platform for stem cell
therapy research.

Numerous preliminary studies have demonstrated that
transplantation of neural stem cells, mesenchymal stem cells, or
neurons derived from iPSCs into AD model mice can partially
improve cognitive function (Tang et al., 2017; Andrzejewska et al.,
2021; Penney et al., 2020). Specifically, treated mice show significant
improvements in learning and memory abilities in behavioral tests
such as the Morris water maze, Y-maze, and novel object recognition
(Qin et al,, 2020). Concurrently, there is a marked reduction in Af
deposition in brain tissue, downregulation of neuroinflammatory
cytokines, and partial restoration of synaptic structures in the
hippocampus. For example, studies have transplanted neurons
induced from human iPSCs into the brains of mice, finding that
these cells not only survive and differentiate into mature neurons
within the host brain tissue but also functionally integrate with
the host neural network, significantly enhancing the ability to
learn spatial tasks and recall information assessed by the water
maze test (Preman et al., 2021). This further validates the potential
of stem cells to reconstruct neural networks and restore function.
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Although animal experiments provide a solid theoretical basis
and preliminary data support for stem cell therapy in AD, clinical
application in humans remains in early exploratory stages, largely
confined to Phase I or early Phase II clinical trials (Table 1).
Currently, registered or ongoing clinical studies worldwide mainly
aim to investigate the safety, feasibility, and early therapeutic
outcomes of stem cell treatment. The stem cell types used
primarily include autologous bone marrow-derived mesenchymal
stem cells (BMSCs) and umbilical cord-derived mesenchymal stem
cells (UMSCs).

However, it is important to note that current clinical trials
face several limitations. First, sample sizes are generally small, with
most trials enrolling fewer than one hundred participants, limiting
statistical power. Second, follow-up durations are relatively short,
often less than 1 year, making it difficult to comprehensively assess
long-term efficacy and safety. Third, stem cell sources, dosages,
preparation protocols, and infusion routes are not yet standardized,
increasing heterogeneity in results. Additionally, patient-related
factors such as age, disease stage, and comorbidities may potentially
affect responses to stem cell therapy.

Therefore, future work must include large, multicenter RCTs
featuring long-term monitoring are essential to validate the
therapeutic efficacy of stem cell interventions in AD, clarify their
mechanisms of action, safety, and appropriate patient populations,
and gradually advance the transition from laboratory research to
standardized, individualized clinical application.

Multidimensional therapeutic
decision-making

With ongoing developments in stem cell-based treatments for
AD, the introduction of cutting-edge technologies is injecting new
vitality into its clinical translation, particularly in terms of safety,
efficacy evaluation, and mechanistic exploration.

Organoid models

Firstly, the construction of brain organoids provides a highly
biomimetic platform for preliminary efficacy screening (Chen et al.,
2022). These brain-like tissues, self-assembled from human-
iPSCs in three-dimensional culture systems, can recapitulate
core AD pathological features in vitro, such as AP plaque
deposition, Tau protein aggregation, and synaptic protein loss.
This platform serves as a critical bridge between animal models
and clinical practice. For example, in the study by Kong etal,
brain organoids were used to investigate the causes of neurological
deficits induced by SARS-CoV-2 (Kong et al., 2022). Within this
system, one can systematically evaluate stem cells from different
sources and differentiation stages, as well as combinations of
delivery methods and biomaterial scaffolds, thereby optimizing
therapeutic protocols and enhancing translational efficiency
(Qian et al., 2019; Acharya et al, 2024). Moreover, combined
with technologies like single-cell transcriptomics, organoids allow
investigation of the interaction mechanisms between transplanted
stem cells and host neurons or glial cells, including paracrine
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TABLE 1 Clinical trials of stem cell therapy for Alzheimer’s disease.

Stem cell types NCT number Source

MSCs NCT01297218

stem cells

Human umbilical cord
blood-derived mesenchymal

10.3389/fcell.2025.1650885

’ Trial phase Research focus

I Safety and tolerability

MSCs NCT02833792

allogeneic human

Stemedica manufactures

mesenchymal stem cells for
ischaemic conditions

Tla Safety and tolerability

MSCs NCT02600130

Stem Cells)

Longeveron Mesenchymal I

Safety and efficacy

MSCs NCT02054208

stem cells

Human umbilical cord
blood-derived mesenchymal

I/Ila Safety and efficacy

MSCs NCT04040348

Multiple Allogeneic Human 1
Mesenchymal Stem Cells

Safety and efficacy

MSCs NCT01547689

stem cells

Human umbilical cord
blood-derived mesenchymal

I/ Safety, tolerability, and efficacy

MSCs
NCT05667649

Autologous adipose-derived I
stem cells (ADSCs)

Safety and efficacy

signaling pathways, microglial polarization, and cell fusion events,
providing high-resolution insights into the underlying mechanisms.

Artificial intelligence assistance

In personalized therapeutic decision-making, artificial
intelligence (AI) is increasingly becoming a vital tool to optimize
stem cell treatment strategies (Shende and Devlekar, 2021). Stem
cell therapy involves numerous parameters, including cell type,
dosage, timing, and target brain regions, which are difficult to
comprehensively manage by traditional empirical approaches
(Srinivasan et al.,, 2023). AI models based on deep learning can
integrate multimodal data such as MRI/PET radiomics, whole-
genome sequencing, and clinical assessment indices to build
precise predictive systems. For example, the deep learning model
developed by Zhu etal. can quickly and accurately predict the
differentiation direction of neural stem cells (Zhu et al., 2021).
These systems can forecast treatment responses and evaluate
adverse effect risks, assisting clinicians in formulating individualized
intervention plans. Additionally, AI techniques can handle large-
scale experimental data to decipher regulatory networks controlling
stem cell differentiation, and screen potential therapeutic targets and
signaling pathways, thereby improving cell engineering efficiency
and consistency from the ground up (Li Z. et al., 2023).

In summary, stem cell therapy for Alzheimer’s disease
theoretically possesses unique advantages of multitarget
and network regulation and has demonstrated remarkable
neurorestorative capabilities at the laboratory level. However,
bridging the gap from experimental research to clinical application

still requires addressing critical issues such as cell stability, safety,
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clarification of mechanisms of action, and establishment of efficacy
evaluation systems. In the future, with the synergistic development
of stem cell engineering, neuroimaging technologies, and systems
biology, stem cell therapy is expected to become an essential
component of precision treatment for AD, bringing breakthrough
progress to the field.

Challenges and prospects

As an emerging regenerative medicine strategy, stem cell therapy
has attracted widespread attention in AD research in recent years.
Compared with traditional single-target drug interventions, stem
cells possess the advantage of multi-mechanism synergistic effects,
enabling systemic intervention within the complex pathological
context of AD. Although positive progress has been made in
mechanistic research of stem cell therapy, its clinical translation still
faces multiple challenges.

Despite promising results in preclinical and early-phase clinical
studies, the therapeutic outcomes of stem cell interventions in AD
are profoundly influenced by patient-specific factors, including age,
disease stage, and the presence of comorbid conditions. Advanced
age is associated with diminished neuroregenerative capacity and
an increasingly hostile brain microenvironment, characterized
by chronic inflammation, oxidative stress, and impaired vascular
integrity, all of which compromise stem cell survival and
differentiation. Moreover, patients at different stages of AD may
respond variably to cell-based therapies—while early-stage patients
might benefit from neuroprotective and anti-inflammatory effects,
advanced-stage patients often suffer from extensive neuronal loss
and irreversible structural damage that limits therapeutic efficacy.
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Comorbidities such as diabetes, cardiovascular disease, and systemic
inflammation further exacerbate neurodegeneration and hinder
the reparative functions of transplanted stem cells (Evans et al,
2021). These inter-individual variations highlight the necessity
of developing personalized or precision medicine approaches.
By integrating genomic, epigenetic, imaging, and biomarker
data, clinicians can tailor stem cell therapy regimens to patient-
specific pathophysiological profiles, thereby optimizing therapeutic
efficacy and minimizing risks. Such precision-guided strategies
represent a pivotal direction for the future of regenerative
therapy in AD.

To accelerate the clinical translation of stem cell therapies
for Alzheimer’s disease, several key challenges must be addressed
as research priorities. First, large-scale, multicenter, randomized
controlled trials (RCTs) with long-term follow-up are essential
to generate robust clinical evidence supporting safety, efficacy,
and patient selection criteria. Second, advancements in cellular
engineering—such as improving stem cell survival, lineage-specific
differentiation, and integration into host neural circuits—are
critical to enhancing therapeutic precision and consistency. Third,
the development of reliable, real-time tracking technologies
(e.g., multimodal molecular imaging, nanoparticle labeling) will
be pivotal for monitoring stem cell fate, biodistribution, and
functional outcomes in vivo. Collectively, these strategies must
be supported by standardized manufacturing protocols and
rigorous quality control frameworks to ensure reproducibility
and regulatory compliance. Importantly, stem cell therapy
offers a unique therapeutic paradigm in AD by targeting
multiple pathogenic processes simultaneously—ranging from cell
replacement and immunomodulation to neurotrophic support and
synaptic remodeling. This multifaceted and synergistic mechanism
distinguishes it from conventional single-target pharmacotherapies
and holds immense promise for reshaping the landscape of precision
neuroregenerative medicine.

In addition, ethical concerns surrounding the use of induced
pluripotent stem cells (iPSCs), including donor consent, genomic
integrity, and potential tumorigenicity, alongside regulatory
challenges such as the stringent FDA and EMA approval processes
and the absence of unified standards for stem cell preparation,
underscore the urgent need for globally harmonized guidelines.

In the end, establishing standardized stem cell preparation
processes, quality control systems, and multicenter randomized
controlled clinical trials will be crucial to promote clinical
implementation. More and better-designed preclinical trials
are necessary to evaluate the therapeutic effects of stem cells
from different sources on AD, with careful exploration of stem
cell dosage, long-term safety, efficacy, and precise mechanisms
of action. Currently, stem cell therapy for AD is still in its
infancy, but it holds great promise to bring more breakthroughs
in the future.
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