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Background: Geniposidic acid (GPA) has been reported to possess 
hypoglycemic, hypolipidemic, and choleretic properties. However, its 
efficacy against hyperlipidemia and the associated mechanisms remain 
inadequately defined.
Methods: A hyperlipidemia model was established in mice using a high-fat diet, 
followed by a 12-week intervention with GPA or lovastatin (positive control). 
Serum biochemical parameters and Oil Red O staining were assessed to evaluate 
lipid-lowering effects. Furthermore, NMR- and MS-based metabolomics, 
network pharmacology, and molecular docking approaches were employed to 
explore the underlying mechanisms.

Results: Biochemical analysis confirmed the lipid-lowering efficacy of GPA. 
Urinary metabolomics revealed that both GPA and lovastatin restored 
disturbed metabolic profiles, notably involving the TCA cycle, glycolysis, 
amino acid metabolism, and ketone body synthesis. Over 40 differential 
metabolites were identified, constructing a comprehensive metabolic 
network. Network pharmacology further enriched relevant metabolic 
pathways and screened key targets. Molecular docking demonstrated 
strong binding affinities between GPA and several core proteins, including 
ALB, CAT, ACACA, ACHE, and SOD1, suggesting these may be potential
therapeutic targets.

Conclusion: This study confirmed the anti-hyperlipidemic efficacy of GPA 
and, through integrated metabolomics and target prediction, elucidated its 
potential mechanisms of action. These findings provide a scientific basis for
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further research and offer a promising strategy for the development of novel 
antihyperlipidemic agents.

KEYWORDS

metabolomics, network pharmacology, molecular docking, anti-hyperlipidemia, 
geniposidic acid 

Background

Hyperlipidemia, the most common type of dyslipidemia, has 
been well recognized as significantly associated with increased 
risks of cardiovascular disease, fatty liver, atherosclerosis, and 
acute pancreatitis (Nelson, 2012; Pirillo et al., 2021). Effective 
management of hyperlipidemia is an important strategy for 
precautions against these diseases. Synthetic medications are 
frequently reported to cause side effects such as diarrhea, nausea, 
myositis, and abnormal liver function, which hamper their 
application. In contrast, medicinal herbs have been reported to 
be beneficial for the management of hyperlipidemia (Rauf et al., 
2022). Currently, plant-based therapies and natural products are 
regarded as important complementary medicines with full potential 
to improve hyperlipidemia.

Plant-based therapies, with thousands of years of history 
and minimal side effects, have attracted much interest and are 
becoming increasingly popular all over the world (Craig et al., 
2021). Many plants, such as Gardenia jasminoides Ellis (Zhizi) and 
Plantago asiatica L. (Cheqian), have been used individually or in 
formulations to treat hyperlipidemia (Liu et al., 2012; Roghani-
Shahraki et al., 2021). Natural products derived from such herbs, 
have become potential candidates for the development of new lipid-
lowering drugs (Hasani-Ranjbar et al., 2010; Sabzghabaee et al., 
2012). Various natural products have been obtained and have 
shown antihyperlipidemic effects in animal studies (El-Tantawy 
and Temraz, 2018). Geniposidic acid (GPA), an iridoid glucoside 
found in many herbs, including G. jasminoides and P. asiatica, has 
been proven to have cardiovascular, hypoglycemic, hypolipidemia, 
and choleretic activities (Akihisa et al., 2010; Hirata et al., 
2011; Kim et al., 2013; Peng et al., 2017; Wang Y. et al., 2021; 
Cheng et al., 2022). Experimental studies have demonstrated that 
GPA effectively reduces lipid accumulation in HepG2 cells and 
Caenorhabditis elegans, and attenuates plaque formation in a rabbit 
model of atherosclerosis, thereby supporting its anti-hyperlipidemia 
potential (Huang et al., 2023; Gao et al., 2014). However, its anti-
hyperlipidemia efficiency and remedial mechanisms are still not 
well defined.

Metabolomics, concerning the metabolic profiles of small-
molecule metabolites, has been widely utilized in systems biology, 
including toxicological (Dinis-Oliveira, 2017), pharmaceutical 

Abbreviations: HFD, high fat diet; GPA, geniposidic acid; TCA, tricarboxylic 
acid; TG, triglycerides; TC, total cholesterol; HDL-c, high-density 
lipoprotein-cholesterol; LDL-c, low-density lipoprotein-cholesterol; PCA, 
principal component analysis; OPLS-DA, orthogonal partial least squares 
discriminant analysis; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; 
NMR, nuclear magnetic resonance; MS, mass spectrometry; VIP, variable 
importance of projection; TMA, trimethylamine; DMA, dimethylamine; MA, 
methylamine.

(Puchades-Carrasco and Pineda-Lucena, 2015), and pathological 
studies (Dubin and Rhee, 2019). This could provide a holistic 
vision for pharmacodynamic evaluation and mechanistic studies of 
natural products (Yuliana et al., 2011; Halouska et al., 2011). As two 
main metabolomics platforms, a combination of Nuclear Magnetic 
Resonance (NMR) and high-resolution mass spectrometry (HRMS) 
techniques have been recognized as powerful methodologies for 
pharmacodynamic evaluation and mechanism research (Bingol and 
Brüschweiler, 2016).

Network pharmacology is a recently emerging systematic 
biology tool that generates complex interaction networks based on 
ligand compounds, potential target proteins, enriched pathways, 
and disease symptoms, thus shedding light on the pharmaceutical 
mechanisms underlying plant-based therapies (Wang X. et al., 
2021). Molecular docking technology realizes virtual combination 
based on the three-dimensional structure of chemical analysis and 
the established protein target data, and evaluates the binding effect 
of chemical drugs or natural products with potential targets, which 
has become an important supplement to network pharmacology 
research (Trott and Olson, 2010). Network pharmacology, molecular 
docking integrated with metabolomic approaches provides a 
novel and holistic view to elaborate the mechanism of clinical 
applications or potential therapies of herbal medicine, as well as 
natural products (Sharma and Yadav, 2022).

In the present study, GPA and lovastatin (positive control) were 
orally administered to a hyperlipidemia mouse model established 
by high-fat diet (HFD) feeding. Together with conventional serum 
chemistry analysis, NMR combined with MS-based metabolomics, 
network pharmacology analyses and molecular docking were 
carried out to explore the anti-hyperlipidemic efficiency of GPA and 
to elucidate the underlying mechanisms.

Materials and methods

Chemicals and reagents

GPA (purity >98%) was obtained from Chengdu Biopurify 
Phytochemicals Ltd. (Chengdu, China). Lovastatin (purity >99%) 
was supplied by Dalian Meilun Biology Technology Co. Ltd. 
(Liaoning, China).

Acetonitrile (LC grade), formic acid (MS grade), and 
ammonium acetate (MS grade) were purchased from Fisher 
Scientific, Inc. (Newark, DE, United States). Deuterium oxide 
(99.9% D) and leucine enkephalin (for TOF-MASS calibration) 
were purchased from Sigma-Aldrich (St. Louis, MO, United States). 
Deionized water was prepared using a Milli-Q system (Millipore, 
Billerica, MA, United States). All other chemicals and reagents used 
were of analytical grade. 
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Animal experiment

C57BL/6Slac mice (4 weeks, male, 10–13 g) were purchased 
from Shanghai SLAC Laboratory Animal Co. Ltd. (Shanghai, China) 
and kept in a humid (50%–60%), temperature (295–297 K), and 
light controlled (12 h light/dark cycle) environment, with ad libitum
access to water and food. Animal experiments were performed 
in accordance with the National Institute of Health Guidelines 
regarding the principles of animal care (2020) and approved by the 
Institutional Animal Care and Use Committee, Huanghe Science 
and Technology College (No. 2022-0063).

All mice were acclimatized for 1 week and then randomly 
divided into five groups (n = 6) in different cages. Mice in the control 
group (Con) were fed with a low-fat control diet (D12450B, rodent 
diet with 10 Kcal% fat, Research Diets, Inc., New Brunswick, NJ, 
United States), while the other animals were fed with high-fat diet 
(D12492, rodent diet with 60 Kcal% fat, Research Diets, Inc., New 
Brunswick, NJ, United States) for 12 consecutive weeks to induce 
hyperlipidemia. During the induction period, HFD-fed mice were 
treated with lovastatin (30 mg/kg, Lov), GPA at low (100 mg/kg, 
GPA1), high (300 mg/kg, GPA2), or equal amounts of water (HFD). 
Mice in the control group received an equal amount of water. The 
intragastric administration lasted for 12 weeks (once daily). Pure 
water was used to dissolve the drugs.

At the end of the experiment, urine samples were collected 
overnight and centrifuged at 4 °C at 2,000 g for 10 min. 
Subsequently, serum samples were acquired via the arteria cruralis, 
followed by 1 h of standing and centrifugation at 4 °C at 2,000 g for 
10 min. All samples were kept at −80 °C prior to use. 

Biochemistry assay

Serum biochemical assays were conducted using commercially 
available kits (Nanjing Jianchen Biotech Inc., Nanjing, China). 
Serum levels of total cholesterol (TC), triglyceride (TG), low-
density lipoprotein cholesterol (LDL-C), and high-density 
lipoprotein cholesterol (HDL-C) were determined according to the 
manufacturer’s instructions. All samples were tested in duplicate. 

Oil Red O staining

Liver tissues were fixed in 4% paraformaldehyde solution at 
room temperature overnight. The fixed tissues were embedded 
in OCT, stored at −80 °C and sectioned. Frozen tissue sections 
were subjected to Oil Red O staining (Servicebio, China). After 
staining, images were scanned using a slide scanner (3DHISTECH 
Pannoramic SCAN, Hungary). 

1H NMR and MS based metabolomics

For urine samples preparation and data acquisition, we followed 
the approach of our previous work (Li et al., 2015). A 1D NOESY 
(RD-90°-t1-90°-tm-90°-acquire) NMR pulse program with water 
suppression was employed for NMR data recording on a Bruker 
600-MHz AVANCE III NMR spectrometer (Bruker, Germany). 

TOF MS Metabolomic profiles were acquired using the Waters 
ACQUITY™ UPLC-Q/Tof-MS system (Waters Co., Milford, MA, 
United States), with chromatograph separation achieved under a 
gradient elution program. Principal component analysis (PCA) and 
orthogonal partial least squares discriminant analysis (OPLS-DA) 
were employed to investigate differences among groups and identify 
significantly altered metabolites. NMR metabolites were assigned by 
comparison with standard compound spectra (https://www.hmdb.
ca; https://www.bml-nmr.org) or screened against the Chenomx 
NMR software suite (Vers. 7.6, Chenomx, Inc., AB, CAN). Potential 
metabolic biomarkers revealed by MS were identified by searching 
the Human Metabolome Database (HMDB) and confirming MS2 
fragmentation. The metabolic pathways involved were obtained 
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
the Human Metabolome Database (HMDB). 

Network pharmacology analysis

Putative molecular targets of GPA were obtained from 
the PharmMapper server (PharmMapper (lilab-ecust.cn)), and 
Prediction Target of Swiss Target Prediction network database 
(http://www.swisstargetprediction.ch/), as well as a prediction 
webserver for ATC codes and target prediction of compounds 
(https://prediction.charite.de/). The GeneCards (https://genecards.
weizmann.ac.il/v3/) and OMIM (https://www.omim.org/) databases 
were used for target collections related to hyperlipidemia. All 
retrieved targets were uniformed in their official symbols by 
searching against UniProt Knowledgebase (http://www.uniprot.
org/). The intersectional targets of molecular targets and 
hyperlipidemia-related targets were regarded as the predicted targets 
of GPA against hyperlipidemia. The gene and protein names of these 
targets were obtained from UniProtKB (http://www.uniprot.org/) 
for further analyses.

The ingredients-targets-pathways-disease network was 
constructed and visualized by Cytoscape 3.7.1 (http://cytoscape.
org/). Pathway and Gene Ontology (GO) enrichment of the 
predicted targets was conducted using ClueGO in Cytoscape. 
KEGG pathway analysis was performed with a p-value of <0.05. The 
metabolites identified by metabolomics, together with the predicted 
targets collected, were imported into MetaboAnalyst (https://www.
metaboanalyst.ca/) to obtain a compound-gene network to visualize 
the interactions among the metabolites and genes. 

Molecular docking

Molecular docking test was assessed using AutoDockTools 
V1.5.6 to confirm the interaction of GPA with proposed targets (Li et al., 
2024). The top two core targets were evaluated to verify the method’s 
reliability, and receptor proteins were selected. The core protein 
crystal structures were obtained from the protein data bank (PDB, 
http://www.rcsb.org/), and the PyMol program was used to optimize 
the protein structures by deleting H2O. Hydrogens were inserted 
into the proteins, and the resulting charge was calculated with 
AutoDockTools V1.5.6 and exported as a PDBQT file. The molecular 
docking results were presented as docking scores; the higher the 
score, the greater the likelihood that a protein was a target of GPA. 
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Statistics

All data are presented as the mean ± standard deviation (SD). 
GraphPad Prism 9.0 was used for statistical analysis between groups. 
Data results were identified using one-way analysis of variance 
(ANOVA). Statistical significance was set at p < 0.05.

Results

Biochemical and pathological analysis

To validate GPA’s antihyperlipidemic effect of GPA, serum 
levels of total cholesterol (TC), triglycerides (TG), high-density 
lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-
cholesterol (LDL-C) were tested. The levels of TC, TG, and LDL-
C in the HFD group were remarkably higher than those in the 
control (Con) group (Figure 1), indicating successful induction of 
hyperlipidemia in mice. While after GPA or lovastatin treatment 
for 12 weeks, TG levels in GPA1, GPA2, and Lov groups were 
significantly reduced by 29.28%, 47.24%, and 34.17%; LDL-C levels 
were reduced by 27.88%, 28.62%, and 30.03% (P < 0.05), respectively. 
As for the TC levels, a significant reduction of 10.60% in GPA2 group 
was also noticed in contrast to the HFD group (P < 0.05). Meanwhile, 
HDL-C levels in Lov, GPA1, and GPA2 groups were all increased to 
some extent compared to the HFD group (11.88% for Lov, P < 0.05).

Oil red O staining was used to determine the accumulation of 
lipids in the liver of mice. The results showed that GPA reduced lipid 
accumulation in the liver of HFD mice in a dose-dependent manner, 
which was consistent with the results of biochemical analysis. 

1H NMR based metabolomics analysis

Typical 1H NMR spectra of urine samples from the Con, HFD, 
Lov, GPA1, and GPA2 groups are presented in Figure 2, with the 
major metabolites labeled. The identified metabolites, their assigned 
chemical shifts, and metabolic pathways are listed in Table 1. 
By comparing the spectra of the HFD group with those of 
the Con group, increased metabolites were identified as follows: 
creatinine, acetoacetate, and allantoin, and decreased metabolites 
were identified as taurine, trimethylamine (TMA), citrate, and 
succinate. After treatment with GPA, the acetate and taurine 
levels markedly increased. In addition, the spectra of the Lov and 
GPA groups were different, indicating differences in metabolic 
regulation. More detailed metabolic changes were analyzed using the 
orthogonal partial least squares discriminant analysis (OPLS-DA) 
model and are presented below.

First, urine samples from the five groups were analyzed using 
the OPLS-DA model. The score plot (Figure 3a) showed good 
separation among all groups (R2Y 0.932 and Q2 0.755). The 
dots in the HFD group were distributed far from those in the 
Con group, indicating a hyperlipidemic state. Meanwhile, the 
corresponding dots of the GPA or Lov groups deviated from 
those of the HFD group and approached those of the Con group, 
suggesting that GPA or lovastatin treatment effectively improved 
the disturbed hyperlipidemia metabolism profiles. Compared with 
Lov or GPA1 groups, GPA2 group was closer to the Con group, 

revealing a better therapeutic effect. These results indicated that 
GPA’s antihyperlipidemic effect was comparable to that of lovastatin. 
The variables with a significant influence on clustering are shown 
in Figure 3b. However, it was difficult to obtain deeper insight into 
the metabolic alterations in this plot. The OPLS-DA model between 
Con and HFD groups was conducted to detail the metabolic features 
of HFD induced hyperlipidemia. Obvious separation was observed 
(Figure 3c, R2Y = 0.994 and Q2 = 0.962), confirming hyperlipidemia 
metabolic changes. The S-plot with significantly altered metabolites 
in the lower left or upper right quadrant shows the contributions of 
metabolites to discrimination (Figure 3D).

Similarly, to reveal the functional mechanisms of GPA 
and lovastatin, OPLS-DA analysis was conducted between 
the GPA2 and HFD groups, the Lov and HFD groups, and 
the GPA2 and Lov groups. The corresponding scores and S-
plots are shown in Supplementary Figures S1–S3. Metabolites 
that were markedly different between the two groups were 
identified and discussed. Conclusions were drawn that GPA as 
well as lovastatin could significantly improve the metabolism of 
hyperlipidemic mice, and their regulatory mechanisms may be
different.

In addition, the integral areas of the identified metabolites in the 
NMR spectra were displaced in a heatmap to visualize the metabolic 
characteristics of each group (Figure 4). Statistical analysis was 
conducted using one-way analysis of variance (ANOVA), followed 
by the least significant difference (LSD) post hoc test. A probability 
of p < 0.05 was regarded as statistically different among groups.

MS based metabolomics analysis

The MS spectra of the urine samples were acquired in both 
ESI+ and ESI− modes. Representative base peak intensity (BPI) 
chromatograms are shown in Supplementary Figure S4. To reveal 
the antihyperlipidemic effects of GPA and lovastatin, OPLS-DA 
analysis of the model and treated groups was conducted. The 
score plots of OPLS-DA (Figures 5a,b) showed that the GPA- and 
lovastatin-treated groups clustered away from the HFD group in 
both ESI+ and ESI− modes, which was also observed in NMR 
analysis. In addition, to some extent, GPA and lovastatin recovered 
HFD-induced hyperlipidemia to normal control levels, confirming 
their anti-hyperlipidemic effects. To investigate endogenous 
metabolite alterations caused by HFD, OPLS-DA analysis was 
conducted between the hyperlipidemic and control groups 
(Figures 5c,d), suggesting that significant biochemical changes 
were induced by HFD feeding. The primary ions responsible for 
group discrimination are captured in the corresponding S-plot 
(Figures 5e,f). After screening with “VIP>1.00”, 78 (ESI+) and 12 
(ESI-) metabolite variables were selected for further identification, 
of which 28 were identified. The identified metabolites, together 
with retention time, m/z, related pathways, are shown in Table 2. 
The variation among groups were displayed in Figure 6.

Network pharmacology study

For GPA molecular targets, 153 proteins were obtained from 
the Pharmapper, Swiss Target Prediction network, and SuperPred 
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FIGURE 1
The effect of GPA on lipid accumulation in the liver of mice. (a) Boxplots for effects of GPA and lovastatin on serum TC, TG, LDL-C, HDL-C levels in 
hyperlipidemia mice (n = 6). The bottom of each box, the line drawn in the box and the top of the box represent the 1st, 2nd, and 3rd quartiles, 
respectively. The whiskers extend to ±1.5 times the interquartile range (from the 1st to 3rd quartile). (b) Oil red O staining of liver. Scar bar = 100 μm.∗p
< 0.05 and∗∗p < 0.01 vs. HFD group.

databases. For “hyperlipidemia-related targets,” 1555 proteins were 
retrieved from GeneCards and OMIM databases. The proteins 
were filtered using unions and duplicate values were removed. 
With the help of the Venny 2.1.0 tool (https://bioinfogp.cnb.csic.
es/tools/venny/), 31 intersectional targets were obtained (Figure 7a). 
The STRING database was used to construct a protein-protein 
interaction (PPI) network. To elucidate the antihyperlipidemic 
effects of GPA, Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analyses 
were performed (Figure 7b). The main terms in the GO analysis 
were antioxidant activity (GO:0016209), reactive oxygen species 
metabolic process (GO:0072593), cholesterol metabolic process 
(GO:0008203), alcohol metabolic process (GO:0006066), and 
fatty acid biosynthetic process (GO:0006633). KEGG enrichment 
analysis revealed significantly affected pathways including the 
AMPK signaling pathway, alcoholic liver disease, pyruvate 
metabolism, lipid and atherosclerosis, insulin signaling pathway, 
adipocytokine signaling pathway, fatty acid biosynthesis, bile 
secretion, glucagon signaling pathway, and insulin resistance. The 
enriched joint metabolic pathways and component-target-disease 
network are illustrated in Figure 7c.

Target screening and docking

To better understand the mechanisms underlying GPA’s 
antihyperlipidemic efficiency, an interaction network of identified 
metabolites and intersectional targets was established (Figure 7e). 
By checking the potential targets identified in the network 
pharmacology and the metabolites in the metabolic analysis, 
eight key targets were identified: ACACA, ACHE, ALB, CAT, FH, 
MTOR, SERPINC1 and SOD1. The metabolic pathways involved 
are associated with the TCA cycle, fatty acid biosynthesis, and 
oxidative stress (Figure 7d).

Molecular-docking analysis was performed to confirm that eight 
key targets bound to GPA respectively. GPA was strongly bound 
to ALB, CAT, ACACA, ACHE, and SOD1, with binding energies 
were −7.7, −7.5, −7.3, −6.9, and −6.8 kJ/mol (Table 3), respectively. 
For GPA, Nine H-bonds were detected at Gln422, Arg546, His596, 
Tyr577, Trp246 and Arg478 on ACACA (Figure 8a). Three H-bonds 
were detected at ASN524 and GLU306 on ACHE (Figure 8b). Eleven 
H-bonds were detected at ASN295, ARG222, ARG218, LYS195 
and GLU292 on ALB (Figure 8c). Four H-bonds were detected at 
ALA123, ARG127, GLY121 and SER254 on CAT (Figure 8d). Five 
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FIGURE 2
Typical 600 MHz 1H NMR spectra of mice urine from Con (a), HFD (b), Lov (c), GPA1 (d) and GPA2 (e) groups. Metabolites: 1, 1-methylnicotinamide; 2, 
niacinamide; 3, nicotinamide N-oxide; 4, formate; 5, hippurate; 6, indole-3-acetate; 7, benzoate; 8, N-phenylacetylglycine; 9, tyrosine; 10, 
4-hydroxyphenylacetate; 11, trans-aconitate; 12, allantoin; 13, urea; 14, cis-aconitate; 15, glucose; 16, tartrate; 17, cystine; 18, creatinine; 19, creatine 
phosphate; 20, creatine; 21, taurine; 22, betaine; 23, O-acetylcholine/O-phosphocholine; 24, choline; 25, N,N-dimethylglycine; 26, trimethylamine; 27, 
citrate; 28, methylamine; 29, dimethylamine; 30, glutamine; 31, succinate; 32, pyruvate; 33, acetoacetate; 34, acetone; 35, acetate; 36, lactate; 37, 
methylmalonate; 38, leucine/isoleucine; 39, valine; 40, alanine.

H-bonds were detected at ASP119, TRP117, TYR115 and THR65 
on SOD1 (Figure 8h). The binding energies between FH, MTOR, 
SERPINC1 and GPA are −6.3, −6.5 and −5.8 kJ/mol (Figures 8e–g), 
respectively, meaning lower binding activity to GPA than other 
active targets. The above indicates that GPA binds to the active site 
of the target.

Discussion

Hyperlipidemia is a metabolic disorder characterized by 
abnormally elevated levels of lipids (TG, TC, HDL-C and LDL-
C) in the bloodstream (Wang et al., 2024). Its primary hazard 
lies in promoting atherosclerosis, thereby increasing the risk of 
cardiovascular diseases (Maulana and Ridwan, 2021). Existing 
first-line anti-hyperlipidemic drugs are limited in their clinical 
application due to varying degrees of adverse effects or efficacy 
constraints. For instance, statins are associated with musculoskeletal 
adverse reactions and impacts on blood glucose levels (Bell et al., 

2024; Wang et al., 2015). Ezetimibe has limited lipid-lowering 
potency and poor patient adherence (Olmastroni et al., 2024; 
Rea et al., 2021). Additionally, PCSK9 inhibitors are hampered by 
their high cost (Xiang et al., 2023). Thus, there remains an urgent 
need to explore safe and effective anti-hyperlipidemic agents.

Plant-based therapies are fascinating and have attracted 
increasing attention. Natural products derived from related herbs 
are regarded as credible targets for drug development. As one of 
the most abundant components in GPA, one of the most abundant 
ingredients in Plantaginis semen (Ji-Ping et al., 2020) and Gardeniae
Fructus (Wu et al., 2013), has been shown to have antihypertensive 
(Ishimitsu et al., 2021), anti-inflammatory (Tamura et al., 2022), 
anti-aging (Wang Y. et al., 2021), and neurotrophic effects 
(Zhou et al., 2019). Herbal medicines such as Plantaginis semen 
(Sun et al., 2019) and Gardeniae Fructus (Lee et al., 2005) have been 
reported to have lipid-regulating efficacy, leading to the speculation 
that GPA may also exert anti-hyperlipidemic activity. However, the 
antihyperlipidemic efficiency of GPA has not been explored, the 
underlying mechanism remains unknown. Therefore, investigating 
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TABLE 1  1H Chemical shift assignment of the metabolites identified in urine and related metabolic pathways.

NO. Metabolites Moieties δ1H(ppm)and multiplicity Related pathway

1 1-methylnicotinamide 9.27(s); 8.96(d); 8.90(d); 8.16–8.20(t); 
4.48(s)

Nicotinate and Nicotinamide Metabolism

2 Niacinamide 2-H,6-H 8.98(d); 8.70–8.71(dd); Nicotinate and Nicotinamide Metabolism

3 Nicotinamide N-oxide 2-H,6-H,4-H,5-H 8.74(s); 8.47-8.49(d); 8.10–8.13(d); 
7.12–7.14(m)

Nicotinate and Nicotinamide Metabolism

4 Formate HCOO 8.46(s) Folate Metabolism

5 Hippurate Ph-H 7.81-7.84(d); 7.61–7.64(m); 7.53–7.56(t); Gut microbiome-derived metabolism

6 Indole-3-acetate Ph-H, NH 7.61–7.64(d); 7.49–7.51(d); Tryptophan Metabolism

7 Benzoate Ph-H 7.46–7.49(t) Hippurate synthesis

8 N-phenylacetylglycine Ph-H,NCH2CO 7.39–7.43(m); 7.33–7.37(m); 3.36–3.37(s) Metabolites of fatty acids

9 Tyrosine Ph-H 7.19–7.21(m); 6.89–6.94(d); Tyrosine Metabolism

10 4-Hydroxyphenylacetat Ph-H 7.14–7.16(d); 6.85–6.87(d); Tyrosine Metabolism

11 trans-Aconitate C=CH-CO 6.59–6.60(s)

12 Allantoin CONHCO, COCHN 6.09(s); 5.37–5.38(s) Metabolites Related to oxidative stress and 
kidney damage

13 Urea CO(NH2)2 5.7–6.0(s) Urea Cycle

14 cis-Aconitate C=CH-CO 5.74(t) TCA cycle

15 glucose CH 4.66(d) Glycolysis and gluconeogenesis

16 Tartrate COCOH-H 4.34–4.35(s)

17 Cystine NCHCO 4.09–4.12(m) Taurine metabolism

18 Creatinine N-CH3, N-CH2- 4.05(s); 3.04(s) Creatine metabolism

19 Creatine phosphate N-CH3, N-CH2- 3.94(s):3.04(s) Creatine metabolism

20 Creatine N-CH3, N-CH2- 3.92(s); 3.02(s) Creatine metabolism

21 Taurine N-CH2, S-CH2 3.25–3.30(t),3.40–3.44(t) Bile acid biosynthesis and taurine 
metabolism

22 betaine N-H2 3.25–3.26(s) Choline metabolism

23 O-Acetylcholine/O-Phosphocholine N(CH3)3 3.20–3.22(s) Choline metabolism

24 Choline N(CH3)3 3.18–3.19(s) Choline metabolism

25 N,N- Dimethylglycine N(CH3)2 2.92(s)

26 Trimethylamine N(CH3)3 2.86(s) Gut microbiome-derived metabolism

27 Citrate Half CH2, Half CH2 2.65–2.70(d),2.20–2.55(d) TCA cycle

28 Methylamine NCH3 2.59–2.60(s) Gut microbiome-derived metabolism

29 Dimethylamine N(CH3)2 2.70–2.71 Gut microbiome-derived metabolism

30 Glutamine -NCO(CH2)2- 2.42–2.48(m),2.10–2.14(m) Glutamate Metabolism

(Continued on the following page)
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TABLE 1  (Continued) 1H Chemical shift assignment of the metabolites identified in urine and related metabolic pathways.

NO. Metabolites Moieties δ1H(ppm)and multiplicity Related pathway

31 Succinate (COCH2)2 2.40(s) TCA cycle

32 Pyruvate COCH3 2.37(s)

33 Acetoacetate COCH3 2.28(s) Synthesis and degradation of ketone bodies

34 Acetone CO(CH3)2 2.22(s) Synthesis and degradation of ketone bodies

35 Acetate COCH3 1.92(d)

36 Lactate βCH3 1.33(d) Glycolysis and gluconeogenesis

37 Methylmalonate CH3 1.23–1.25(d) Propanoate Metabolism/Valine, Leucine and Isoleucine degradation

38 Leucine/isoleucine
δCH3 0.98(d)

Valine, leucine and isoleucine biosynthesis
γCH3 0.94(d)

39 Valine γCH3 1.04(d); 0.98(d) Valine, leucine and isoleucine biosynthesis

40 Alanine βCH3 1.49–1.49(d) Glycolysis and gluconeogenesis

Notes. s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, m = multiplet.

FIGURE 3
Metabolomics analysis by NMR platform. OPLS-DA score plot (a), loading plot (b) of urine 1H NMR spectra obtained from Con, HFD, Lov, GPA1, and 
GPA2 groups; OPLS-DA score plot (c) and S-plot (d) of urine 1H NMR spectra obtained from Con and HFD groups.
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FIGURE 4
Heatmap of metabolites identified in NMR spectra.

the anti-hyperlipidemic effect of GPA would play a positive role in 
the clinical development of novel anti-hyperlipidemic drugs. In this 
study, serum biochemistry, metabolomics, network pharmacology 
and molecular docking were integrated to address this efficiency.

Metabolomics has proven to be a powerful tool for elucidating 
the mechanisms underlying the efficacy of natural products. A 
combination of NMR and MS techniques provides a comprehensive 
platform for investigating metabolic characteristics. However, the 
combination proposed a requirement for the sample amount, 
which could not be guaranteed by serum samples from individual 
mice. Moreover, the limited number of serum samples was further 
reduced using biochemical analysis. Therefore, urine samples 
were used for metabolomic studies in this study. Previous studies 
have demonstrated that urinary metabolomics offers a reliable 
and non-invasive approach for investigating metabolic diseases 
(Zhao et al., 2021; Ji et al., 2018). In this study, due to the 
limited volume of mouse serum samples, urinary metabolomics 
was employed to overcome this constraint. This approach 
provided comprehensive metabolic regulation data and revealed 
regulatory networks, thereby contributing valuable insights into 

the pharmacological mechanisms of GPA against hyperlipidemia. 
Furthermore, network pharmacology and molecular docking 
were integrated as a supplementary tool to verify the findings of
metabolomic analysis.

Serum biochemistry revealed that GPA significantly ameliorated 
the serum lipid profile of hyperlipidemia. Oil Red O staining of 
the liver also demonstrated that GPA dose-dependently reduced 
lipid deposition in the liver tissues of hyperlipidemic mice and 
alleviated hepatic steatosis, with the effect of the high-dose group 
being comparable to that of the positive control drug lovastatin. 
NMR and MS-based metabolomics studies showed that the urine 
metabolomics profile of HFD-induced mice drifted from that of 
the CON group, suggesting that biochemical changes occurred 
because of HFD feeding. Nevertheless, the GPA intervention-
driven urine profiles of the treated groups regressed towards 
the Con group, verifying the hyperlipidemia-regulating effect 
of GPA. In addition, the GPA2 group showed better recovery 
from metabolic disorders caused by HFD feeding, suggesting a 
better anti-hyperlipidemic effect at a dose of 300 mg/kg body
weight.
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FIGURE 5
OPLS-DA analysis of UPLC-Q-TOF/MS data obtained in positive and negative ionization modes. (a,b) Score plots for Con, HFD, Lov, GPA1, and GPA2 
groups in positive and negative modes. (c,d) Score plots for Con and HFD groups in positive and negative modes and according S-plots (e,f).

Based on the alterations in the identified biomarkers, a 
comprehensive metabolic sketch map of hyperlipidemia and GPA 
intervention was obtained (Figure 9). More than nine metabolic 
pathways were involved, including valine, leucine, and isoleucine 
biosynthesis; bile acid biosynthesis and taurine metabolism; 
glycolysis and gluconeogenesis; TCA cycle; β-oxidation of fatty 
acids; synthesis and degradation of ketone bodies; creatine 
metabolism; metabolites related to gut microbiota; metabolites 
related to oxidative stress; and the kynurenine pathway. Network 
pharmacology tentatively accounts for the mechanism by which 

GPA improves hyperlipidemia. According to KEGG pathway 
enrichment, pyruvate metabolism, lipid and atherosclerosis, insulin 
signaling pathway, fatty acid biosynthesis, bile secretion, glucagon 
signaling pathway, and insulin resistance were involved. GO term 
analysis revealed that antioxidant activity (GO:0016209), reactive 
oxygen species metabolic processes (GO:0072593), cholesterol 
metabolic processes (GO:0008203), and fatty acid biosynthetic 
processes (GO:0006633) were mediated by the antihyperlipidemic 
efficiency. After combining metabolomic findings with network 
pharmacology results, the selected metabolic pathways were 
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TABLE 2  Potential biomarkers identified by MS, together with retention time, measured molecular mass, related pathway.

HMDB ID Metabolite RT (min) Observed 
m/z

Exact Mass ESI mode Adduct Fragments Related 
pathway

HMDB0000393 3-Hexenedioic 
acid

17.84 145.0332 144.0422 positive M + H 127.0390,109.0284 β-Oxidation of 
fatty acids

HMDB0000210 Pantothenate 4.27 220.1176 219.1106 positive M + H 185.21012 Pantothenate 
and CoA 
Biosynthesis

HMDB0000159 Phenylalanine 3.98 166.0738 165.0789 positive M + H 119.9640, 
13.9640

Phenylalanine 
metabolism

HMDB0000714 Hippuric acid 3.91 180.0847 179.0582 positive M + H 105.0422,77.0012 Phenylalanine 
metabolism

HMDB0000715 Kynurenic acid 4.82 190.0510 189.0425 positive M + H 143.9810 Tryptophan 
metabolism

HMDB0000893 Suberic acid 5.69 175.0811 174.0892 positive M + H 158.0142, 
99.9012

β-Oxidation of 
fatty acids

HMDB0000562 Creatinine 0.83 114.0676 113.0589 positive M + H 86.00850 Creatine 
metabolism

HMDB0000064 Creatine 0.82 132.0799 131.0694 positive M + H 90.2200, 44.0215 Creatine 
metabolism

HMDB0000094 Citric acid 0.86 191.0194 192.0270026 negative M-H 111.0072,
67.1089,87.0067

TCA circle

HMDB0000574 L-Cysteine 0.84 166.0174 121.0197 negative M + FA-H 33.0212 Taurine 
metabolism

HMDB0000696 L-Methionine 5.07 150.0431 149.0510 positive M + H 61.1350, 74.0902 Methionine 
metabolism

HMDB0000158 Tyrosine 1.81 182.0812 181.0738 positive M + H 136.1240 Aromatic amino 
acid metabolism

HMDB0003269 Nicotinuric acid 4.96 181.0616 180.0535 positive M + H 135.1244 Nicotinate and 
Nicotinamide 
Metabolism

HMDB0000220 Palmitic acid 17.86 255.2341 256.2402 negative M-H Metabolites of 
fatty acids

HMDB0000201 Acetylcarnitine 4.86 204.1350 203.1157 positive M + H 84.0806 Energy 
metabolism 
pathways

HMDB0001870 Benzoic acid 5.22 121.0340 122.0367 negative M-H 77.1007 Hippurate 
synthesis

HMDB0000043 Betaine 0.83 119.0674 118.0868 positive M + H 59.0128 Choline 
metabolism

HMDB0000072 Cis-Aconitic 
acid

0.85 173.0090 174.0164 negative M-H 84.98629 TCA cycle

HMDB0000122 D-Glucose 3.03 179.1010 180.06341 negative M-H 89.0124, 
118.9012

Glycolysis and 
gluconeogenesis

HMDB0000195 Inosine 1.97 267.0603 268.0807 negative M-H 133.9956, 
187.9406

Purine 
Metabolism

(Continued on the following page)
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TABLE 2  (Continued) Potential biomarkers identified by MS, together with retention time, measured molecular mass, related pathway.

HMDB ID Metabolite RT (min) Observed 
m/z

Exact Mass ESI mode Adduct Fragments Related 
pathway

HMDB0000161 L-Alanine 0.94 90.0540 89.0476 positive M + H Glycolysis and 
gluconeogenesis

HMDB0000641 L-Glutamine 1.85 147.0746 146.0691 positive M + H 83.9657 Glutamate 
Metabolism

HMDB0000190 L-Lactic acid 2.30 89.2772 90.0317 negative M-H Glycolysis and 
gluconeogenesis

HMDB0000906 Trimethylamine 14.6 76.0578 59.0735 positive M + H Gut 
microbiome-
derived 
metabolism

HMDB0013034 Palmitoylglycine 17.7 314.2330 313.2616 positive M + H 74.0251, 
268.2520

Metabolites of 
fatty acids

HMDB0000462 Allantoin 4.31 159.0518 158.0439 positive M + H 115.9576, 
61.1640

Metabolites 
Related to 
oxidative stress 
and kidney 
damage

HMDB0000243 Pyruvate 0.85 87.1007 88.01604 negative M-H TCA cycle

HMDB0000251 Taurine 0.92 123.9102 125.0146 negative M-H 106.8945, 
79.8195

Taurine 
metabolism

FIGURE 6
Heatmap of metabolites identified in MASS spectra.
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FIGURE 7
Network pharmacology analysis of GPA treating hyperlipidemia. (a) Venn diagrams of the predicated targets and hyperlipidemia retrieved targets; (b)
The GO enrichment analysis of potential targets by ClueGO; (c) The KEGG pathways enrichment by 31 intersected targets. All pathways have a p-value 
of <0.05; (d) Joint metabolic pathways analysis by target and metabolites; (e) Target-metabolites network collected by Metabo-analyst.

expounded. Molecular docking verifies the binding activity between 
GPA and potential targets in the interaction network, further 
deepening the certainty of potential targets.

Isoleucine, leucine, and valine are ketogenic amino acids that can 
be quickly transformed into acetyl-CoA. The urine concentrations 
of isoleucine, leucine, and valine were significantly upregulated 

in the HFD group, which is considered to be related to insulin 
resistance (Newgard et al., 2009). Excessive acetyl-CoA generation 
was found to have a negative effect on the metabolism of ketogenic 
amino acids in HFD induced animals. Interestingly, reduced levels 
of valine, leucine, and isoleucine were also observed in the GPA2 
group. This decrease was considered to indicate amelioration of 
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TABLE 3  The binding energies of the target proteins to GPA.

Targets Uniprot ID Protein name Binding 
energies 
(kJ·mol-1)

ALB P02768 Albumin −7.7

CAT P04040 Catalase −7.5

ACACA Q13085 Acetyl-CoA 
carboxylase 1

−7.3

ACHE P22303 Acetylcholinesterase −6.9

SOD1 P00441 Superoxide 
dismutase [Cu-Zn]

−6.8

SERPINC1 P01008 Antithrombin-III −6.5

FH P07954 Fumarate hydratase, 
mitochondrial

−6.3

MTOR P42345 Serine/threonine-
protein kinase 
mTOR

−5.8

insulin resistance by GPA treatment. Correspondingly, the insulin 
signaling pathway was revealed to be involved in the network 
pharmacology of GPA against hyperlipidemia.

Meanwhile, excessive acetyl-CoA promotes cholesterol and bile 
acid synthesis in hyperlipidemic mice. Taurine can be conjugated 
with bile acids to form bile salts, which is an important mechanism 
for the disposal of excess cholesterol. Herein, taurine levels were 
observably decreased in the urine of the HFD group, suggesting that 
the system attempted to eliminate excess cholesterol by converting 
it into bile salts (Murakami et al., 2000). In addition, taurine is an 
important antioxidant, and its decline may lead to oxidative stress in 
hyperlipidemia (Jiang et al., 2012). After GPA treatment, the taurine 
level was significantly increased, which may indicate a decline in the 
synthesis of cholesterol or bile acid or an improvement in oxidative 
stress. In line with the network pharmacology analysis, the pathways 
of bile secretion, antioxidant activity, and reactive oxygen species 
metabolic processes were also revealed to be involved in GPA’s 
antihyperlipidemic effect.

Pyruvate can enter the tricarboxylic acid (TCA) cycle or be 
converted into alanine and lactate. Increased pyruvate levels have 
been detected in hyperlipidemia, which could be explained by the 
suppression of the pyruvate dehydrogenase complex (Song et al., 
2013). In addition, the reduction of dissolved oxygen, along with 
hyperlipidemia, may downregulate the conversion of pyruvate 
to acetyl-CoA, resulting in high levels of pyruvate and lactate 
(Jiang et al., 2013). The current study revealed increased levels of 
pyruvate, lactate, alanine, certain glucogenic amino acids (isoleucine 
and valine), and glucose in HFD mice, implying that glucose aerobic 
oxidation was inhibited, while glycolysis and gluconeogenesis were 
upregulated under hyperlipidemia. GPS interventions decreased 
the urine levels of glucose, pyruvate, and lactate, suggesting the 
suppression of gluconeogenesis and glycolysis. Abnormal glucose 
metabolism disturbed by the HFD was recovered by GPA treatment 

to some extent. This could possibly explain the hypoglycemic 
effects of GPA-containing herbs (Chen et al., 2014). Coincidentally, 
pyruvate metabolism, glucagon signaling pathway, and insulin 
resistance pathways were found to be associated with GPA’s 
antihyperlipidemic effects by network pharmacology analysis.

The TCA cycle, also known as the citric acid cycle, is the 
main energy-producing source under aerobic conditions. Our 
metabolomic analysis revealed that the levels of TCA cycle 
intermediates, including citrate, succinate, and trans-aconitate, were 
decreased in HFD-induced animals, suggesting downregulation 
of the TCA cycle and attenuation of glucose oxidation in the 
liver. This alteration indicated that the energy consumption pattern 
switched to lipid oxidation under hyperlipidemia. Fortunately, the 
urinary levels of citrate, succinate, and cis-aconitate increased 
after GPA intervention, indicating an upregulated TCA cycle 
and enhanced energy consumption back to the TCA cycle. This 
confirmed that GPA treatment partially improved abnormal energy 
metabolism in hyperlipidemia. This tendency was also revealed by 
network pharmacology analysis, as the glucagon signaling pathway 
is involved.

Acetate was significantly elevated in the case of hyperlipidemia 
due to the suppression of the TCA cycle and the dominating 
energy provision of lipid oxidation. Increased acetate levels have 
been reported in the urine of hyperlipidemic patients (Yang et al., 
2019). Increased excretion of 3-hexenedioic acid and suberic 
acid was identified biomarkers of fatty acid metabolism disorder 
(Wang et al., 2019; Hagen et al., 1999). Consistently, these two 
dicarboxylic acids were increased in our study, indicating disorders 
of β-oxidation. However, the urine acetate level increased after GPA 
intervention, indicating improved elimination of the β-oxidation 
end-product in the form of urine acetate. As for 3-hexenedioic acid 
and suberic acid, decreased urine levels indicate an improvement in 
fatty acid β-oxidation. The involvement of fatty acid biosynthesis was 
also revealed using network pharmacology analysis.

An excess amount of acetyl-CoA is produced in hyperlipidemia, 
leading to enhanced synthesis of ketone bodies. Consistent with a 
previous report (Song et al., 2013), two important ketone bodies, 
acetoacetate and acetone, were increased in the urine samples of 
HFD induced mice in the present study. Nevertheless, urinary 
acetone and acetoacetate levels were subsequently decreased by 
GPA treatment, suggesting the suppression of ketone body synthesis 
and avoidance of ketoacidosis. This decrease was consistent with 
previous reports (Wang et al., 2013), implying enhanced acetyl-CoA 
elimination in other ways.

Creatine and creatine phosphate are well-recognized for their 
roles in energy metabolism. The urine levels of creatine and 
creatine phosphate have been reported to decrease in obesity or 
hyperlipidemia (Jiang et al., 2013). However, our metabolomic 
analysis showed an unexpected inconsistency, which may be 
explained by the differences in animal species and induction periods. 
Diet-mediated changes in gut microbiota have been reported during 
hyperlipidemia (Won et al., 2013). Dietary choline is broken into 
betaine, monoamine (MA), dimethylamine (DMA), and TMA 
by gut microflora (Asatoor and Simenhoff, 1965). Urine levels 
of choline metabolites are indicators of gut microbiota status 
(Piloquet et al., 2003). Hippurate, as microbial–host co-metabolite, 
inversely associated with obesity, has been identified as pivotal in 
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FIGURE 8
The protein ligands of the docking simulation. (a) Docking of GPA with ACACA. (b) Docking of GPA with ACHE. (c) Docking of GPA with ALB. (d) Docking 
of GPA with CAT. (e) Docking of GPA with FH. (f) Docking of GPA with MTOR. (g) Docking of GPA with SERPINC1. (h) Docking of GPA with SOD1.

FIGURE 9
Potential metabolic pathways disturbed in hyperglycemia mice and regulated by GPA administration.

mediating the beneficial metabolic improvements under Western-
style diets (Nicholson et al., 2005; Lees et al., 2013). In line with 
previous studies (Jiang et al., 2013; Shearer et al., 2008), the urinary 

levels of choline metabolites and hippurate were significantly 
decreased by HFD in the current study. After GPA intervention, 
urine hippurate and benzoate levels increased, indicating partial 
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recovery of the gut microbial metabolism. Meanwhile, the urine 
levels of TMA, DMA, and MA, which were disturbed by HFD 
feeding, also recovered to some extent.

Allantoin, a convenient biomarker of oxidative stress, was 
increased in the urine of the HFD group owing to the increased 
rate of superoxide production (Grootveld and Halliwell, 1987). 
Considering the decreased cysteine levels in the HFD group, the 
enhanced oxidative stress induced by HFD was verified. Urine 
allantoin levels declined significantly after the GPA intervention, 
indicating a reduction in oxidative stress. The remission of oxidative 
stress was also supported by network pharmacology analysis, with 
enriched GO terms of antioxidant activity (GO:0016209) and 
reactive oxygen species metabolic processes (GO:0072593).

According to serum biochemistry and metabolomic analyses, 
lovastatin treatment exhibits a significant antihyperlipidemic 
effect. However, metabolomic analysis revealed additional details. 
According to the OPLS-DA analysis between the Lov and HFD 
groups, the metabolic pathways disturbed by HFD induction were 
partially recovered. By the S-plot, the leucine and isoleucine levels 
were increased, indicating enhanced synthesis of ketogenesis amino 
acid by lovastatin; the acetate level were increased significantly, 
suggesting excretion of the excess amount of acetyl-CoA by β-
oxidation by lovastatin; meanwhile, the citrate level was increased, 
inferring an upregulated TCA cycle; furthermore, urine levels of 
acetoacetate were increased, indicating enhanced ketone bodies 
synthesis under lovastatin treatment. However, when inspecting 
metabolic regulation of GPA (300 mg/kg), it was revealed that urine’s 
leucine and isoleucine levels were decreased, suggesting suppressed 
ketogenic amino acid synthesis; urine’s lactate levels were reduced, 
indicating attenuated glycolysis; urine’s citrate, trans-aconitate, and 
pyruvate levels were increased, indicating a recovered TCA circle; 
urine’s acetoacetate and acetate levels were reduced, indicating 
suppressed synthesis of ketone bodies. Based on the aforementioned 
metabolomic analysis, we can draw a tentative conclusion 
that the metabolic regulations of GPA and lovastatin were
different.

ALB is the most abundant protein in blood, constituting 
approximately 60% of the total plasma proteins. In addition to 
maintaining the colloidal osmotic pressure of the blood, ALB 
also plays a key role in the transport of various substances, 
such as lipids and small-molecule drugs (Lu et al., 2008). 
Research has shown that hyperlipidemia, in combination with 
albuminuria and hypoalbuminemia, is a hallmark of nephrotic 
syndrome. The underlying mechanisms are complex, involving 
increased synthesis of lipoproteins in the liver and reduced 
clearance of lipoproteins from the circulation (Kaysen et al., 1987). 
Zhang Yuping et al. (Zhang et al., 2012) developed a centrifugal 
ultrafiltration-high-performance liquid chromatography (HPLC) 
method to screen and identify the binding of GPA to bovine 
serum albumin (BSA), thus confirming the interaction between 
GPA and ALB.

CAT and SOD1 are antioxidant enzymes. CAT catalyzes 
the decomposition of hydrogen peroxide (H2O2), produced by 
peroxisomal oxidases, into water and oxygen, thereby protecting 
cells from the toxic effects of hydrogen peroxide (Takeuchi et al., 
1995). SOD1 is a key antioxidant enzyme that can neutralize radicals, 
which are typically generated within cells and are toxic to biological 
systems (Lin et al., 2013). It has been reported that GPA alleviates 

H2O2-induced oxidative stress in HACAT cells by activating the 
AKT/NRF2/OGG1 pathway (Cheng et al., 2022). Additionally, GPA 
enhances the enzymatic activity and gene expression levels of 
superoxide dismutase (SOD), while reducing the levels of reactive 
oxygen species (ROS) and malondialdehyde (MDA), thereby 
improving the survival rate of yeast under oxidative stress conditions
(Wang Y. et al., 2021).

ACACA is a cytosolic enzyme that catalyzes the conversion 
of acetyl-CoA to malonyl-CoA, which is the first and rate-
limiting step in de novo fatty acid synthesis (Kim et al., 
2010; Colbert et al., 2010; Hunkeler et al., 2018). Increased 
ACACA activity promotes adipogenesis and fat accumulation, 
while GPA can inhibit lipid accumulation in HepG2 cells. 
Additionally, GPA can concentration-dependently reverse free 
fatty acid-induced triglyceride (TG) elevation, thereby exerting 
an anti-hyperlipidemic effect (Cheng et al., 2022). Therefore, 
GPA is likely to suppress the expression of ACACA, thereby 
inhibiting de novo fatty acid synthesis and reducing lipid
accumulation.

ACHE is responsible for the rapid hydrolysis of the 
neurotransmitter acetylcholine released into the synaptic cleft, 
thus terminating neural signal transmission (Shafferman et al., 
1992). It has been reported that plasma cholesterol levels are 
positively correlated with brain oxidative stress damage, leading 
to cognitive dysfunction (de Oliveira et al., 2011). This is because 
high cholesterol can significantly reduce ACHE activity, causing 
memory impairments in hyperlipidemic rats (Braun et al., 2017). 
Kaiser et al. (Kaizer et al., 2004) also demonstrated that in 
animals fed a high-saturated-fat diet for an extended period, 
ACHE activity and subsequent acetylcholine synthesis were 
inhibited in various brain regions. Given the potential interaction 
between GPA and ACHE, we hypothesize that GPA may not 
only improve hyperlipidemia but also restore ACHE activity 
reduced by high cholesterol, thereby enhancing cognitive function. 
The specific mechanism underlying the anti-hyperlipidemia 
effect of GPA warrants further experimental verification in
future studies.

Conclusion

In this study, a combined strategy integrating NMR- and 
TOF-MS-based urinary metabolomics with network pharmacology 
and molecular docking was employed to investigate the anti-
hyperlipidemic effects of GPA. The results demonstrated that 
GPA ameliorates hyperlipidemia by modulating multiple metabolic 
pathways, particularly those related to amino acid metabolism, 
the TCA cycle, and ketone body synthesis. Notably, the metabolic 
pathways identified through metabolomics overlapped with those 
predicted by network pharmacology and molecular docking, 
supporting the reliability of the proposed mechanism. This 
multi-omics approach provides a comprehensive framework for 
elucidating the pharmacological actions of herbal compounds. 
This study lays the groundwork for understanding the anti-
hyperlipidemic effects of GPA, which merits further investigation in 
future research.
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