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Background: Impaired decidualization is associated with recurrent implantation
failure (RIF) and lysophosphatidic acid (LPA) is known to play an important
role in decidua formation. However, the specific impact of LPA in endometrial
decidualization during RIF remains unclear.

Methods: Metabolomics analysis was performed to identify differentially
expressed metabolites (DEMs) in RIF patients Expression of the LPA receptor
subtypes, LPAR1-6, was detected in both GEO datasets and clinical endometrial
samples. An in vitro decidualization model was established by treating
human endometrial stromal cells (hESCs) with medroxyprogesterone acetate
(MPA) and 8Br-cAMP. The functional roles of LPA and its receptors (LPAR1-
6) during decidualization were further investigated via RT-qPCR, ELISA,
immunofluorescence, CCK-8 proliferation assays, Western blotting, and
immunohistochemistry.

Results: LPA was identified as a pivotal metabolite in RIF. Among the
LPA receptors, LPARL1 and LPAR6 were highly expressed during in vitro
decidualization of hESCs. LPA treatment significantly increased the levels of
insulin-like growth factor binding protein-1 (IGFBP1) and prolactin (PRL) and
promoted cytoskeletal reorganization Inhibition of LPAR6-but not LPAR1-
attenuated hESCs decidualization, as evidenced by reduced mRNA and protein
levels of decidual markers and altered cellular morphology. CCK-8 assays
revealed that neither LPA stimulation nor LPAR1-6 inhibition significantly
affected hESC proliferation. Furthermore, LPAR6 blockade abolished the
enhancing effects of LPA on IGFBP1 and PRL mRNA expression, as well as
PRL protein secretion. These results suggest that LPAR6 plays a critical role in
LPA-mediated regulation of decidualization.

Conclusion: LPA plays a significant role in the decidualization process of
hESCs by regulating LPARG, rather than LPAR1, providing insights into potential
therapeutic target for RIF.
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1 Introduction

Infertility, a widespread public health issue affecting
approximately 13% of couples globally, has garnered increasing
concern within the medical community (Huang et al,

2023). Advances in assisted reproductive technology (ART)

have allowed couples previously considered infertile to

attain successful pregnancies, representing a major stride
in infertility treatment. Nevertheless, recurrent implantation
(RIF)
compromising the clinical pregnancy rate after embryo transfer
through ART (Benkhalifa et al., 2022).

RIF remains a complex and poorly understood phenomenon

failure remains a significant obstacle, substantially

with a multifactorial etiology, and even lacks an internationally
accepted consensus definition (Franasiak et al., 2021). Accumulating
evidence indicates that impaired decidualization represents a major
cause of implantation failure (Ng et al., 2020; Peter Durairaj et al.,
2017). Decidualization is a process wherein endometrial stromal
fibroblasts transform into specialized secretory decidual cells,
capable of producing markers such as IGFBP-1 and PRL, and
providing the essential environment for embryo implantation
and growth (Zhang et al., 2013). Thus, elucidating the mechanisms
underlying decidualization offers a scientific basis for minimizing
implantation failure.

Metabolomics presents a promising avenue for exploring
the metabolic state of biosamples. In hormonal replacement
therapy patients undergoing frozen embryo transfer cycles,
a metabolomics analysis revealed distinct serum metabolite
changes during endometrial transformation (Zheng et al., 2023).
Harden etal. observed substantial differences in the metabolic
profiles between decidualized and non-decidualized endometrium
(Harden et al, 2021). RoyChoudhury etal. identified eight
metabolites that were altered in RIF patients compared to
women with successful implantation (RoyChoudhury et al,
2016). Fu etal. reported significant differences in vaginal
metabolomes between patients with unexplained RIF and
those who achieved pregnancy in the first frozen embryo
transfer cycle (Fu et al, 2020). However, metabolomics studies
focusing specifically on endometrial tissue from RIF patients remain
relatively scarce.

In this study, for the first time, we employed metabolomic
profiling to identify oleoyl-L-a-lysophosphatidic acid (oleoyl-LPA)
as a potential metabolic marker in the endometrial tissue of RIF
patients and hypothesized that it is involved in the decidualization
process of human endometrial stromal cells (hESCs). This research
further explored the roles of oleoyl-LPA and its receptors in
endometrial decidualization, with the aim to provide a theoretical
foundation and potential targets for novel therapeutic strategies
against RIE.

Abbreviations: ART, assisted reproductive technology; ATX, autotaxin; DEMs,
differentially expressed metabolites; ELISA, enzyme-linked immunosorbent
assay; FC, fold change; hESCs, human endometrial stromal cells; LPA,
lysophosphatidic acid; LPAR, lysophosphatidic acid receptor; LPLs,
lysophospholipids; MPA, medroxyprogesterone acetate; PA, phosphatidic
acid; PLS-DA, partial least squares discriminant analysis; QC, quality control;
RIF, recurrent implantation failure; RT-qPCR, Real-time quantitative PCR;
siRNAs, small interfering RNAs; VIP, variable importance value.
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2 Methods
2.1 Patients and tissue collection

The study was approved by the ethics committee of our hospital
(2013-408081-01). Written informed consent was signed by each
participant for the use of their samples.

RIF was defined as the failure to attain a clinical pregnancy
following at least three consecutive embryo transfers with a
cumulative transfer of more than four high-quality cleavage-stage
embryos or more than two high-quality blastocysts (Coughlan et al.,
2014). The control group comprised patients who underwent
assisted reproductive treatment due to male infertility and
successfully conceived after the first embryo transfer.

Individuals were excluded if they had any of the following
conditions: repeated pregnancy loss (two or more biochemical
pregnancies or two or more abortions); a history of adverse
pregnancy; or any clear cause of embryo implantation failure,
including, but not limited to, moderate-to-severe intrauterine
adhesions, a thin endometrium (less than 7 mm before
transformation), adenomyosis, endometriosis, uterine fibroids
(submucosal fibroids, non-submucosal fibroids larger than
4.0 cm and/or endometrial compression), untreated hydrosalpinx,
reproductive tract malformations, severe immune diseases, severe
coagulation abnormalities, endocrine system diseases; karyotype
anomalies in one or both partners; contraindications to pregnancy
or assisted reproductive technology; infectious diseases, sexually
transmitted diseases, or mycoplasma and/or chlamydia.

In this study, we enrolled 26 patients with RIF and 35 patients
as controls. As summarized in Table I, all endometrial samples
from the RIF group were in the secretory phase. Among the
35 control samples, 5 were in the proliferative phase and 30 in
the secretory phase, of which 4 were utilized for the isolation of
primary hESCs.

2.2 Metabolomics analysis

Metabolomics analysis was carried out on endometrial tissues
from ten patients with RIF and ten fertile control patients.
Endometrial tissue samples (100 mg) were homogenized in a
high-throughput tissue grinder and suspended in pre-chilled 80%
methanol. After placing in an ultrasonic cleaner for 10 min, the
samples were centrifuged at 12,000 rpm for 10 min at 4 °C. The
supernatants were filtered through a 0.22 um filter and then
injected into a LC-MS/MS system for analysis (Novogene Co., Ltd.,
Beijing, China). Differentially expressed metabolites (DEMs) were
identified through partial least squares discriminant analysis (PLS-
DA) using metaX, with screening criteria set as variable importance
in projection (VIP) > 1, fold change (FC) > 1.2 or FC < 0.833, and
p < 0.05. The resulting DEMs were visualized using the ggplot2
package in R.

2.3 Real-time quantitative PCR (RT-qPCR)

Total RNA was extracted from 10 mg endometrial tissues
or cultured hESCs using TRIzol reagent (Vazyme, #R401-01)
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TABLE 1 Clinical characteristics of women enrolled in the present study.

Variables

Control (n = 35)

Proliferative phase

Secretory phase

RIF (n = 26)

Secretory phase

10.3389/fcell.2025.1652740

(n=5) (n =30) (n = 26)
Age (years) 29.80 +2.77 28.73 £ 3.06 30.15+ 4.16 0.328
BMI (kg/m?) 2338 +4.74 23.38 +£3.05 22.64 +2.61 0.646
Basal FSH (IU/L) 6.98 = 0.56 742 +2.01 7.07 +2.61 0.822
Basal LH (IU/mL) 525+ 1.08 455225 484215 0.75
Basal E2 (pmol/mL) 36.00 + 4.47 38.62 +16.13 47.70 + 38.92 0.425

RIE recurrent implantation failure; BMI, body mass index; FSH, follicle stimulating hormone; LH, luteinizing hormone; E2, estradiol.

according to the manufacturer’s protocol. RNA integrity and
concentration were assessed by agarose gel electrophoresis and
spectrophotometry at 260/280 nm (One Drop, OD1000+). The
extracted RNA was then reverse-transcribed into ¢cDNA using
the 5X All-In-One RT MasterMix (ABM, #ABS-G492). RT-
qPCR was performed in a 20 pL reaction volume with ChamQ
Universal SYBR qPCR Master Mix (Vazyme), using 18S rRNA
as the endogenous control. The primer sequences are listed in
Supplementary Table S1.

2.4 Isolation, culture and identification of
primary hESCs

Fresh endometrial tissues were collected from fertile control
women during the secretory phase. The endometrial tissues
were minced and enzymatically digested with 0.1% (w/v) type I
collagenase (Worthington, Freehold, NJ, United States) for 30 min at
37 °C. The stromal cells and glands were then separated by filtering
the digested tissues through a 30 um sieve. The isolated cells were
resuspended in DMEM/F12 (Gibco, #10-092-CVRC) supplemented
with 10% FBS (Gibco, #1645615) and 1% penicillin-streptomycin
(Gibco, #5V30010), and then incubated at 37 °C with 5% CO, until
confluent. Stromal cell purity was verified by immunofluorescence
assay for vimentin and E-cadherin as described below. Cells
were cryopreserved in liquid nitrogen upon reaching 80%-90%
confluence. No more than three passages were used for any cell
strain. The hESCs were seeded into 60 mm or 35mm culture
dishes. At 90% confluence, the medium was replaced with serum-
free DMEM/F12. After an overnight starvation period, cells were
switched to phenol red-free DMEM/F12 containing 2.5% charcoal-
stripped FBS. The hESCs were induced for 72 h and subsequently
harvested for later experiments.

2.5 In vitro decidualization

The hESCs were incubated with 1 uM medroxyprogesterone
acetate (MPA, Millipore Sigma, #M1629) and 0.5 mM 8Br-cAMP
(Sigma #B7880) to generate an in vitro decidualization model, with
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medium replacement at 48 h. To determine the effect of estrogen
(E2) and progesterone (P4) on LPAR1 and LPARG6 expression, hESCs
were treated with E2 (10_8 M, Millipore Sigma, #E2758), P4 (10_6 M,
Millipore Sigma, #P0130), E2+P4, and 8Br-cAMP + MPA in a
time-dependent manner for 4 days. The cells and/or supernatants
of hESCs were collected at different times for subsequent
experiments.

2.6 The effect of oleoyl-LPA on
decidualization

To elucidate the influence of oleoyl-LPA on decidualization,
hESCs were treated with oleoyl-L-alpha-lysophosphatidic acid
(Selleck #E2992) at concentrations of 0.1 uM and 1 uM. The hESCs
and/or supernatants from different groups were harvested for
subsequent experiments following 72 h of induction.

2.7 Enzyme-linked immunosorbent assays
(ELISAs)

The PRL protein level in supernatants of hESCs after different
treatments was determined by ELISA kit (Elabscience, #E-EL-
HO0141).

2.8 Immunofluorescence assay

The hESCs were prepared as described previously (Cai et al.,
2022). Briefly, hESCs were fixed with 4% paraformaldehyde
(Biosharp, #BL539A) for 20 min and permeabilized with 0.1%
Triton X-100 (Sangon Biotech, 9002-93-1) at room temperature
for 5min. The hESCs were then blocked with 1% Triton X-100
containing 3% BSA for 30 min at 37 °C, incubated with primary
antibodies (Supplementary Table S2) at 37 °C for 2 h, then with
secondary antibody at 37 °C for 1 h. Nuclei were stained with DAPL.
Cells were kept from light before being examined and digitally
imaged with a fluorescence microscope and CCD camera.
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2.9 Cell transfection

Primary hESCs at passages no higher than three were seeded
into 6-well plates at a density of 2 x 10° cells per well.
At 60% confluence, the medium was replaced with serum-free
and pen/strep-free basal medium. Cells were transfected with
small interfering RNAs (siRNAs) targeting LPAR6 (siLPAR6-2/3)
or negative control siRNA using Lipofectamine 3000 reagent
(Invitrogen). After 6-8 h, the transfection medium was replaced
with fresh complete culture medium. Decidualization was induced
48 h post-transfection, and total RNA and protein were harvested
72h after induction from the respective experimental groups.
All siRNAs for LPAR6 were synthesized and purified by Gene
Pharma Co., Ltd. (Shanghai, China). The siRNA sequences were
as follows:

siLPARG-2:

sense: 5'-GGUGUUUGUGCUUGGGUUATT-3/,

antisense: 5'-UAACCCAAGCACAAACACCTT-3%

siLPARG-3:

sense: 5'-GCAUAACCUACAGACCUUATT-3/,

antisense: 5’ -UAAGGUCUGUAGGUUAUGCTT-3..

2.10 CCK-8 assay for cell viability and
proliferation

Following resuscitation of cryopreserved 2"%-passage cells in
DMEM/F12 (Gibco, #10-092-CVRC) plus 10% FBS (Gibco, #1645615)
and 1% penicillin-streptomycin (Gibco, #5V30010), they were seeded
into 96-well plates at a density of 5 x 10°. The cell were placed in
an incubator with 5% CO, at 37 °C for 24 h to ensure adequate cell
adherence. After adhesion, the original medium was removed from
the well, cells were transfected with siRNAs using Lipofectamine 3000
as mentioned before or treated with the following reagents: oleoyl-
LPA, AMO095 (4'-[3-methyl-4-((R)-1-phenyl-ethoxycarbonylamino)-
isoxazol-5-yl]-biphenyl-4-yl-Na, MCE, HY-16040), and Kil6425
(3-(4-[4-([1-(2-chlorophenyl)ethoxy]carbonyl ~amino)-3-methyl-5-
isoxazolyl] benzylsulfanyl) propanoic acid, Selleck #S1315) and
incubated at 37 °C for 24 h. Lastly, CCK-8 reagent was added, the
plates were incubated at RT for 20 min, and the absorbance at 450 nm
was measured using a plate-reader.

2.11 Western blotting

Total protein was extracted as previously described (Cai et al.,
2022). The proteins were separated by 10% SDS-PAGE and
After
blocking, the membranes were incubated overnight at 4°C
with primary antibodies followed
by thorough washing and incubation with the corresponding

transferred to polyvinylidene difluoride membranes.
(Supplementary Table S2),
secondary antibody for 1h at RT. The band density was

determined using ChemiCapture software (Beijing Sage Creation
Science Co.).
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2.12 Immunohistochemical staining

Endometrial tissues were obtained from endometrial biopsy and
fixed in 4% PFA at room temperature. The tissues were dehydrated,
embedded in paraffin and cut into 5 pm-thick sections. Antigen
retrieval was conducted by autoclaving the samples at 121 °C
for 15 min in the presence of a citrate antigen retrieval solution.
Sections were blocked in 5% BSA, incubated overnight at 4 °C with
primary antibody (Supplementary Table S2), washed and incubated
with HRP-conjugated secondary antibody. The specific antibody
signal was visualized by incubation with diaminobenzidine and
counterstaining with hematoxylin. Images were captured using a
Leica DM 2000 microscope.

2.13 Statistical analysis

Metabolomic data was processed with R (version 3.4.3). Graph
Pad Prism 9.0 was used for statistical treatment of experimental
data, and the quantitative data were presented as the mean +
SEM. Student’s t-test was used to assess significant differences
between two groups, and ANOVA and Tukey’s test were used among
multiple groups. The threshold for statistical significance was set
at p < 0.05.

3 Results
3.1 Metabolomics analyses

In both positive and negative ion modes, the PCA score plots of
quality control (QC) samples (Figures 1A, 2A) showed tight clustering,
indicating high instrumental stability during data acquisition. Based
on the diagnostic criteria described in the Methods section, 39
DEMs were identified in positive ion mode and 15 in negative
ion mode. PCA score plots revealed significantly distinct metabolic
profiles between the RIF group and the control group (Figures 1B,
2B). The PLS-DA score plots further demonstrated clear separation
and clustering patterns between the two groups (Figures 1C, 2C).
Permutation test results (Figures 1D, 2D) confirmed the robustness
of the PLS-DA model, with a permutation-derived variability of less
than 0.25, indicating that the model was not overfitted and had strong
predictive capability. Expression patterns of the DEMs in the RIF
and control groups were visualized (Figures 1E, 2E) and summarized
in Supplementary Table S3, showing that in positive ion mode, 27
metabolites were upregulated and 12 were downregulated, while in
negative ion mode, 5 were upregulated and 10 were downregulated.
Notably, lysophosphatidic acid (LPA) was identified as a differentially
abundant metabolite in both ion modes (Figures 1F, 2F). In positive
ion mode, LPA had a FC value of 0.56 and a p-value of 0.009; in negative
ion mode, its FC value was 0.29 with a p-value of 0.032.

To further validate the reduced level of LPA observed in the
RIF group, we examined the mRNA expression of key enzymes
involved in LPA synthesis (ATX, PLA1, and PLA2) and degradation
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QC samples. (D) Permutation test of PLS-DA. (E) Volcano plot of DEMs. Red indicates significantly increased metabolites; green indicates significantly
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(PPAP2A, PPAP2B, and PPAP2C) in endometrial tissues from both
control and RIF groups. The results showed that ATX and PLAI,
genes associated with LPA synthesis, were slightly downregulated
in the RIF group, although not significantly. In contrast,
PPAP2A involved in LPA degradation was slightly upregulated
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without statistical significance, while PPAP2B and PPAP2C were
significantly upregulated in RIF (Supplementary Figure S1, p <
0.05). These findings suggest that the significant decrease in LPA
levels in RIF may result from both a moderate reduction in its
synthesis and a pronounced enhancement of its degradation.
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decreased metabolites. (F) Stick plot of DEMs (n = 10 per group).

Metabolomics analysis in negative ion mode. (A) Principal component analysis (PCA) scatter plot of raw metabolomics data with quality control (QC)
samples. (B) PCA scatter plot of differentially expressed metabolites (DEMs). (C) Partial least squares-discriminant analysis (PLS-DA) score plot of the
metabolome. For (A—C): Red represents the control group; light blue represents the recurrent implantation failure (RIF) group; dark green represents
QC samples. (D) Permutation test of PLS-DA. (E) Volcano plot of DEMs. Red indicates significantly increased metabolites; green indicates significantly

3.2 Expression of LPAR1-6 in the GEO
database and clinical samples

To characterize the expression profiles of LPA receptor (LPAR)
family members (LPAR1-6), we analyzed human endometrial
transcriptome data from the GEO database, selecting datasets
with sample sizes >20 that included both women with RIF
and healthy controls. The datasets GSE111974 (24 RIF and
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24 controls) and GSE58144 (43 RIF and 72 controls) were
retrieved to evaluate LPAR expression. Analysis revealed that
LPAR3 was significantly upregulated and LPAR6 significantly
downregulated in RIF compared with controls in GSE111974, while
in GSE58144, LPAR2 was significantly upregulated and LPAR6
significantly downregulated (Figures 3A,B). We further validated
these findings using RT-qPCR on endometrial tissues from 12 RIF
patients and 12 fertile controls, which demonstrated significant
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Expression profiles of LPAR1-6 in public databases and clinical specimens. (A) Differential expression of LPAR1-6 between control and RIF groups based
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downregulation of LPARI, LPARS5, and LPARG6 in the RIF group
(Figure 3C).

Given the potential indirect influence of male-factor infertility
on endometrial receptivity, we additionally examined the expression
of key endometrial functional markers—FOXO1, HAND?2,
HOXA10, and KI67—in both groups. Immunohistochemistry
results indicated that HOXA10 was significantly downregulated
(p < 0.05) and KI67 significantly upregulated (p < 0.01) in the
RIF group compared to controls. FOXO1 and HAND?2 also
exhibited downward trends, although these changes were not
statistically significant (p > 0.05) (Supplementary Figure S2A).
Consistent with these observations, Western blot analysis showed
marked downregulation of HAND2 (p = 0.002) and non-significant
decreasing trends for HOXA10 (p = 0.057) and FOXOL1 (p > 0.05)
in the RIF group (Supplementary Figure S2B).

3.3 LPA promotes decidualization of hESCs
via LPARs

Endometrial stromal cells, as the primary cellular constituents
of the endometrium, play essential roles in decidualization. To
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ensure high purity and minimal epithelial contamination, stromal
cells were isolated from fresh endometrial tissues obtained from
fertile control women. The isolated cells were characterized
using flow cytometry and immunohistochemistry for the stromal
marker vimentin and the epithelial marker cytokeratin. Results
demonstrated a stromal cell purity of 98.54%, as indicated
by the proportion of vimentin-positive/cytokeratin-negative cells
(Supplementary Figure S3), confirming the high quality of the
isolated cell population for subsequent experiments. Given the
function of ESCs as receptors of LPA, the relative expression
of LPAR1-6 during decidualization was measured in hESCs by
RT-qPCR. LPARI and LPAR6 were highly expressed throughout
the decidualization process (Figure 4A), and consequently, the
effects of E2 and P4 on LPARI and LPAR6 regulation were
determined. Primary cultured hESCs were treated with E2,
P4, E2+P4, 8Br-cAMP + MPA, and cells were harvested at
various time points (Figures 4B,C). In addition, the impact of
LPA on decidualization was evaluated by incubating hESCs
with a range of LPA concentrations. LPA treatment (1 uM)
significantly increased the mRNA levels of IGFBP1 and PRL, and
the PRL protein level (Figures 4D-F). F-actin staining demonstrated
the anticipated cytoskeletal reorganization and morphological
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changes, consistent with the transition from a fibroblast-like to

a decidual phenotype. Specifically, the cells changed from long,

spindle-shaped forms to larger, more rounded shapes (Figure 4G).

3.4 Inhibition of LPARG6, but not LPAR1,
attenuates decidualization of hESCs

These results collectively demonstrated that LPA promoted the
decidualization of hESCs at the mRNA, protein, and morphological
levels. LPA had no discernible influence on cell proliferation
(Figure 4H).
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To determine whether LPAR1 or LPAR6 was involved in
regulating decidualization, we inhibited LPARI in hESCs using
pharmacological antagonists (AMO095 or Kil6425) and knocked
down LPAR6 expression with specific siRNAs (siLPAR6-2/3).
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Inhibition of LPAR6, but not LPAR1, attenuates decidualization of hESCs. (A) RT-qPCR showing relative IGFBP1 mRNA level in hESCs during
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in hESCs during decidualization after adding siLPARG. (H) ELISA showing relative PRL protein level in hESCs during decidualization after adding
siLPARG. (I) Immunofluorescence showing changes in cytoskeletal morphology in hESCs during decidualization after adding siLPARG. (J) CCK-8
assay showing the effect of LPAR1L antagonists or siLPAR6E on cell proliferation. Error bars represent SEM, and the data are means of at least three
independent experiments. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, not significant.

Inhibition of LPAR1 did not significantly alter the mRNA
levels of IGFBP1 and PRL, nor affect PRL protein secretion
(Figures 5A-C). Furthermore, LPAR1 blockade had no observable
effect on cytoskeletal organization, as assessed by F-actin staining
(Figure 5D). In contrast, LPAR6 knockdown (validated by RT-
qPCR; Figure 5E) markedly reduced IGFBP1 and PRL mRNA
expression, decreased PRL protein secretion, and disrupted
cytoskeletal morphology (Figures 5F-I). These results indicate that
LPARG, but not LPARI, is critical for decidualization, influencing
transcriptional, translational, and structural aspects of the process.
Additionally, neither LPARI inhibition nor LPAR6 knockdown
affected cell proliferation (Figure 5J).

3.5 LPARG is involved in LPA-mediated
regulation of decidualization

Based on the above results, we determined the expression
of LPAR6 protein in clinical samples from RIF and control
groups and also made comparisons between the proliferative and
secretory phases. Western blotting and immunohistochemical
staining revealed that the protein expression of LPAR6 was
lower in the endometrium of RIF patients compared with
(Figures 6A,B). the
of LPAR6 was higher in the secretory phase than in the

controls Moreover, protein  expression
proliferative phase (Figure 6C). Further experiments in hESCs
demonstrated that after the inhibition of LPAR6, LPA no longer
had an effect on the mRNA levels of IGFBP1 and PRL, or
on PRL protein level (Figures 6D-F). It is worth noting that
the addition of LPA after inhibition of LPAR6 did not rescue
the expression of IGFBP1 and PRL compared with the sole
inhibition of LPARG (Figures 6D,E). These results together support
our hypothesis that LPAR6 is involved in the LPA-mediated
regulation of decidualization.

Next, we attempted to identify the downstream signaling
pathways that could mediate decidualization in clinical samples and
hESCs. There were no significant differences in protein levels of
mTOR, P-mTOR, and PTEN between RIF and control groups, which
may be due to the limited sample size (Figure 6G). The Western
blotting results showed that LPA had no evident influence on the
expression of P-mTOR and PTEN but substantially reduced the
expression of mTOR (Figure 6H). The inhibition of LPAR6 also had
no effect on PTEN expression, but it did unexpectedly upregulate
the expression of mMTOR and P-mTOR (Figure 61).

4 Discussion

Decidualization is essential for the establishment of endometrial
receptivity and successful embryo implantation. Our findings are
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grounded in an integrative multi-omics approach. Metabolomic
analysis of endometrial tissues from women with RIF and controls
revealed significantly altered LPA levels, supported by dysregulated
expression of LPA metabolic enzymes. Transcriptomic data from
public GEO databases and clinical samples further indicated
abnormal expression of LPA receptors, particularly LPAR6, which
was consistently downregulated in RIF endometria. Thus, we
employed an in vitro model of decidualization in hESCs using
MPA and 8Br-cAMP. The process was confirmed by elevated
expression of decidual markers IGFBP1 and PRL, along with
characteristic morphological changes. Notably, we found that LPA
enhanced decidualization, as evidenced by increased IGFBP1 and
PRL mRNA levels and elevated PRL secretion. These results not
only confirm the role of LPA in decidualization but also provide
novel insights into the metabolic and molecular disturbances
underlying RIF, highlighting the potential targeting of the LPA-
LPARG axis in therapeutic strategies for improving endometrial
receptivity.

LPAs are ubiquitous bioactive phospholipids derived from
(ATX)
(Choi et al., 2010). Structurally characterized by a glycerol

membrane phospholipid metabolism by autotaxin
backbone, a phosphate group, and a long fatty acyl chain
(Lin et al, 2020), LPA can be generated intracellularly and
extracellularly. Extracellular production occurs mainly through two
pathways: hydrolysis of lysophospholipids (LPLs) by ATX following
PLA1/PLA2 activity, or conversion of phosphatidic acid (PA) to
LPA via membrane-associated PA-selective phospholipases Al
(Richmond and Smith, 2011; Aoki et al., 2008). Extracellular LPA is
primarily degraded by lipid phosphate phosphatases (LPPs/PPAP2
family) (Jose et al., 2024). As an extracellular signaling molecule,
LPA regulates diverse physiological and pathological processes
including nervous system development, hematopoiesis, tumor
progression, and reproduction (Lin et al, 2020; Ye and Chun,
20105 Birgbauer, 2021; Balijepalli et al., 2021). Previous studies
implicated LPA in pregnancy maintenance (Tokumura et al,
2002), embryo expansion (Shiokawa et al., 2000), and uterine
contractility (Nagashima et al., 2023). In the present study,
metabolomic profiling revealed, for the first time, significantly
reduced LPA levels in the endometrium of patients with RIE
Functional experiments demonstrated that oleoyl-LPA upregulated
the decidual markers IGFBP1 and PRL and induced cytoskeletal
remodeling in hESCs, supporting a promotive role of LPA in
decidualization.

LPA signals through 6 G protein-coupled receptors (LPAR1-6)
to modulate multiple reproductive processes including fertilization,
decidualization, implantation, and pregnancy maintenance (Ye
and Chun, 2010). For example, LPAR1 activation induces IL-
8 via NF-«B, promoting endometrial angiogenesis (Chen et al.,
2008), while disrupted LPA-LPAR signaling increases miscarriage
rates in mice (Yang et al, 2022). LPAR3 is critical for embryo
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FIGURE 6
LPA affects decidualization of hESCs by regulating LPAR6. (A) Expression of LPAR6 protein between RIF and control groups detected by Western

blotting (n = 6 per group). (B) Expression of LPARG6 protein between RIF and control groups detected by immunohistochemical staining (n = 4 per
group). (C) The protein expression of LPAR6 between proliferative (n = 5) and secretory phases (n = 6) detected by Western blotting. (D) RT-gPCR
showing relative IGFBP1 mRNA level in hESCs during decidualization after adding LPA and siLPAR6. (E) RT-gqPCR showing relative PRL mRNA level in
hESCs during decidualization after adding LPA and siLPARG. (F) ELISA showing relative PRL protein level in hESCs during decidualization after adding
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FIGURE 6 (Continued)

LPA and siLPARG6. (G) Western blotting showing protein levels of mMTOR, P-mTOR, and PTEN between RIF and control groups (n = 3 per group). (H)
Western blotting showing protein levels of mTOR, P-mTOR, and PTEN after the administration of LPA. (I) Western blotting showing protein levels of
mTOR, P-mTOR, and PTEN after adding siLPAR6. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, not significant

spacing and implantation (Hama et al, 2007; Ye et al, 2005)
and facilitates vascular remodeling at the maternal-fetal interface
(Sordelli et al., 2017). Our multi-dataset bioinformatic analysis
revealed aberrant expression of LPAR2, LPAR3, and LPAR6 in
RIE Clinical validation further confirmed dysregulation of LPARI,
LPAR5, and LPAR6 in RIF endometria. Based on their high
expression during in vitro decidualization, we focused on LPAR1
and LPARG6. Functional studies showed that only LPAR6 knockdown
and not LPARI inhibition compromised decidualization, as
evidenced by suppressed IGFBP1/PRL expression and disrupted
cytoskeletal organization. Although LPAR6 remains understudied,
its involvement in cancer progression and survival (Lei et al,
20225 He et al,, 2021; Gnocchi et al,, 2019) and early pregnancy
adaptation in animals (Sadam et al., 2017; Piotrowska-Tomala et al.,
2024) highlights its biological significance. Our results establish
a critical role for LPAR6 in human decidualization and RIF
pathogenesis. We further demonstrated that LPAR6 protein
expression is reduced in RIF endometria and elevated during the
secretory phase, consistent with a functional role in receptivity.
Rescue experiments confirmed that LPA failed to promote
in LPARG6-inhibited hESCs,
LPARG is the primary receptor mediating LPAs effects during

decidualization indicating that
this process.

To explore downstream mechanisms, we evaluated the
PTEN/mTOR pathway, which is central to decidualization.
While PTEN, a negative regulator of PI3K,
upregulated in decidualization (Li et al, 2022), we observed

is typically

no significant change in response to LPA or LPARG6 inhibition.
In contrast, LPA downregulated mTOR expression, whereas
LPARG6 inhibition increased both mTOR and phospho-mTOR
levels. These seemingly discordant results suggest context-
dependent crosstalk between LPA-LPAR6 signaling and mTOR
activity, warranting further investigation to elucidate the precise
regulatory network.

Several limitations of this study should be acknowledged.
First, the sample size used in the metabolomic analysis was
relatively limited, which may have constrained the identification
of additional meaningful metabolites and reduced the robustness
of the findings against individual variations. Second, the in vitro
hESC model, while informative, does not fully recapitulate the
complex in vivo endometrial microenvironment, particularly the
interactions with immune cells, endothelial cells, and epithelial
components. Therefore, the conclusions drawn from this simplified
model require further validation in more physiologically relevant
systems. Finally, in vivo studies using LPAR6 knockout mice
or established RIF animal models are necessary to confirm the
physiological relevance and therapeutic potential of targeting the
LPA-LPARG6 axis. Despite these limitations, our findings provide
novel insights into the metabolic and molecular mechanisms
underlying RIF and establish a foundation for future functional and
translational studies.
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In conclusion, our integrated metabolomic-transcriptomic-
that LPA was
downregulated in the endometrium of RIF patients, and
identified the dysregulated LPA-LPARG6 signaling axis as a key
contributor to impaired decidualization. We further demonstrated
that both LPAR1 and LPAR6 were highly expressed during
decidualization of hESCs, but functional experiments established
that LPA promoted decidualization through LPAR6 rather than
LPARI1. These findings provide new mechanistic insights into

functional approach revealed significantly

the pathogenesis of RIF and highlight LPAR6 as a promising
therapeutic target for improving endometrial receptivity in
affected patients.
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