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Background: Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs)
have emerged as a promising cell-free therapeutic strategy for various diseases
due to their anti-inflammatory, anti-apoptotic, and regenerative properties.
Numerous meta-analyses have evaluated MSC-EV efficacy in preclinical animal
models, but a comprehensive synthesis across diverse conditions is lacking.
Objective: This umbrella review aims to systematically evaluate the therapeutic
efficacy, mechanisms, and methodological quality of MSC-EVs in preclinical
models across multiple diseases.

Methods: A systematic search of Scopus and Web of Science was conducted
to identify meta-analyses published up to July 2025, focusing on MSC-EV
interventions in preclinical animal models. Data were extracted on study
characteristics, exosome sources, animal models, outcomes, and risk of
bias. The AMSTAR 2 tool assessed meta-analysis quality, while SYRCLE and
CAMARADES tools evaluated primary study bias. Narrative and quantitative
syntheses summarized efficacy, heterogeneity, and publication bias.

Results: Forty-seven meta-analyses covering 27 diseases were included,
spanning neurological, renal, wound healing, liver, musculoskeletal, respiratory,
and reproductive disorders. MSC-EVs demonstrated high efficacy, significantly
improving functional scores, reducing inflammation, and promoting
regeneration. Bone marrow-, adipose-, and umbilical cord-derived EVs
were most effective, with modified EVs showing enhanced outcomes.
Methodological quality was moderate (AMSTAR 2), with high heterogeneity
(1> > 70%) and frequent risk of bias due to poor randomization and blinding.
Publication bias was noted but often robust after adjustments.

Conclusion: MSC-EVs exhibit robust therapeutic potential across diverse
preclinical models, supporting their development as a versatile regenerative
therapy. Standardization of EV protocols, improved study quality, and
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mechanistic insights are critical for clinical translation. This review provides a
comprehensive framework for advancing MSC-EV research and application.

KEYWORDS

mesenchymal stem cells, extracellular vesicles, exosomes, preclinical models, umbrella
review, regenerative medicine

1 Introduction

Mesenchymal stem cells (MSCs) have garnered significant
attention in regenerative medicine due to their multipotent
differentiation capacity, immunomodulatory properties, and
ability to promote tissue repair (Song et al, 2020). Derived
from various sources such as bone marrow, adipose tissue,
and umbilical cord, MSCs have shown therapeutic promise
in preclinical and clinical studies across a wide range of
conditions, including neurological, cardiovascular, renal, and
musculoskeletal disorders (Zhidu et al., 2024). However, challenges
such as immune rejection, variable efficacy, and potential
tumorigenicity (Zhou et al,, 2021) have prompted exploration
of cell-free alternatives, particularly MSC-derived extracellular
vesicles (MSC-EVs).

MSC-EVs, including exosomes and microvesicles, are nano-
sized membrane-bound structures that carry bioactive molecules
such as microRNAs, proteins, and lipids (Dabrowska et al., 2020).
These vesicles mediate intercellular communication and recapitulate
many of the therapeutic effects of their parent cells, including anti-
inflammatory, anti-apoptotic, and regenerative actions (Kou et al.,
2022). Unlike whole-cell therapies, MSC-EVs offer advantages such
as lower immunogenicity, enhanced stability, and the ability to
cross biological barriers, making them a promising platform for
next-generation therapeutics (Kou et al., 2022). Preclinical studies
in animal models have demonstrated MSC-EV efficacy in diverse
conditions, from ischemic stroke (Zhao et al., 2023) and spinal cord
injury (SCI) (Yi and Wang, 2021) to diabetic wounds (Soltani et al.,
2024) and liver fibrosis (Zhou et al., 2024), highlighting their broad
therapeutic potential.

Despite this promise, the field faces challenges, including
variability in EV sources, isolation methods, and dosing regimens,
as well as inconsistencies in preclinical study design and
reporting (Dai et al, 2025). Numerous meta-analyses have
synthesized evidence on MSC-EV efficacy for specific diseases,
but a comprehensive overview integrating these findings across
conditions is lacking. Umbrella reviews, which systematically
synthesize meta-analyses, provide a high-level perspective to assess
the consistency, quality, and generalizability of evidence, guiding
future research and clinical translation.

This umbrella review aims to evaluate the therapeutic
efficacy of MSC-EVs in preclinical animal models across diverse
diseases. By analyzing outcomes, exosome sources, mechanisms of
action, and methodological quality, we seek to provide a robust
synthesis of the current evidence, identify gaps, and propose
directions for advancing MSC-EV-based therapies. This work
addresses the critical need for a unified understanding of MSC-
EV potential, paving the way for standardized protocols and clinical
applications.
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2 Materials and methods

This umbrella review was conducted to systematically synthesize
evidence from meta-analyses evaluating the therapeutic efficacy
of MSC-EVs in preclinical animal models across diverse diseases
and conditions. The methodology followed established guidelines
for systematic reviews, including the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) and the Joanna
Briggs Institute (JBI) framework for umbrella reviews. Below, we
detail the materials and methods used, organized into subsections
for clarity.

2.1 Study design

This study is an umbrella review, defined as a systematic review
of systematic reviews and meta-analyses. The objective was to
aggregate and evaluate the therapeutic potential, mechanisms, and
methodological quality of MSC-EV interventions in preclinical
animal models. The review focused on meta-analyses to provide a
high-level synthesis of evidence, capturing a broad range of diseases,
exosome sources, and outcomes. The protocol was developed a
priori and registered with PROSPERO to ensure transparency and
reproducibility.

2.2 Search strategy

A comprehensive and systematic literature search was
conducted to identify relevant meta-analyses. The search strategy
was designed to capture studies evaluating MSC-EV therapeutic
efficacy in preclinical models, with specific queries tailored to
extracellular vesicles, mesenchymal stem cells, and meta-analyses
(Table 1). The search was executed across multiple electronic
databases, and the strategy was adapted from Table 1 of the provided
article. The Scopus and Web of Science databases were searched
from inception to July 2025 by two independent reviewers (N.M.M.
and K.R.Z.) using standardized search protocols. Search results
were exported to EndNote 20 for deduplication, and duplicates
were removed using both automated and manual checks (Figure 1).
The search strategy was validated by a medical librarian to ensure
comprehensiveness and accuracy.

2.3 Eligibility criteria

For inclusion in this umbrella review, studies were selected
based on predefined inclusion and exclusion criteria to ensure
both relevance and methodological quality. Eligible studies were
systematic reviews that included meta-analyses of preclinical
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TABLE 1 Systematic search strategy for screening of meta-analysis articles evaluating mesenchymal stromal/stem cells-derived extracellular vesicles.

Code | Queries

#1

“Extracellular Vesicles” OR “Exosomes” OR “Extracellular Vesicle” OR “Vesicle, Extracellular” OR “Vesicles, Extracellular” OR “Exovesicles” OR “Exovesicle”

#2

“Mesenchymal Stem Cells” OR “Stem Cell, Mesenchymal” OR “Mesenchymal Stem Cell” OR “Stem Cells, Mesenchymal” OR “Mesenchymal Stromal Cells” OR
“Mesenchymal Stromal Cell” OR “Stromal Cell, Mesenchymal” OR “Stromal Cells, Mesenchymal” OR “Wharton Jelly Cells” OR “Whartonss Jelly Cells” OR
“Wharton's Jelly Cell” OR “Whartons Jelly Cells” OR “Bone Marrow Stromal Cells” OR “Bone Marrow Stromal Cell” OR “Bone Marrow Stromal Cells,
Multipotent” OR “Multipotent Bone Marrow Stromal Cell” OR “Multipotent Bone Marrow Stromal Cells” OR “Bone Marrow Stromal Stem Cells” OR
“Mesenchymal Progenitor Cell” OR “Mesenchymal Progenitor Cells” OR “Progenitor Cell, Mesenchymal” OR “Progenitor Cells, Mesenchymal” OR “Multipotent
Mesenchymal Stromal Cells” OR “Mesenchymal Stromal Cells, Multipotent” OR “Multipotent Mesenchymal Stromal Cell” OR “Bone Marrow Mesenchymal
Stem Cells” OR “Bone Marrow Mesenchymal Stem Cell” OR “Adipose-Derived Mesenchymal Stem Cells” OR “Adipose Derived Mesenchymal Stem Cells” OR
“Adipose-Derived Mesenchymal Stromal Cells” OR “Adipose Derived Mesenchymal Stromal Cells” OR “Mesenchymal Stem Cells, Adipose-Derived” OR
“Mesenchymal Stem Cells, Adipose Derived” OR “Adipose Tissue-Derived Mesenchymal Stromal Cell” OR “Adipose Tissue Derived Mesenchymal Stromal Cell”
OR “Adipose Tissue-Derived Mesenchymal Stromal Cells” OR “Adipose Tissue Derived Mesenchymal Stromal Cells” OR “Adipose Tissue-Derived Mesenchymal
Stem Cell” OR “Adipose Tissue Derived Mesenchymal Stem Cell” OR “Adipose Tissue-Derived Mesenchymal Stem Cells” OR “Adipose Tissue Derived
Mesenchymal Stem Cells” OR “Adipose-Derived Mesenchymal Stem Cell” OR “Adipose Derived Mesenchymal Stem Cell”

#3 “meta-analysis” or “meta analysis”

#4

#1 AND #2 AND #3 (Filter: language restriction (English), Date limitation: up to 31 July 2025)

studies, specifically those investigating MSC-EVs—including
exosomes, microvesicles, or other EV subtypes—as the primary
therapeutic intervention. Studies combining MSC-EVs with other
therapies, such as scaffolds or pharmacological agents, were included
provided that MSC-EVs remained the central focus. The target
population comprised preclinical animal models used to study
a broad range of diseases or conditions. Included studies had
to report quantitative outcomes relevant to therapeutic efficacy,
such as functional assessments, histological evaluations, molecular
biomarkers, or survival rates. Only English-language, peer-reviewed
journal articles were considered.

Studies were excluded if they were narrative reviews, systematic
reviews without meta-analyses, or primary research articles.
Additional exclusion criteria included studies that focused on EVs
not derived from MSCs, unless MSC-EVs constituted a major
component of the analysis. Clinical trials or studies involving human
subjects were excluded, as were meta-analyses limited solely to
in vitro data. Non-English publications, conference abstracts, grey
literature, preprints, and other non-peer-reviewed materials were
also excluded from this review.

2.4 Study selection

The study selection process was conducted in two distinct
stages to ensure methodological rigor and transparency. In the
first stage, titles and abstracts were independently screened by two
reviewers (A.B. and M.A.K.). This initial screening was performed
against the predefined eligibility criteria. Any discrepancies between
the reviewers were resolved through discussion or, if necessary,
by consulting a third reviewer (A.T.). In the second stage, the
full texts of studies deemed potentially eligible were retrieved
and independently evaluated by two additional reviewers (A.B.
and M.AK.) to determine their final inclusion. At this stage,
specific reasons for exclusion were carefully documented. To
provide a clear overview of the selection process, a PRISMA flow
diagram was generated, outlining the number of records identified,
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screened, included, and excluded at each phase of the review
(Figure 1).

2.5 Data extraction

Data extraction was carried out independently by two reviewers
(N.M.M. and K.R.Z.) using a standardized form developed in
Microsoft Excel. This form was piloted on five studies to ensure
consistency, clarity, and completeness in data capture. After
extraction, data were cross-verified for accuracy by the reviewers.
Any inconsistencies were resolved through consensus or, when
necessary, by consulting a senior author (A.T.).

The data extraction encompassed several key elements. For study
characteristics, information was collected on the authors, year of
publication, journal name, and reference number, along with the
total number of studies included in each meta-analysis and the
specific disease or condition being investigated. Intervention details
included the type of MSC-EVs, the origin of the MSCs, and the
method of delivery.

Regarding animal models, data were gathered on the species
used, the specific strains, and the experimental disease models
employed. Outcomes extracted included both primary outcomes
and secondary outcomes. Where available, effect sizes such as
standardized mean differences (SMD), weighted mean differences
(WMD), hazard ratios (HR), or odds ratios (OR) were recorded,
along with their corresponding 95% confidence intervals. Measures
of heterogeneity, such as the I? statistic, were also documented.

In terms of methodological quality, each study’s risk of bias
was assessed using established tools like SYRCLE or CAMARADES.
The overall risk of bias was categorized as low, moderate, high,
or unclear. Evaluation of publication bias included methods such
as Egger’s test and visual inspection of funnel plots. Furthermore,
the AMSTAR 2 tool was used to appraise the methodological
quality of the included systematic reviews and meta-analyses, with
ratings categorized as high, moderate, low, or critically low, and
critical flaws explicitly noted. Data were extracted from main texts,
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FIGURE 1

Flowchart of literature search and screening process for umbrella review of meta-analysis articles of mesenchymal stem cell-derived extracellular

vesicles in preclinical models.

tables, and Supplementary Material. When numerical data was
missing, attempts were made to contact the original authors for
clarification. In cases where no response was obtained, data were
estimated from graphical figures.

2.6 Quality assessment

To evaluate the methodological rigor of the included meta-
analyses and the risk of bias in the primary studies they synthesized,
two complementary assessment tools were employed. The AMSTAR
2 was used to appraise the overall quality of the included meta-
analyses. Two independent reviewers (A.B. and G.A.T.) applied the
16-item checklist, with particular attention to critical domains such
as protocol registration (item 2), comprehensiveness of the literature
search strategy (item 4), justification for excluded studies (item 7),
risk of bias assessment of included studies (item 9), appropriateness
of the meta-analytic methods (item 11), and consideration of
publication bias (item 15). Based on the number and severity of
critical flaws identified, each meta-analysis was rated as having
high, moderate, low, or critically low confidence in its findings. Any
disagreements between reviewers were resolved through discussion
and consensus. AMSTAR-2 ratings were assigned according to the
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number of critical domains rated ‘No. Reviews with >1 critical flaw
were downgraded to low or critically low confidence.

The risk of bias in the primary studies included within each
meta-analysis was assessed using the tools employed by the original
meta-analyses themselves. The most commonly used instruments
were the SYRCLE risk of bias tool and the CAMARADES checklist.
These tools evaluated key domains of bias, including selection
bias, performance bias, detection bias, attrition bias, and reporting
bias. The overall risk of bias for each meta-analysis—categorized
as low, moderate, high, or unclear—was recorded as reported in
the studies. If a meta-analysis utilized a custom or non-standard
assessment tool, its specific criteria were documented accordingly.

To improve clarity, we distinguished the use of the SYRCLE
and CAMARADES tools based on the model type and reporting
structure of the original meta-analyses. Specifically, the SYRCLE
tool was applied when the included meta-analysis assessed
basic animal studies with heterogeneous outcomes such as
behavioral scores, histological findings, or inflammatory markers.
In contrast, the CAMARADES checklist was used when analyzing
more structured preclinical models—particularly in neurological
and cardiovascular studies—where endpoints such as infarct
volume, mNSS, or neurobehavioral scores were commonly and
consistently reported. In instances where both tools were used or
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a modified version was employed, we recorded that distinction
accordingly in Table 4.

2.7 Data synthesis

Data were synthesized both narratively and quantitatively to
comprehensively evaluate the therapeutic efficacy of MSC-EVs
across various diseases, exosome sources, and outcome measures.
The synthesis was structured to align with the objectives of the
umbrella review, with a particular focus on therapeutic effectiveness,
underlying mechanisms of action, and the methodological quality of
the included meta-analyses.

A narrative synthesis was performed to describe the diversity
of conditions addressed in the included studies, the types and
tissue sources of MSC-EV's used, the animal models employed, and
the administration routes applied. This synthesis also outlined the
primary outcomes assessed, their consistency across studies, and
the proposed mechanisms of action, such as anti-inflammatory,
anti-apoptotic, and regenerative effects. Findings were organized
into comprehensive tables and illustrative figures to facilitate
interpretation and comparison. For instance, Table 3 presents a
detailed summary of exosome-based therapies across different
diseases and conditions, while visual aids such as bar graphs and
merged heatmaps were used to depict data trends and outcome
distributions.

In the quantitative synthesis, effect sizes, heterogeneity
measures, and statistical significance were summarized based on
the results reported in the included meta-analyses. Key metrics
included SMD, WMD, HR, and OR, all accompanied by 95%
confidence intervals. These metrics were typically reported for
primary outcomes such as functional recovery scores, wound
healing rates, or infarct volume reduction. Heterogeneity across
studies was assessed using the I? statistic, with values greater than
50% considered indicative of substantial variability. Where available,
subgroup analyses or sensitivity analyses were reported to explore
sources of heterogeneity. Publication bias was evaluated based on
the original meta-analyses.

No additional meta-analyses were conducted within this
umbrella review, as the aim was to synthesize and evaluate existing
meta-analytic evidence rather than generate new pooled estimates.
However, reported effect sizes were qualitatively summarized to
identify therapeutic trends—for example, MSC-EV's demonstrated
high efficacy in preclinical models of stroke and moderate effects in
kidney transplantation models.

Because umbrella reviews synthesize findings from published
meta-analyses without re-analyzing primary studies, we did not
exclude individual studies on the basis of heterogeneity. Instead,
we applied a rule-based classification: outcomes were labeled as
High effectiveness only when SMD >1.5, p < 0.01, and I* < 70%
in >2 independent meta-analyses. Outcomes with I* > 70% were
reclassified as Promising but heterogeneous and interpreted with
caution. Sensitivity summaries were added to indicate whether
conclusions remained robust after considering only meta-analyses
with I* < 70% and without AMSTAR-2 critical flaws.

Because this is an umbrella review, we did not exclude
meta-analyses solely on the basis of high heterogeneity. Instead,
we applied a rule-based classification: outcomes were labeled
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as High effectiveness only when SMD >1.5, p < 0.01, and I’
< 70% in >2 independent reviews. Outcomes with I> > 70%
were reclassified as Promising but heterogeneous and interpreted
with caution.

2.8 Subgroup and sensitivity analyses

Subgroup analyses reported within the included meta-analyses
were extracted to identify factors that may influence the therapeutic
efficacy of MSC-EVs. These analyses explored variations based
on the source of exosomes—such as bone marrow-derived MSCs
(BM-MSCs), adipose-derived MSCs (AD-MSCs), and human
umbilical cord-derived MSCs (hUC-MSCs)—as well as animal
model characteristics, including species and specific strains used in
the experiments. Differences in disease models were also considered,
such as contusion versus compression injury models for SCI, to
evaluate how pathophysiological variations affect outcomes.

Additional subgroup variables included the route of MSC-EV
administration and the timing and dosage of EV delivery. These
factors were examined to determine their potential role in
modulating therapeutic effectiveness across studies.

Sensitivity analyses conducted within the original meta-analyses
were also summarized. These included procedures such as excluding
studies with a high risk of bias to test the stability of the main
findings, as well as statistical methods like trim-and-fill adjustments
to evaluate the impact of publication bias. Together, these subgroup
and sensitivity analyses provided important insights into the
robustness and generalizability of MSC-EV therapy outcomes across
different experimental conditions.

2.9 Ethical considerations

As this study involved no primary data collection or animal
experimentation, ethical approval was not required. However, the
review considered the ethical conduct of included studies, noting
compliance with animal welfare regulations as reported by the meta-
analyses.

2.10 Statistical software and tools

Several tools were employed to facilitate data management
and ensure methodological consistency throughout the review
process. EndNote 20 was used for reference management and
to identify and remove duplicate records prior to screening. For
data extraction and the creation of summary tables, Microsoft
Excel was utilized, offering a structured format to capture
Additionally, RStudio
was employed to generate heatmap graphs, enabling visual

and organize information efficiently.
representation of data patterns and relationships derived from the
synthesized findings.

No new statistical analyses were performed in this umbrella
review, as its primary goal was to synthesize and interpret results
from existing meta-analyses. However, statistical metrics reported
in the included studies were carefully reviewed and verified for

accuracy to ensure the reliability of the synthesized findings.
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3 Results

This umbrella review synthesizes findings from 47 meta-analyses
evaluating the therapeutic efficacy of MSC-EVs in preclinical animal
models across a wide range of diseases and conditions (Table
2). The systematic search identified studies published between
2016 and 2025, covering diverse therapeutic applications, exosome
sources, animal models, and outcome measures. The results
are organized into subsections to provide a detailed overview
of MSC-EV efficacy, mechanisms, sources, and methodological
considerations.

3.1 Therapeutic efficacy across diseases

MSC-EVs demonstrated high therapeutic efficacy across
most evaluated diseases, with consistent improvements in
functional, histological, and molecular outcomes (Figure 2).
The following summarizes key findings by disease category
(Figure 3; Supplementary Table S1). MSC-EVs consistently reduced
inflammation and apoptosis, while enhancing functional scores
and histological repair. Effectiveness was high across most
conditions, with bone marrow-derived MSC-EVs (BMSC-EVs) and
preconditioned EVs showing superior results, though heterogeneity
was moderate to high and risk of bias varied. The classification of
therapeutic effectiveness into “high” and “moderate” was based on
reported meta-analytic metrics. “High” effectiveness was assigned
to outcomes with standardized mean difference (SMD) > 1.5, p <
0.01, and low-to-moderate heterogeneity (I> < 70%) observed in at
least two independent meta-analyses. “Moderate” effectiveness was
applied to outcomes with SMD values between 0.8 and 1.5 or when
heterogeneity exceeded 70%.

MSC-EVs exert their therapeutic effects through a range
of interconnected biological mechanisms. These mechanisms
contribute to the regenerative and protective roles of MSC-EVs
in various pathological conditions.

One of the most prominent mechanisms is the anti-
inflammatory effect. MSC-EVs were consistently shown to
downregulate proinflammatory cytokines such as tumor necrosis
factor-alpha (TNF-a), interleukin-1 beta (IL-1f), and interleukin-
6 (IL-6), while simultaneously upregulating anti-inflammatory
mediators including interleukin-10 (IL-10) and transforming
growth factor-beta 1 (TGF-B1). These immunomodulatory effects
were observed across multiple disease models, particularly in stroke,
SCI (SCI), acute kidney injury (AKI), and asthma.

Anti-apoptotic effects were also widely reported. MSC-EVs
reduced markers of apoptosis, such as caspase-3 and Bax, in
neurological, renal, and cardiovascular models. By inhibiting
apoptotic pathways, MSC-EVs helped preserve tissue integrity and
cell viability in damaged organs.

Functional improvements were another key therapeutic
outcome, with enhanced performance in disease-specific scoring
systems such as the Basso, Beattie, Bresnahan (BBB) score for SCI,
the modified Neurological Severity Score (mNSS) for stroke, and
the Osteoarthritis Research Society International (OARSI) score for
joint degeneration. These improvements were largely attributed to
mechanisms such as neuroregeneration, angiogenesis, and overall
tissue repair facilitated by MSC-EVs.
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Finally, histological improvements supported the regenerative
potential of MSC-EVs. Across studies, MSC-EVs were shown
to stimulate collagen deposition, promote angiogenesis and
neurogenesis, and reduce fibrosis, lesion size, and tissue damage.
These histological changes were particularly evident in models of
wound healing, liver fibrosis, and kidney disease, underscoring
the broad-spectrum therapeutic action of MSC-EVs across
organ systems.

Across conditions such as ischemic stroke, diabetic wounds,
SCI, and acute kidney injury, MSC-EVs significantly reduced
inflammation, apoptosis, and tissue damage while enhancing
functional recovery and histological repair (Table 3). BMSC-EVs,
adipose-derived MSC-EVs (ADSC-EVs), and preconditioned EVs
showed superior efficacy in conditions like ischemic stroke, diabetic
wounds, and multiple sclerosis, with notable improvements in
neurovascular repair, wound closure, and clinical scores. However,
effectiveness was low in kidney transplantation, where MSC-
EVs showed no significant benefit. Consistency across studies
was moderate (I> = 23-95%) for most conditions, with high
heterogeneity in bone injury (I* = 97-98%) and acute kidney
injury (I* = 96%), likely due to variability in animal models,
exosome sources, and administration methods. For disease areas
where heterogeneity was very high (I > 70%), such as bone injury
and acute kidney injury, the results were reclassified as Promising
but heterogeneous. While these conditions showed large effect
sizes, the variability across studies limits certainty in the pooled
estimates. For such disease areas with 1> > 70%, outcomes were
downgraded to Promising but heterogeneous. While effect sizes
were large, the variability across studies limits the certainty of
pooled estimates.

Administration routes varied substantially across conditions.
Intravenous delivery was the predominant method in most disease
models, including renal and hepatic injury. For CNS models such
as spinal cord injury and ischemic stroke, intrathecal, intranasal,
or intracerebroventricular administration was frequently used and,
in some cases, demonstrated greater efficacy by enabling direct
delivery across the blood-brain barrier. For local diseases such as
diabetic wounds and periodontal regeneration, local injections or
hydrogel/scaffold-based delivery systems were commonly applied,
supporting tissue retention and enhancing therapeutic benefit.
These findings, summarized in Table 4, indicate that administration
route is an important factor influencing MSC-EV efficacy and
should be tailored to the target organ and disease.

Across the included meta-analyses, MSC-EV doses varied
widely depending on disease model, administration route, and
MSC source. The reported doses ranged from as low as 2 pug
to as high as 700 ug of EV protein per injection, or from 1 x
10° to 1 x 10" particles per dose. Most studies administered
EVs intravenously, although intranasal, intrathecal, subcutaneous,
intrauterine, and local delivery via hydrogels or scaffolds were
also frequently reported. A new supplementary table (Table 4) was
created to summarize these dosing parameters, including dose units,
routes, and whether dose-response relationships were investigated.
Among the reviewed studies, approximately one-third conducted
some form of dose-response assessment, with 100 ug per injection
emerging as a commonly effective dose across multiple conditions,
including spinal cord injury, ischemic stroke, and diabetic
wound healing.
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FIGURE 2

Number of meta-analyses evaluating MSC-EV therapies in preclinical mode

s by disease category.

To integrate the evidence across sources and disease categories,
we created a Bubble chart (Figure 4) mapping MSC-EV sources
against disease models. This visualization includes only meta-
analyses with AMSTAR-2 high or moderate confidence and I*
< 70%. Cells indicate the number of supporting meta-analyses,
with darker shading representing stronger evidence. Hollow dots
mark disease—source pairs where evidence exists but heterogeneity
was high (I> > 70%). This figure highlights consistent support
for BM-MSC-EVs in neurological diseases (stroke, SCI), AD-
MSC-EVs in diabetic wound healing, and UC-MSC-EVs in
musculoskeletal and periodontal regeneration.

Frontiers in Cell and Developmental Biology

W

3.2 Exosome source and therapeutic
efficacy

The therapeutic efficacy of MSC-EV's varied notably depending
on their cellular source (Table5). Among the sources, BM-
MSCs were the most extensively studied, with approximately 308
studies. These EVs demonstrated high effectiveness across multiple
conditions, including ischemic stroke, SCI, acute kidney injury,
and cardiovascular diseases. BMSC-EV's were particularly effective
in reducing infarct size, improving neurological function scores,
and promoting neuroregeneration.
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Effectiveness of mesenchymal stem cell-derived extracellular vesicles across outcomes for various diseases.

AD-MSCs, represented in about 154 studies, showed the highest
efficacy in the treatment of diabetic wounds. These EVs promoted
angiogenesis and accelerated wound closure, and also demonstrated
consistent therapeutic benefits in models of liver fibrosis and chronic
kidney disease.

hUC-MSCs, reported in around 119 studies, were most effective
in models of knee osteoarthritis, periodontal tissue regeneration,
and skin wound healing. hUC-MSC-EVs consistently reduced
inflammation and improved functional outcomes across various
disease models.

EVs derived from other MSC sources, such as menstrual
blood, synovial tissue, and dental pulp, were less frequently studied
but showed high therapeutic potential in specific conditions. For
example, EVs from menstrual blood and synovial MSCs were
effective in intrauterine adhesion and osteoarthritis, respectively,
while periodontal ligament-derived EVs showed strong efficacy in
models of multiple sclerosis and periodontal regeneration.

Notably, modified or engineered EVs—such as those loaded
with specific microRNAs or preconditioned under hypoxic
conditions—often outperformed their native counterparts. These
engineered vesicles showed enhanced efficacy in models of stroke,
SCI, and diabetic wounds. The method of EV delivery also
influenced outcomes to some extent; while hydrogels and scaffold-
based approaches were used in several studies, no delivery method
demonstrated consistent superiority over direct injection.

3.3 Methodological quality and risk of bias

The methodological rigor of the included meta-analyses
and their underlying primary studies revealed several key
challenges (Table 6). Most reviews reported a moderate to high risk
of bias, assessed using tools such as SYRCLE and CAMARADES.
Common methodological shortcomings included unclear random
sequence generation, lack of blinding of personnel and outcome
assessors, and insufficient details regarding allocation concealment.
Furthermore, publication bias was detected in several high-
interest disease models—including stroke, SCI, and diabetic
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wounds—although many findings remained robust after trim-and-
fill adjustments. Across the included reviews, the most frequent
biases were inadequate or unclear random sequence generation, lack
of blinding of investigators and outcome assessors, and insufficient
allocation concealment. These issues were consistently reported in
the majority of meta-analyses and represent systemic weaknesses in
preclinical MSC-EV research.

In terms of methodological quality, all included
AMSTAR 2

(Figure 5; Supplementary Table S2). This was primarily due to

meta-analyses received a moderate rating
high heterogeneity (with I* values ranging from 35% to 99%)
and limited reporting of essential methodological components
such as randomization procedures and blinding. Important
methodological shortcomings were identified in several studies,
particularly incomplete or unclear risk of bias assessments and lack
of consideration for publication bias. Where AMSTAR-2 critical
domains were rated ‘No, these reviews were classified as low or
critically low confidence.

Heterogeneity was a significant concern across the dataset, with
I? values often exceeding 70%. This variability was largely attributed
to differences in animal models, MSC sources, EV dosages, and
delivery routes. Despite this, sensitivity and subgroup analyses
frequently confirmed the robustness of results, suggesting that the
therapeutic effects of MSC-EVs were consistent across different

experimental conditions.

4 Discussion

4.1 Therapeutic efficacy and clinical
implications

The review suggests that MSC-EVs exhibit high efficacy
across multiple disease categories, including neurological, renal,
wound healing, liver, musculoskeletal, respiratory, and reproductive
disorders. Notably, MSC-EVs consistently reduced inflammation
and apoptosis while promoting tissue regeneration, angiogenesis,

frontiersin.org


https://doi.org/10.3389/fcell.2025.1655623
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

10.3389/fcell.2025.1655623

Mussin et al.

(a8ed Surmorjog a1} uo panunuo)))

s1s01qy
paonpaz spuel (F£'SH1-66'STT

(podueyuUd Uae[[05/VH) 1D %S6 ‘9€°TET AINM) SIYI0 ‘SOSIN-AY
(%S6=%¥S) 21eIPOIN snoauaSo19)ay 1nq Jurstworg SSIUWNDIY] [BLIIIWOPUS PISLIIdU] SDOSIN-ING SDSIN-DN sjiqqel ‘syey 1 UOISAYPY duLIdINeup
uoneururefur ‘srsojdode
PoonpaI SHOI 1UOIYD (LT~
(HOT >ruoIyd ‘HVS) 01 €7~ 1D %S6 ‘67°¢- AINS)
(%Z6—%ET) 21IPOIN snoauaforalay Jnq Surstworg HVS ul Jo1AeyaqoInau pasoidury SOSIN-DN ‘SDOSIN-AV SDSIN-IND SJRI QTN 1 aong J1SeyLIowaf]
OTnelI 2SN yjoows
(%98-%¥L) 21I2POIN snoauaforalay inq Sutsrworq ‘SON ‘dVIN/dOI pasoxduy SOSN-ON ‘SOSIN-AV SOSIN siey I uonounysA( 2132217
uadefjoo
(€8°€1-0LF IO %S6 LT'6 ANS)
(s2q spgsody SAH-OSAY) stsouagordue (9¢'5-£0°€ 1D %S6 SI9YI0 SOSN-ON
(%88-%6€) YSIH-21e10pON sn0aua801212Y Inq utsrworg TTY ANS) NSO padueyuy SOSIN-ING SOSIN-AV STRI DN T SPUNoM 2naqerq
£Sojoysty
pasoxduur £o-T] paseardur SIYI0 SOSIN-AV
(%¥6-%09) 21eIPOIN snoauaforaley Jnq Surstworg S1S01qY ‘NN g IDS paonpay SOSIN-DN ‘SOSIN-ING SMIIYS ‘SRl TN z aseast(] Aoupny onaqerq
uonouny [eudl YJo pasoxduur
(%S6-%L9) 21IPOIN snoauaSoraley Jnq Jurstworg SUOTJRWWIR[JUT ‘SISOIQY PONPRY SOSIN-AV SDOSIN-DN SOSIN-ING SJeI QTN z 9seasI(J Aoupry dTUOIYD)
stsouaSordue {(97'1-98°0
10 %S6 ‘LS T ANS) a4 pasordur
ssisoydode (L9~ 03 £0°L- 1D %S6 SOSH OO SOSI-AV
Aﬁvwmlc\oowv ARIPON mSOuﬁwmo‘_uuos mq MG_&EO.—& Nw.mn Dzwv 9ZIS J2IRJUI PIdNPIY .waznva Awowzlzm ww_ﬂ ‘syex 605\4 4 $3SBISI(T Te[NISeAOIpIRD)
UOTJeAT}O®
AN IXV/OIW (%1°97) SOSIN [e3U2p ‘SOSIN-AV
(%86-%L6) MOT snoauagord3ay nq Surstworg JAN (%T'TT) AL/AL paseardu] SOSIN-ON ‘SOSIN-ING STRI N I Aanfu suog
0T~TI paseandul YHY ‘uade[[0d SOSIN-OSd! SOSIN-AV
Ac&mmlc\cth ARIIPON mﬂOmﬁwwouwuwa mq wﬁwm_ﬁﬁo.—m Amﬂ&&Oﬁ_wOm Jukﬂ Pacnpay Awa_\/H.UD Awazlzm sjel du_z T BUWIISY
uonouny
[euax pasoxdur {O1-T] pasearour
(ND < SAF) -INL ‘NN4 (0T 1-L9°0 $19Y10 ‘SOSIN-AV
(%96) MmO snoaua0Ia)ay Inq Surstwold 1D %S6 ‘€6'0 AIA) 1DS Paonpay SOSIN-ON ‘SOSIN-INI Se1 DTN 1 Am{uy £oupry Aoy

1) Aouaisisuod

e

4SSUBAND3YT

S2WO0DINO0 Ulepy

*SUOI}IPUOD pue S3seasIp ssoloe saldelay) Paseq-Sa)2ISaA 18)NJ13D.IIXS PIALISP-]13D WSS jewAyduasaw Jo Alewwns anisuayaldwo) € 31gvL

921N0OS W OSOXT

s|Japow jewiuy

SMBIA3J JO JoqUINN

uonipuo)/aseasia

frontiersin.org

15

Frontiers in Cell and Developmental Biology


https://doi.org/10.3389/fcell.2025.1655623
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

10.3389/fcell.2025.1655623

Mussin et al.

(a8ed Suimorjog ay) uo panunuo)))

(%S6-%9L) eIPON

snoauaforaiay Inq Suisrworq

HSd
PaNPaI T (9€°L-€F '€ ID %S6
6€'S ANS) HINY pasoxdug

SI9T0 SOSIN-AV
SOSIN-ON ‘SOSI-NE

21N

Aouamygnsuy
UBLIEAQ) INJeUWdI]

(3599 sAF pauonipuodaid)

OgV-(4D papar :qNg
(P 1T-€L'9 1D %S6 ‘LOFT

SOSIN

(%66-%9€) ABIIPOIN snoauagora)ay nq Jursturoig AINM) AL/AG paseadu] [eIUap SOSIN-DN SOSIN-IND so[3eaq ‘sjerx TN k4 uoneIdUI3Y [BIUOPOLId]
2A1129J2 Jsowr s Ag-aSeydordewr saeydomewr
(%0L-%0¥) 9eIPON snoauafora)ay nq Jursturorg £QUWIN[OA JOUIN) PINPAY SDOSIN-AV SOSIN-IND BRIV 1 BUIODIBS02)SO)
2INJdN.IISOIdTI SOSIN-AV
(%L8-%T L) 91eIPOIA-MOT snoauaforaiay Inq Sursrworq suoq ‘qNg pasoidug SOSIN-ING SDSIN-DN sJel QTN 1 s1s010d02)sQ
OS PIsLaIdUT ‘UOTJeW R uT SDSIN-IND
parodaijoN snoauaforaiay Inq Sursrworg e I9AT] PAONPAY SDSIN-AV SOSIN-DN SJeI QTN 1 HSYN/ATIVN
UONRWWERUT PaoNPal
(3295D87Ad) (7€°0— 03 66'€- 1D %S6 LT'T- $OS1Ad SOSIN-AV
(%¥8) 2eIPON snoauafora)ay nq Jursturorg INS) 2100s [esturp paroxduuy SDSIN-DN SOSIN-IND BIARERIN N 1 S1S019]S (AN
LSV ‘LTV pasoxduwr
(1539 S80Ip + AH SAT-OSAYV) SYINS-P (80'T— 03 9%~ 1D %S6 SOSIN-AV
(%16-%0L) BIIPOIN snoauagora)ay nq Jursrurord 26'7- AINS) uade[oo paonpay SDSIN-DN ‘SOSIN-IND SJel I 1 SISOIqL] JOATT
UONBWWE[JUT ‘SISOIQL PadNPax SIaYI0 ‘SOSN-AV
(%08-%0) YSTH-21eIdpOIA snoauafora)ay nq Jursturoig souIAZud 1oAT[ parorduuy SDSIN-DN SOSIN-IND sJel QA 1 $9SLASI(] JOAIT
V-INL
d1-T1 paonpaz ¢ uagefod
(3529 SAT-OSINN) (1€T- 01 29°€- IO %S6 “L6'C- SI9YI0 ‘SOSIN-AY
(%18-%0) BISPOIA snoauaforaiay Inq Sursrworq AINS) 21025 [SYVO pasoxdug SDSIN-DN SOSIN-IND syey 1 STLIY}IR0I)S) 99U
JuedyTuSIs 10U SAT-DSIN
(%¥6-%16) MO (SAT-DSIN) MOT rearans jyeid paSuoorg SOSIN-AVY SOSIN-INTD SJRI QTN 1 uonejuerdsuery, Loupry
1redar repnosesomau
Ppasueyud GGN W
(3529 SAT-DOSINE) “(6T°€= 01 TTH~ 1O %S6 ‘9L~ 1330 ‘SOSN SOSIW-AV
(%T6—%E¥) 21RIPOIN snoauagora)ay nq Jursturorg (IJAS) WN[OA JDIRJUL PIdNPIY SOSIN-DN SOSIN-IND SIMI ‘SAMUOU ‘STl DT ¥ 901G dTWAYIST

|) Aouaisisuod)

(

qSSOURANDDYT

S2WODINO0 ulepy

9241N0S 2WOSOX]

S|apow jewiuy

SMBIABJ JO JaqWINN

uonipuo/aseasiq

*SUOI}IPUOD pue S3seasIp ssolde saidelal) Paseq-sa]dISan JeIN|ad.IIXd PAALISP-]19 WSS JeWAYdUdsaW Jo Alewwns aaisuayaidwo) (panunuo)) < 31gv.L

frontiersin.org

16

Frontiers in Cell and Developmental Biology


https://doi.org/10.3389/fcell.2025.1655623
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

10.3389/fcell.2025.1655623

Mussin et al.

*sn0aua301212Y Inq SUISTWIOI] SE PAYISSE[21 21aM 960/ Z TT YIM SawoIn( ‘sasA[eue-eiow Juapuadapur 72 Ut 950, > I PUE 10°0 > d ‘S'T< QNS paambar ssauaandaya yStH

‘S[PpouI [eJUOPOLIdd pue PUNOM UT UOUIOD d1oM $ATF)ens [9501pAty/uor}dafur [e20] sea1aym AIATP [eseurnur 10 [edatjeniur pakorduwa Auanbaiy sppour ‘GND {PPOUT 35eaSTP AQq PIZLIBUITUNS T SIINOI UONRNSTUTPY

-a8ey11owoy prouydereqns ‘HyS 9Seyrioway [eiqarsdenur ‘HOJ snnedayores)s dIoyode-uoN ‘HSYN 9seastp I9A1] £11e] J1[0yode-UoN ‘qTAVN PUOULIOY UBLIA[[N-NUY ‘HINY ‘ssouaatsuodsar-1odAy Aemiry

MHYV 9591 3U0q TL[02AJe-UOTOUN{ [SWERUI0JUIWI)) DYV -[FD) OUWN[OA [2)0}/AWN[OA 3UOY ‘A T,/ AF TEAINUL DIUIPYUOD 1) DIUIIPTP UL PAYSIOM ‘(I M DOUIIYPIP UBIW PIZIPIEPUE)S ‘(TS OZBUI I)EM SLIIOWT TA MA] 91008 AJ112A3S [€130[0INIU PIYIPOUT ‘SSNUI
‘ueyeUSaIg ONJeaq ‘0sseq ‘gdd UaSonIu eaIn poo[q N DUIUNEIId WNIdS IDS SIS aNss1 as0dIpy SOSI-AV SOSIN PIOD [e[IqUIN SDSIA-D( SIS MOLIBW U0 ‘SDSIN-TAIF SI[DISIA Te[N[[9DBIIXS PIALIIP-[[9D WS [BWAYIUISI ‘S AT-DSIA SUOTIBIASIGQY

uaderjoo
(0529 SAF-DSAY ‘SAHSOdY) ‘stsauadordue (96'¢-€7°¢ 10 %S6 SIYI0 SOSW-AV uoneIuasany
(%S8-%T8) 21IPON snoauafora)ay 1nq Surstworg 09°¢ QINIS) 2ansop pasoxduy SDSIN-DN SOSIN-INF SJeI QOIN 1 unys/3uresaf] punop

SWIN[OA UOTSI|
(A1182 159q SATVY) CUOTJRWIWIR[JUT PAONPAT AT M I sapfoonse SOSIN-AV
(%¥6-%9.) 21eIpOIN snoauafora)ay] Inq Surstworg “(8%'F- AINS) SSNW pasoxduy SDSIN-DN ‘SOSIN-IND Syl QTN 4 AInfuy urerg snyewnely,

BUWLPI UTLIQ PIONPaT
(%68-%8S) 21eIPON snoauadora)ay Jnq ursrworg ¢I01ARY2QOINAU parorduuy SDSIN-DN SOSIN-IND Syl QTN 1 afeyrIowsy prouydereqng

stsoydode ‘uoneururefyur

(3539 SAT-OSN SAT-OSING) PP L(€9°€-T€ € 1D %S6 “LV'E SOSN SOSIW-AV
9%T8-%S /) 9YeISPOIA snosuafora)ay inq Sursrworg AINM) 21008 ggg parorduy SDSIN-DN SOSIN-IND SJeI QOTN ¥ Amfuy pro) reurd
( ) P qing ) P OSIN-0N SOS p10D Teutds
9-11 0-IN.L p2onpai cuonouny SOSIN-AV
9110da1 JON]) 93eIPOIA snoauaJorajay Inq Surstworg uedio Tearains pasoxduy SOSIN-DN SOSIN-ING doaays “syex @1 1 sisdo
(0 ) d1e1op: qng 1 P DSIN-ON $OS gl S

(L6'71-8LTID

%56 ‘SH°'9 JO) [eAIAINS pasoxduur
(€77 01 8T°S- 1O %S6 TOY- SOSIN-av
(%S6-%L9) 2YeIPON snoauafora)ay Inq Surstworg AINS) Amfur Suny paonpay SDSIN-DN ‘SOSIN-ING s81d ‘syex 1A 4 saseasi(] L1o0jexrdsay

]) Aouaisisuo) qSSRUaANDYT SSWO0DINO0 ulepy ¢92JNOS SWIOSOX] | S|I9POW Jewiuy  SMIIASJ JO JaqUINN uonipuo)/aseasia

e

*SUOI}PUOD pue s3seasip ssolde saldesay) paseq-Ssa)dISaA J1e|NjjadeiIXa PAALISP-])22 Wd)s jewAyduasaw jo Alewwns aAisuayaidwo) (panunuo)) € 319vL

frontiersin.org

17

Frontiers in Cell and Developmental Biology


https://doi.org/10.3389/fcell.2025.1655623
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Mussin et al.

10.3389/fcell.2025.1655623

TABLE 4 Overview of mesenchymal stem cell-derived extracellular vesicle (MSC-EV) dosing strategies, sources, administration routes, dose units, and
evaluation of dose-response effects in preclinical meta-analyses.

Author(s) (Year) MSC source Administration Dose unit Dose-response
(references) route studied
Aghayan et al. (2024) BM-MSCs 2 pg-300 ug v ug Not
UC-MSCs 1x10°to1x 10" P Particle number
AD-MSCs particles IT
Bailey et al. (2022) Various tissues 10-200 pg Hydrogel ug Not
1.83 x 10'°-5.22 x 10'° Intradermal Particle number
particles SC
Direct injection
Bernardi et al. (2025) BM-MSCs Single or multiple bolus v Not uniformly reported Yes
UC-MSCs various time points IC (ug or particle number)
AD-MSCs (0-168 h post-ischemia) IN
Intraarterial
Others
Chen et al. (2023) BM-MSCs 20-100 ug EV protein v ug Partially
(injected daily for IN Particle number
3-7 days) Local injection
1.6-4.2 x 10° particles
Chen et al. (2024) BM-MSCs 25-100 ug (mass) Intrauterine ug Not
UC-MSCs 0.25-0.5 mL (volume) v mL
AD-MSCs 2.13 x 107- particles Particle number
uMSCs
MenSCs
Dai et al. (2025) BM-MSCs 30-200 pg or ~1 x 10° v ug Yes
UC-MSCs particles Particle number
AD-MSCs
Fang et al. (2022) BM-MSCs 9.6-11.7 ug v ug Not
AD-MSCs 1-1.4 x 10° particles Intrasplenic Particle number
10 ug
Fang et al. (2023) BM-MSCs 100-500 pug per injection | IV ug Not
UC-MSCs Local injection
AD-MSCs
ESC-MSCs
Firouzabadi et al. BM-MSCs 20-100 ug v ug Not
(2024a) UC-MSCs 1x10°to5 x 10° IN Particle number
AD-MSCs particles
iPSC-MSCs mostly single or 2-dose
regimens
Firouzabadi et al. BM-MSCs 10 ug-400 ug v ug Not
(2024b) UC-MSCs total dose ranged from Intra-ovarian Particle number
AD-MSCs 10 to 1200 pg i3
iPSC-MSCs
AF-MSC
Gunjan et al. (2024) BM-MSCs Varied from 30 to 150 ug = Local SC ug Not
UC-MSCs ~1.8x 10" t0 5.2 x 10" Hydrogel Particle number
AD-MSCs particles
He et al. (2022) BM-MSCs 100 pg v ug Not
UC-MSCs 200-400 pg Icv Particle number
2 x 10° MSCs IN
He et al. (2023) BM-MSCs 20-200 pg v ug Yes
UC-MSCs ~1-5x 10° Local injection Particle number
AD-MSCs
ESC-MSCs
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TABLE 4 (Continued) Overview of mesenchymal stem cell-derived extracellular vesicle (MSC-EV) dosing strategies, sources, administration routes, dose
units, and evaluation of dose-response effects in preclinical meta-analyses.

Author(s) (Year) MSC source Administration Dose unit Dose-response
(references) route studied
Hickson et al. (2021) BM-MSCs 40-200 pg protein per v ug Not
UC-MSCs dose P Particle number
AD-MSCs 1x10°-1 x 10" particles
Himanshu et al. (2025) BM-MSCs 20-250 pg protein v ug Not
UC-MSCs 1x10°-1 x 10" particles M Particle number
AD-MSCs 1P
PSC-MSCs IC
Jabermoradi et al. (2025) BM-MSCs 20-150 g v ug Yes
UC-MSCs 5x 10° x 10'° particles 1T Particle number
AD-MSCs Direct spinal cord
Kirkham et al. (2022) BM-MSCs 1-200 pg or 1-1000 x 10° Local implantation ug Not
AD-MSCs particles (hydrogel/scaffold) Particle number
UC-MSCs Local injection
Dental MSCs v
Liu et al. (2020a) BM-MSCs 100 pg (20-200 pg) v ug Yes
UC-MSCs 2-5 x 10" particles Renal capsule Particle number
WJ-MSCs
AD-MSCs
UVECs
Liu et al. (2024) BM-MSCs 30-150 pg v ug Not
UC-MSCs 1x10% x 10" particles IN Particle number
AD-MSCs per dose cv
Lou et al. (2025) BM-MSCs 25-100 pug per dose Corpus cavernosum ug Not
UC-MSCs occasional studies used 1 v Particle number
AD-MSCs % 10'° particles
Lv et al. (2025) UCB-MSCs 1% 10" to 1 x 10° v Particle number Yes
1P
Mou et al. (2025) BM-MSCs 20-200 pg v ug Not
UC-MSCs 1x10° to 2 x 10%° T Particle number
AD-MSCs particles per dose Local injection
Placenta- MSCs
Nowak et al. (2022) BM-MSCs 30-200 pug v ug Not
UC-MSCs 1% 10°-2 x 10" particles Renal capsule Particle number
AD-MSCs per dose
Shang et al. (2024) BM-MSCs 40-200 pg per dose v ug Not
AD-MSCs
UC-MSCs
NSCs
Soltani et al. (2024) AD-MSCs 10-200 pg per dose sC ug Yes
1x10°-2 x 10*° particles; | Hydrogel/dressing Particle number
mostly single dose delivery
Tieu et al. (2021) BM-MSCs 50-250 pg sC ug Partially
AD-MSCs 1x10% x 10" particles Topical Particle number
UC-MSCs v
Wang et al. (2020) BM-MSCs 10-100 pg protein v ug Not
UC-MSCs 1 x 10°-10° particles IT Particle number
AD-MSCs Intratracheal
WJ-MSCs
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TABLE 4 (Continued) Overview of mesenchymal stem cell-derived extracellular vesicle (MSC-EV) dosing strategies, sources, administration routes, dose
units, and evaluation of dose-response effects in preclinical meta-analyses.

Author(s) (Year) MSC source Administration Dose unit Dose-response
(references) route studied
Wang et al. (2024) BM-MSCs 20-400 pg protein v ug Yes
UC-MSCs 3 x 10° cells equivalent Intraventricular Cell-equivalent
AD-MSCs
Wang et al. (2025) UC-MSCs 30-200 pg v ug Not
BM-MSCs 1x10°-1 x 10" IN Particle number
particles per injection
Wendt et al. (2018) BM-MSCs 30-100 pg per injection v ug Not
Local injection
Xu et al. (2024) BM-MSCs 10-300 pg v ug Yes
UC-MSCs 2% 10°-3 x 10! particles | IN pg/kg
AD-MSCs 10-200 pg/kg Intracerebral Particle number
iPSC-MSCs 800 ng-100 ug
Xun et al. (2022) UC-MSCs 100-300 pg v ug Partially
AD-MSCs 1x10°to 2 x 10" IN Particle number
particles
Yang et al. (2022) BM-MSCs 100-700 pg v ug Yes
AD-MSCs Intrathecal
Yang et al. (2023a) BM-MSCs 3-200 pg v ug Yes
UC-MSCs 3 x 10" particles Intraventricular Particle number
AD-MSCs 1.5 x 10° cells Retroorbital Cell-based equivalent
NSCs
Yang et al. (2023b) BM-MSCs 100 pg v ug Yes
UC-MSCs 20-400 pg IT Particle number
AD-MSCs 1% 10°-3 x 10" particles | IN
Placenta-MSCs Retroorbital
Icv
Ye et al. (2024) BM-MSCs 100 pg per injection v ug Yes
100-500 pg IT
Yi and Wang (2021) BM-MSCs 10-700 ug per injection v ug Yes
UC-MSCs 200 pg/mL IT ug/mL
AD-MSCs 5 x 10" particles IN Particle number
NSCs Intracerebral
EF-MSCs Retroorbital
Yue et al. (2024) BM-MSCs 10-200 pg per injection sC ug Not
UC-MSCs 1x10°t02x 10" Intradermal Particle number
AD-MSCs particles Hydrogel-assisted topical
delivery
Zhang et al. (2016a) BM-MSCs 10-200 ug per dose v ug Not
UC-MSCs
AD-MSCs
Zhang et al. (2016b) ESC-MSCs 100-200 pg v ug Not
BM-MSCs CM-equivalent
Zhang et al. (2022) BM-MSCs 50-200 pg v ug Yes
UC-MSCs 1x10°-2 x 10" particles = IN Particle number
AD-MSCs
Zhang et al. (2025) BM-MSCs 100 pg v ug Yes
UC-MSCs Up to 300 pg Local cerebral injection
AD-MSCs
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TABLE 4 (Continued) Overview of mesenchymal stem cell-derived extracellular vesicle (MSC-EV) dosing strategies, sources, administration routes, dose
units, and evaluation of dose-response effects in preclinical meta-analyses.

Author(s) (Year) MSC source EV dose Administration Dose unit Dose-response
(references) route studied
Zhou et al. (2023a) BM-MSCs 100-300 pug Local gingival injection ug Not
Dental MSCs 1% 10°-2 x 10" particles v Particle number
Scaffold implantation
Zhou et al. (2023b) BM-MSCs 100 pg Local injection ug Not
Dental MSCs 1.5 x 10” particles Particle number
Zhou et al. (2024) BM-MSCs 40-400 pug v ug Yes
UC-MSCs 100-250 pg P
AD-MSCs Liver lobe injection
TMSC
AMSCs
Zhou et al. (2025) BM-MSCs 10-100 ug per injection Intrauterine ug Not
UC-MSCs v
MenSCs
Zhidu et al. (2024) PDLSCs 50-300 pg Bone defect implantation ug Not
DPSCs 1x10°-2 x 10'° particles | Local injection Particle number
SCAPs
SHEDs
Zhu et al. (2025) BM-MSCs 30-200 pug Topical hydrogel ug Yes
UC-MSCs 1 x 10°-2 x 10'° particles SC Particle number
AD-MSCs

Abbreviations: MSC, mesenchymal stem cell; BM-MSCs, Bone Marrow-Derived Mesenchymal Stem Cells; UC-MSCs, Umbilical Cord-Derived Mesenchymal Stem Cells; AD-MSCs, Adipose
Tissue-Derived Mesenchymal Stem Cells; WJ-MSCs, Wharton’s Jelly-Derived Mesenchymal Stem Cells; UCB-MSCs, Umbilical Cord Blood-Derived Mesenchymal Stem Cells; AF-MSCs,
Amniotic Fluid-Derived Mesenchymal Stem Cells; ESC-MSCs, Embryonic Stem Cell-Derived Mesenchymal Stem Cells; IV, intravenous; IP, intraperitoneal; IT, intrathecal; IC, intracardiac; IN,
intranasal; ICV, intracerebroventricular; IM, intramuscular; iPSC-MSCs, Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells; PSC-MSCs, Pluripotent Stem Cell-Derived
Mesenchymal Stem Cells; NSCs, Neural Stem Cells; EF-MSCs, Endometrial Fibroblast-Derived Mesenchymal Stem Cells; Dental MSCs, Dental Tissue-Derived Mesenchymal Stem Cells;
DPSCs, Dental Pulp Stem Cells; SHEDs, Stem Cells from Human Exfoliated Deciduous Teeth; SCAPs, Stem Cells from Apical Papilla; PDLSCs, Periodontal Ligament Stem Cells; TMSCs,
Tonsil-Derived Mesenchymal Stem Cells; AMSCs, Amniotic Membrane-Derived Mesenchymal Stem Cells; MenSCs, Menstrual Blood-Derived Mesenchymal Stem Cells; uMSCs,
Uterine-Derived Mesenchymal Stem Cells; Placenta-MSCs, Placenta-Derived Mesenchymal Stem Cells; SC, subcutaneous.

and functional recovery. For instance, in ischemic stroke, MSC-
EVs reduced cerebral infarct volume (SMD -3.76) and improved
neurological scores (mNSS; SMD -2.11), with BMSC-EV's showing
superior efficacy (Zhao et al., 2023). Similarly, in diabetic wounds,
adipose-derived EVs (ADSC-EVs) accelerated wound closure (SMD
4.22) and enhanced angiogenesis (SMD 9.27), highlighting their
potential in regenerative medicine (Soltani et al., 2024).

These findings align with the broader literature on MSC-EVs,
which emphasizes their role as bioactive mediators carrying
microRNAs, proteins, and lipids that modulate cellular processes.
The high efficacy observed in conditions like SCI and traumatic
brain injury, where MSC-EVs improved locomotor scores (BBB;
WMD 3.47) and cognitive outcomes (mNSS; SMD -4.48),
underscores their neuroprotective and regenerative capabilities
(Chen et al, 2024; Ye et al, 2024). The ability of MSC-EVs
to outperform conditioned medium in acute kidney injury
(Liu C. et al,, 2020; Zhang G. et al., 2016) and to match or exceed
MSC-based therapies in subarachnoid hemorrhage (He et al., 2022)
further supports their therapeutic advantage, likely due to their
stability, low immunogenicity, and ability to cross biological barriers.

The clinical implications are significant. MSC-EVs offer
a cell-free therapeutic approach that circumvents challenges
associated with MSC transplantation, such as immune rejection
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and tumorigenic risks. Their efficacy in diverse preclinical models
suggests potential for broad clinical applications, particularly in
conditions with high unmet needs, such as stroke, SCI, and diabetic
complications. However, the variability in efficacy across diseases
highlights the need for disease-specific optimization of EV sources,
dosing, and delivery methods.

4.2 Exosome source and optimization

The review reveals that significantly

influences therapeutic outcomes. AD-MSC-EVs excelled in wound

exosome  source
healing, particularly diabetic wounds, where they promoted
angiogenesis and collagen deposition, while BM-MSC-EVs
demonstrated superior effects in neurological models. hUC-MSCs
showed superior efficacy in knee osteoarthritis and periodontal
regeneration, possibly due to their high proliferative capacity and
immunomodulatory properties.

Emerging sources, such as periodontal ligament (PDLSCs) for
multiple sclerosis (Xun et al., 2022) and menstrual blood (MenSCs)
for intrauterine adhesion (Chen et al, 2023), demonstrated high
efficacy despite fewer studies, suggesting untapped potential.
Modified EVs, such as miRNA-loaded or hypoxia-pretreated
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FIGURE 4
Bubble map of MSC-EV sources across disease categories, summarizing higher-quality meta-analyses. Filled bubbles indicate pairs supported by
reviews with AMSTAR-2 High/Moderate confidence and 12 < 70%; bubble size encodes the number of such reviews. Hollow diamonds mark pairs
reported with 12 > 70% (promising but heterogeneous). Other MSCs aggregates less-frequent sources. Abbreviations: BM-MSC-EVs, bone
marrow—derived; AD-MSC-EVs, adipose-derived; UC-MSC-EVs, umbilical cord—derived.

EVs, consistently outperformed native EVs, as seen in SCI
(Hu et al, 2021; Liu W. et al,, 2020; Yang et al, 2024) and
stroke (Li et al., 2023; Song et al., 2024), where engineered EVs
enhanced functional recovery by targeting specific pathways. These
findings align with recent studies emphasizing the role of EV cargo
engineering in enhancing therapeutic specificity.

Delivery methods also influenced outcomes. Intravenous
and intrathecal routes were most common, with intrathecal
administration showing superior efficacy in SCI. Hydrogels and
scaffolds improved outcomes in some contexts, but their benefit
was not universal, as seen in diabetic wounds where non-hydrogel
methods were equally effective (Bailey et al, 2022; Chen et al,
2025). These observations underscore the need for tailored delivery
strategies based on disease pathophysiology and target tissue.

The administration route is another determinant of therapeutic
outcomes. While intravenous delivery remains the most frequently
used method, it may not be optimal for all disease contexts. For CNS
conditions, intrathecal and intranasal delivery were more effective in
bypassing the blood-brain barrier and enhancing neuroprotective
outcomes. For local pathologies, such as wounds and periodontal
disease, local injection and hydrogel-mediated delivery improved
retention and tissue-specific effects. These observations underscore
the need for future preclinical and clinical studies to systematically
evaluate route-dependent biodistribution and efficacy of MSC-EVs.

This crosswalk illustrates the concentration of higher-quality
evidence, showing clear clusters of BM-MSC-EV's with neurological
models, AD-MSC-EVs with wound healing, and UC-MSC-EVs
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with musculoskeletal and periodontal regeneration. These patterns
emphasize the importance of tailoring MSC-EV source selection to
disease context.

4.3 Considerations on MSC-EV dose
optimization

One critical but under-addressed variable in MSC-EV therapy is
dosing strategy. Our umbrella review found substantial variability in
reported doses, with most studies using a fixed dose (often 100 pg)
without justification or titration. While several studies—such
as those on SCI, stroke, and reproductive models—performed
subgroup or network meta-analyses to examine dose-response
relationships, the overall evidence remains fragmented and
underpowered. In some cases, 100-200 pg was reported as optimal
for neuroprotection or tissue regeneration, yet other studies used
much higher doses (up to 700 pg) or particle-based quantifications
(1 x 10” to 10'! particles).

The lack of standardized dosing metrics (mass vs. particle
count), inconsistent reporting of EV characterization, and variable
injection regimens further complicate cross-study comparisons.
Notably, some studies administered EVs via specialized delivery
systems, which could enhance local bioavailability and reduce
systemic loss. However, head-to-head comparisons across these
delivery platforms remain limited.
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TABLE 5 Comprehensive analysis of mesenchymal stem cell-derived extracellular vesicles sources and their therapeutic efficacy across diseases.

Stem cell source

Number of studies

Common disease
targets

Key outcomes

Reported efficacy

Diabetic Wounds, Periodontal
Regeneration

SMD -2.30); improved wound
closure (SMD 3.16),
angiogenesis (SMD 4.64),
BV/TV (WMD 14.07%),
CEJ-ABC (WMD -0.12 mm)

Bone Marrow (BM-MSC) 308 Ischemic Stroke, IUA, TBI, Reduced cerebral infarct High (less effective for kidney
Diabetic Wounds, Kidney volume (SMD -3.76), mNSS transplantation, acute/subacute
Transplantation, Liver Diseases, (SMD -2.11), SCr (MD ICH; best for revascularization)
NAFLD/NASH, SAH, -0.93 mg/dL), inflammation
Osteoporosis, DKD, SCI, Bone (TNF-a, IL-6, IL-1B; SMD
Injury, Osteosarcoma, AKI, -3.12), apoptosis (SMD -4.52),
CKD, POI, Asthma, fibrosis, ALT, AST; improved
Hemorrhagic Stroke, AMH (SMD 5.39), BV/TV
ALI/ARDS, Knee OA, MS, (WMD 14.07%), BBB score
Cardiovascular Diseases, (WMD 3.47), wound closure
Periodontal Regeneration, (SMD 3.60), angiogenesis
‘Wound Healing, Liver Fibrosis (SMD 4.64), EF (SMD 1.57)
Adipose Tissue (AD-MSC) 154 Ischemic Stroke, IUA, Diabetic Reduced inflammation (IL-6, High (most effective for
Wounds, Sepsis, Kidney TNF-a; SMD -2.30), cerebral angiogenesis, wound closure;
Transplantation, Liver Diseases, infarct volume (SMD -3.76), less effective for SCI,
NAFLD/NASH, Osteoporosis, SCr (MD -0.93 mg/dL), acute/subacute ICH)
DKD, SCI, Bone Injury, fibrosis, ALT, AST; improved
Osteosarcoma, AKI, ED, CKD, wound closure (SMD 4.22),
Asthma, Hemorrhagic Stroke, angiogenesis (SMD 4.64),
ALI/ARDS, Knee OA, MS, AMH (SMD 5.39), BBB score
Cardiovascular Diseases, TBI, (SMD -3.29), GFR
POI, Wound Healing, Liver
Fibrosis
Umbilical Cord (hUC-MSC) 119 Ischemic Stroke, [UA, Diabetic Reduced inflammation (IL-6, High (most effective for knee
Wounds, Sepsis, Liver Diseases, TNF-a; SMD -2.30), cerebral OA, periodontal regeneration)
NAFLD/NASH, SAH, infarct volume (SMD -3.76),
Osteoporosis, DKD, SCI, Bone SCr (MD -0.93 mg/dL), fibrosis,
Injury, AKI, CKD, POI, ALT, AST; improved AMH
Asthma, Hemorrhagic Stroke, (SMD 5.39), wound closure
ALI/ARDS, Knee OA, MS, (SMD 3.60), angiogenesis
Cardiovascular Diseases, TBI, (SMD 4.64), BBB score (SMD
Periodontal Regeneration, -3.29), EF (SMD 1.57)
Wound Healing, Liver Fibrosis
Menstrual Blood (MenSC) 6 1UA, Diabetic Wounds, Liver Reduced fibrosis, inflammation, High
Diseases, POI, Wound Healing ALT, AST; improved wound
closure (SMD 3.60),
angiogenesis, AMH, E2,
pregnancy odds
Uterus (uMSC) 1 1UA Reduced fibrosis; increased High
gland number
Synovial (SMSC) 6 Diabetic Wounds, Knee OA, Reduced IL-1B, TNF-a, High (superior for knee OA)
Wound Healing MMP-13; improved wound
closure (SMD 3.60),
angiogenesis, OARSI score,
type I co]lagen, aggrecan, IL-10
Decidua MSCs 2 Diabetic Wounds, Wound Reduced inflammation (IL-6; High
Healing SMD -2.30); improved wound
closure (SMD 3.16),
angiogenesis (SMD 4.64),
re-epithelialization (SMD 4.68)
Gingival MSCs 3 Diabetic Wounds, Type II Reduced inflammation (IL-6; High
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TABLE 5 (Continued) Comprehensive analysis of mesenchymal stem cell-derived extracellular vesicles sources and their therapeutic efficacy

across diseases.

Stem cell source

Number of studies

Common disease
targets

Key outcomes

Reported efficacy

Amniotic (AMSC)

Liver Diseases, Wound Healing

Reduced ALT, AST, fibrosis;
improved wound closure (SMD
3.60), angiogenesis, collagen
deposition

High

Tonsil (TSC)

Liver Diseases

Reduced ALT, AST, fibrosis

High

Placental (hPMSC)

NAFLD/NASH, SCI, Asthma,
Wound Healing

Reduced AST, ALT,
inflammation, BALF IL-4;
improved locomotion (BBB),
neuro-regeneration, wound
closure (SMD 3.60),
angiogenesis

High

Urine-Derived (USC)

Osteoporosis, DKD, ED, CKD

Reduced SCr, BUN,
inflammation; improved BMD,
BV/TV, ICP/MAP, nNOS,
eNOS, GFR

High

‘Wharton’s Jelly (hWJMSC)

SCI, AKI

Reduced inflammation, SCr,
BUN, TNF-q; improved
locomotion (BBB),
neuro-regeneration, IL-10

High

Dental Pulp (DPSC)

SCI, Knee OA, Ischemic Stroke,
Periodontal Regeneration

Reduced IL-1B, TNF-q, cerebral
infarct volume; improved
locomotion (BBB), OARSI
score, BV/TV (WMD 14.07%),
type II collagen, IL-10

High

Mouse Umbilical Cord
(mUCMSC)

SCI

Reduced inflammation, GFAP;
improved locomotion,
neuro-regeneration

High

Kidney-Derived (KMSC)

AKI

Reduced SCr, BUN, TNF-q,
apoptosis; increased IL-10

High

Human Liver Stem Cell (HLSC)

AKI, CKD

Reduced SCr, BUN, TNF-a,
apoptosis; increased IL-10, GFR

High

Human Umbilical Cord Blood
(hUCB-MSC)

DKD, CKD, ED

Reduced SCr, BUN,
inflammation, fibrosis;
improved IL-10, E-Cadherin,
ICP/MAP, nNOS, eNOS, GFR

High

Muscle-Derived Stem Cells
(MDSC)

ED

Improved ICP/MAP, nNOS,
eNOS, smooth muscle/collagen
ratio

High

Amniotic Fluid (AF-MSC)

11

CKD, POI, Knee OA

Reduced IL-1B, TNF-a, SCr,
BUN; improved OARSI score,
type II collagen, GFR, AMH, E2,
pregnancy odds

High

Induced Pluripotent Stem Cell
(iPSC-MSC)

POI, Asthma, Wound Healing

Reduced BALF IL-4; improved
follicle count, AMH, E2,
pregnancy odds, wound closure
(SMD 3.60), angiogenesis

High

Clonal MSC (H-cMSC)

POI

Improved follicle count, AMH,
E2, pregnancy odds

High
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TABLE 5 (Continued) Comprehensive analysis of mesenchymal stem cell-derived extracellular vesicles sources and their therapeutic efficacy

across diseases.

Stem cell source Number of studies

Common disease

Key outcomes

Reported efficacy

targets

Periodontal Ligament 9 MS, Periodontal Regeneration Reduced inflammation (IL-17, High (most effective for MS)

(PDLSC) IEN-y, IL-1p), microglial
activation; improved clinical
score (SMD -2.17), BV/TV
(WMD 14.07%),
remyelination, Tregs

Neural Stem Cell (NSCEVs) 12 TBI, SCI Reduced inflammation; High (early effect in SCI)
improved mNSS (MD -2.0),

BBB score (SMD 0.91),
neuro-regeneration

Dental Follicle Stem Cells 2 Periodontal Regeneration Improved BV/TV (WMD High (effective for bone

(DFSCs) 14.07%), BMD (SMD 0.29); regeneration)
reduced CEJ-ABC (WMD
-0.12 mm), Tb.Sp (SMD -0.08)

Stem Cells from Human 2 Periodontal Regeneration Improved BV/TV (WMD High (effective for bone

Exfoliated Deciduous Teeth 14.07%), BMD (SMD 0.29); regeneration)

(SHEDs) reduced CEJ-ABC (WMD
-0.12 mm), Tb.Sp (SMD -0.08)

Apical Papilla Stem Cells 1 Periodontal Regeneration Improved BV/TV (SMD High (effective for bone

(SCAPs) 13.99), BMD (SMD 0.29); regeneration)
reduced CEJ-ABC (SMD
-0.22), Tb.Sp (SMD -0.08)

Hair Follicle MSCs 1 Wound Healing Improved wound closure High (superior for wound
(SMD 3.60), angiogenesis, closure in diabetic models)
collagen deposition

Oral Mucosa Lamina MSCs 3 Wound Healing Improved wound closure High
(SMD 3.60), angiogenesis,
collagen deposition

Orbicularis Oculi Muscle 1 ‘Wound Healing Improved wound closure High

MSCs (SMD 3.60), angiogenesis,
collagen deposition

To support clinical translation, future preclinical trials should
incorporate formal dose-response analyses, adopt standardized
reporting in line with MISEV2023 guidelines, and evaluate
and tissue distribution

pharmacokinetics in parallel with

efficacy outcomes (Su et al., 2025).

4.4 Mechanisms of action

The therapeutic effects of MSC-EVs are mediated through
multiple anti-inflammatory,  anti-
apoptotic, and regenerative pathways (Liao et 2022).
The consistent reduction in proinflammatory cytokines and
upregulation of IL-10 across diseases like asthma, sepsis,
and liver fibrosis highlight their immunomodulatory role. In
neurological disorders, MSC-EV's reduced neuronal apoptosis and

mechanisms, including

al.,

promoted neurogenesis and axonal regeneration, contributing to
functional recovery (Dabrowska et al., 2020). In wound healing,
enhanced angiogenesis and collagen deposition were driven
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by EV-mediated delivery of growth factors and microRNAs
(Pulido-Escribano et al., 2023).

These mechanisms are consistent with the literature, which
attributes MSC-EV efficacy to their cargo of bioactive molecules,
including miRNAs, proteins, and lipids. The ability of MSC-EVs
to modulate multiple pathways simultaneously explains their broad
efficacy but also complicates efforts to pinpoint specific mechanisms
for each disease (Tsuji et al., 2020). Future studies should leverage
omics technologies to elucidate disease-specific EV cargos and their
targets, facilitating precision medicine approaches.

4.5 Methodological quality and limitations

A major limitation across the evidence base is the prevalence
of randomization bias, lack of blinding, and inadequate allocation
concealment, as summarized in Table 6. These issues undermine
internal validity and may inflate reported effect sizes. The review
identified significant methodological challenges that temper the

frontiersin.org


https://doi.org/10.3389/fcell.2025.1655623
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Mussin et al. 10.3389/fcell.2025.1655623

TABLE 6 Comprehensive summary of risk of bias assessments in meta-analysis of mesenchymal stem cell-derived extracellular vesicles-based studies.

Authors, reference Tool used Overall RoB rating Most common biases?®

Aghayan et al. (2024) Novel Tool Unclear Methodological heterogeneity, data
extraction limitations

Bailey et al. (2022) SYRCLE Unclear Unclear randomization, allocation
concealment, blinding

Bernardi et al. (2025) SYRCLE Moderate-High Allocation, blinding, random housing

Chen et al. (2024) CAMARADES Moderate Sample size calculation, allocation
concealment, blinding

Chen et al. (2023) SYRCLE High Allocation concealment, performance
bias, detection bias

Dai et al. (2025) SYRCLE Moderate Allocation sequence, blinding, baseline
similarity

Fang et al. (2023) CAMARADES Moderate Sample size calculation, blinding,
random outcome assessment

Fang et al. (2022) SYRCLE High Selection bias (random allocation),
attrition bias

Firouzabadi et al. (2024a) SYRCLE Moderate Blinding, allocation concealment,
random outcome assessment

Firouzabadi et al. (2024b) SYRCLE Low Sequence generation, allocation
concealment, blinding

Gunjan et al. (2024) SYRCLE Moderate Blinding, allocation concealment

He et al. (2022) CAMARADES Moderate Sample size calculation, blinded SAH
induction

He et al. (2023) SYRCLE Moderate Allocation concealment, blinding,
random outcome assessment

Hickson et al. (2021) SYRCLE Moderate Allocation concealment, blinding,
random housing, outcome assessment

Himanshu et al. (2025) SYRCLE Moderate Blinding, allocation concealment,
random housing

Jabermoradi et al. (2025) SYRCLE Moderate Allocation concealment, blinding,
random housing, outcome assessment

Kirkham et al. (2022) SYRCLE Unclear Blinding, allocation concealment,
selective reporting, randomization

Liu et al. (2020a) CAMARADES Moderate Sample size calculation, blinded model
induction, blinded outcome assessment

Liu et al. (2024) SYRCLE Unclear Blinding, random outcome assessment,
allocation concealment

Lou et al. (2025) Custom (9 criteria) High-Moderate Blinding, sample size calculation,
follow-up duration

Lv et al. (2025) SYRCLE Moderate Allocation concealment, blinding,
randomization

Mou et al. (2025) SYRCLE Low Minor issues in randomization,
blinding

(Continued on the following page)
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TABLE 6 (Continued) Comprehensive summary of risk of bias assessments in meta-analysis of mesenchymal stem cell-derived extracellular
vesicles-based studies.

Authors, reference Tool used Overall RoB rating Most common biases®

Nowak et al. (2022) CAMARADES Moderate Randomization, blinded outcome
assessment, conflict of interest statement

Shang et al. (2024) SYRCLE High Unclear randomization, allocation
concealment, limited blinding (25/40
studies)

Soltani et al. (2024) SYRCLE Unclear Lack of randomization details, unclear

allocation concealment, no blinding

Tieu et al. (2021) SYRCLE Moderate Unclear randomization, allocation
concealment, partial blinding of outcome
assessors

Wang et al. (2024) CAMARADES High Lack of blinding, no sample size calculation,

unclear random housing

Wang et al. (2020) SYRCLE Moderate Unclear randomization, allocation
concealment, lack of blinding, variable
assessment

Wang et al. (2025) SYRCLE Moderate Unclear randomization (24/28 studies),

allocation concealment, limited blinding

Wendt et al. (2018) SYRCLE Moderate Unclear randomization, allocation
concealment, limited blinding, variable EV
reporting

Xu et al. (2024) SYRCLE Moderate Unclear randomization (32/38 studies),

allocation concealment, limited blinding

Xun et al. (2022) SYRCLE Unclear Unclear randomization, allocation
concealment, blinding, incomplete outcome
reporting

Yang et al. (2023a) SYRCLE Moderate Unclear randomization, allocation
concealment, limited blinding, uneven
study quality

Yang et al. (2022) SYRCLE Unclear Unclear attrition bias, selective reporting
(92% unclear), publication bias

Yang et al. (2023b) SYRCLE Moderate Unclear randomization, allocation
concealment, high heterogeneity (I* = 94%
for mNSS)

Ye et al. (2024) SYRCLE Unclear Unclear randomization (29/30 studies),
blinding, allocation concealment,
publication bias

Yi and Wang (2021) SYRCLE Unclear Unclear randomization, blinding,
publication bias for BBB scores (Egger’s p =
0.00)

Yue et al. (2024) SYRCLE Unclear Unclear randomization, allocation
concealment, blinding, publication bias
(Egger’s p = 0.000)

Zhang et al. (2016a) SYRCLE Unclear Unclear randomization, allocation
concealment, blinding, no publication bias

Zhang et al. (2016b) SYRCLE Unclear Unclear randomization, allocation
concealment, blinding, potential
publication bias

(Continued on the following page)
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TABLE 6 (Continued) Comprehensive summary of risk of bias assessments in meta-analysis of mesenchymal stem cell-derived extracellular

vesicles-based studies.

Authors, reference Tool used Overall RoB rating Most common biases®

Zhang et al. (2022) SYRCLE Moderate Unclear randomization (22/24 studies), no
allocation concealment, publication bias

Zhang et al. (2025) CAMARADES Moderate Sample size calculation, unclear
randomization, blinding

Zhou et al. (2023a) SYRCLE, NIH Unclear Unclear randomization, limited blinding,
publication bias for AMH

Zhou et al. (2025) Cochrane Unclear Unclear randomization, allocation
concealment, blinding, incomplete outcome
data

Zhou et al. (2024) SYRCLE Unclear Unclear randomization, allocation
concealment, lack of blinding

Zhou et al. (2023b) SYRCLE Unclear Unclear allocation concealment, blinding,
high risk for random housing

Zhu et al. (2025) SYRCLE Unclear Unclear randomization, allocation
concealment, blinding, poor dose reporting

*Common recurring issues across studies were unclear randomization procedures, lack of blinding, and poor allocation concealment.

interpretation of findings. Most meta-analyses reported moderate
to high risk of bias, primarily due to unclear randomization, lack
of blinding, and inadequate allocation concealment in primary
studies. The SYRCLE and CAMARADES tools highlighted these
issues, with only a few studies achieving low risk across all
domains. High heterogeneity (I* often >70%) was another concern,
driven by variations in animal models, EV sources, doses, and
administration protocols. While sensitivity analyses and trim-
and-fill adjustments often confirmed robust findings, publication
bias was evident in conditions like stroke and SCI, suggesting a
potential overestimation of effect sizes. Although some outcomes
showed very large effect sizes, they were accompanied by high
heterogeneity (I* > 70%). In this umbrella review, we did not
exclude these results but reclassified them as Promising but
heterogeneous to preserve comprehensiveness while reflecting their
limited certainty.

The AMSTAR 2
as moderate quality,
randomization, blinding, and publication bias assessments. The

rated all
limitations in

assessments meta-analyses

reflecting reporting
lack of standardized EV characterization further complicates
comparisons across studies. These methodological issues align
with broader challenges in preclinical research, where poor
reporting and experimental design can undermine reproducibility
(Simon-Tillaux et al., 2022).

The umbrella review itself has limitations. The restriction to
English-language studies may have excluded relevant non-English
meta-analyses (Wang et al, 2015). The reliance on reported
data from included meta-analyses meant that incomplete or
inconsistent reporting could affect our synthesis. Additionally,
the diversity of diseases and outcomes precluded a formal
meta-analysis of effect sizes, limiting our ability to quantify
overall efficacy.
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4.6 Limitations and considerations

Because umbrella reviews rely on published meta-analyses,
we cannot exclude or re-pool individual primary studies. Instead,
we downgraded evidence strength for outcomes with 1 > 70%
to Promising but heterogeneous. This ensures transparency while
retaining the comprehensive scope of the umbrella review.

Several limitations must be considered when interpreting the
findings of this umbrella review. Study quality was a notable
concern, as poor reporting of critical methodological aspects such
as randomization, blinding, and allocation concealment limited
the reliability of some conclusions. Many primary studies scored
between 3 and 7 on the SYRCLE scale, reflecting low to moderate
methodological quality.

Several included reviews were of low or critically low confidence
according to AMSTAR-2, and while retained for completeness,
sensitivity summaries excluding these reviews are presented to
indicate robustness of conclusions.

Future preclinical MSC-EV should
rigorous randomization and blinding, with transparent allocation
concealment, in line with ARRIVE reporting standards, to improve
the reliability of pooled evidence.

studies implement

Publication bias was evident in numerous conditions, including
stroke, SCI, and post-operative ileus, as indicated by asymmetrical
funnel plots and significant Egger’s or Begg’s test results. However,
subsequent trim-and-fill analyses often confirmed the stability of the
observed effects, lending credibility to the synthesized outcomes.

Another issue was the variability in exosome characterization.
Some studies did not include essential quality control data, such
as electron microscopy images or expression analysis of EV surface
markers, which may affect the comparability and reproducibility of
MSC-EV therapies.
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Lastly, translational remain.
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4.7 Future directions

Several key priorities have emerged to guide future research
on MSC-EVs, with the goal of enhancing scientific rigor
and accelerating clinical translation. First and foremost, there
a critical need for standardization.
EV

developed

is Uniform protocols
be

reproducibility

for isolation, characterization, and dosing must

and widely adopted to ensure
and comparability across studies. In this context, strict
adherence to the MISEV2023 (Minimal Information for Studies
of Extracellular Vesicles) guidelines should be considered
essential (Welsh et al., 2024).

In addition, mechanistic studies should be expanded using
advanced omics technologies—such as proteomics, transcriptomics,
and metabolomics—alongside bioinformatics tools, to elucidate
disease-specific EV cargos and their molecular targets. Such
insights will support the development of more tailored and
Optimization of MSC-EV

therapies is another important area of focus. This includes

effective therapeutic strategies.
exploring novel and less-studied EV sources, such as PDLSCs
and MenSCs, as well as employing bioengineering strategies
like microRNA loading or surface modification to enhance
therapeutic potency.

Across the included meta-analyses, the most commonly
miRNA-
engineering, cytokine/growth factor priming, and scaffold-based

reported methods were hypoxic preconditioning,

conditioning. These preconditioning approaches were consistently
associated with improved therapeutic efficacy, including enhanced
angiogenesis, neuroprotection, and anti-inflammatory effects.
For example, hypoxia-enhanced EVs showed superior functional
outcomes in spinal cord injury models, while miRNA-modified
EVs demonstrated targeted regulation of inflammatory and
regenerative pathways (Jiang et al., 2025). Scaffold incorporation
also supported sustained EV release and localized tissue repair
(Leung et al,, 2022). These findings suggest that preconditioning
may be a key determinant of EV potency, and future research
should prioritize standardized evaluation of these strategies
(Liu et al., 2025).

For clinical translation, the field must now progress
toward conducting early-phase clinical trials (Phase I/II) to
assess the safety, tolerability, and efficacy of MSC-EVs in
human subjects. Priority should be given to high-impact
conditions where preclinical data already show strong therapeutic
potential, such as ischemic stroke and diabetic wounds.
Alongside these translational efforts, improving methodological
rigor in preclinical studies is crucial. This involves proper
implementation of randomization, blinding, and allocation
concealment, with transparent reporting practices aligned with
the ARRIVE (Animal Research: Reporting of In Vivo Experiments)
guidelines.

Finally, addressing publication bias remains a vital
consideration. The use of prospective study registration and open-
access data platforms can help ensure that both positive and negative
results are reported, thereby strengthening the integrity of the
evidence base. By tackling these research priorities, the field can
move toward more reliable, effective, and clinically applicable

MSC-EV therapies.
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5 Conclusion

MSC-EVs
across diverse preclinical models, with high efficacy in reducing

demonstrate remarkable therapeutic potential
inflammation, apoptosis, and tissue damage while promoting
regeneration and functional recovery. BM-, adipose-, and
umbilical cord-derived EVs are particularly promising, with
modified EVs offering enhanced benefits. Despite methodological
limitations, the consistency of positive outcomes supports
MSC-EVs as a viable therapeutic strategy. However, current studies
are limited by small sample sizes, heterogeneous isolation and
characterization methods, and variable outcome measures, which
hinder comparability and reproducibility. Future studies should
prioritize standardized protocols, robust mechanistic investigations,
and rigorous experimental design to address these shortcomings.
Addressing standardization, mechanistic understanding, and study
quality will be critical to translating these findings into clinical
practice, potentially revolutionizing treatment for a wide range of
diseases.
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