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Background: Stomach adenocarcinoma (STAD) remains a major contributor to
cancer-related mortality worldwide. Despite advances in immunotherapy, only a
subset of STAD patients benefits from immune checkpoint inhibitors, largely due
to tumor-intrinsic immune evasion mechanisms. Therefore, robust predictive
biomarkers are urgently needed to guide prognosis assessment and therapeutic
decision-making.

Methods: An integrative machine learning framework incorporating 10
algorithms was applied to construct an immune evasion signature (IES)
using 101 model combinations. The optimal model was selected based on
concordance index (C-index) across validation datasets. The prognostic and
immunological relevance of the IES was assessed via survival analyses, immune
infiltration deconvolution, and multiple immunotherapy response metrics. Key
genes were further validated using gPCR, immunohistochemistry, and in vitro
functional assays.

Results: A four-gene IES developed via the LASSO method demonstrated
robust prognostic power across TCGA and multiple external cohorts. High
IES score were associated with poor survival, reduced immune cell infiltration
(e.g.,, CD8" T cells, dendritic cells), elevated M2 macrophage abundance, and
an immunosuppressive tumor microenvironment. Patients in the low IES score
group exhibited favorable immunotherapy-associated features, including higher
TMB, lower TIDE scores, and increased response rates in three independent
immunotherapy datasets. Additionally, the IES stratified patients by sensitivity to
chemotherapy and targeted therapies. KLF16, one of the signature genes, was
upregulated in STAD and promoted cancer cell proliferation in vitro.
Conclusion: We established a novel IES with strong potential to predict
prognosis and immunotherapy response in STAD. This IES may serve as a
valuable tool for risk stratification and individualized treatment planning in
clinical practice.

stomach adenocarcinoma, immune evasion, machine learning, immunotherapy,
prognostic signature
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1 Introduction

Stomach adenocarcinoma (STAD) is one of the most prevalent
malignancies worldwide and remains a leading cause of cancer-
related mortality (Luo et al, 2022). There are around 1,089,103
new STAD cases reported and an estimated 768,793 deaths in
2020 globally (Sung et al., 2021). Despite significant advances in
surgery, chemotherapy, targeted therapy, and immunotherapy, the
prognosis for advanced STAD patients remains unsatisfactory due to
tumor heterogeneity and resistance to treatment (Yasuda and Wang,
2024). Recent clinical applications of immune checkpoint inhibitors
have offered new hope, but only a subset of patients derives
substantial benefit, largely due to tumor-intrinsic mechanisms of
immune evasion (Guan et al., 2023).

Immune evasion refers to the ability of tumor cells to escape
immune surveillance, often through downregulation of antigen
presentation, overexpression of immune checkpoint molecules,
or alterations in the tumor microenvironment that inhibit
effective immune responses. In STAD, the immunosuppressive
microenvironment—characterized by regulatory T cells, M2
suppressor  cells—plays
a pivotal role in immune escape and therapeutic resistance

macrophages, and myeloid-derived
(Wang et al, 2024; Li et al, 2025). This immunosuppressive
environment facilitates tumor immune escape, allowing cancer
cells to evade host immune clearance. Thus, investigating genes
associated with immune escape within the STAD immune
microenvironment and developing corresponding models to
forecast immunotherapy effectiveness hold significant importance
for advancing immunotherapeutic strategies.

Given the complex interplay between immune evasion and
immunotherapy responsiveness, there is an urgent need to develop
robust molecular signatures that can capture immune escape
traits and accurately predict patient prognosis and immunotherapy
benefits. With the advent of high-throughput sequencing and
machine learning techniques, it is now possible to integrate multi-
omics data and build predictive models with high clinical utility.

In this study, we applied an integrative machine learning
framework to develop a novel immune evasion-related signature
(IES) in STAD, aiming to stratify patient risk, evaluate the tumor
immune landscape, and predict responses to immunotherapy.
This immune evasion signature may serve as a valuable tool
for personalized prognosis assessment and therapeutic decision-
making in STAD.

2 Materials and methods
2.1 Data collection and preprocessing

Transcriptomic profiles and corresponding clinical information
for STAD patients (n = 325) were downloaded from The Cancer
Genome Atlas (TCGA) database. Additional validation cohorts were
retrieved from the Gene Expression Omnibus (GEO), including
GSE84437 (n = 423), GSE62254 (n = 297), GSE15459 (n = 175),
and GSE26253 (n = 432). ComBat algorithm was used for batch
effect correction using the “sva” package, followed by probe-to-gene
mapping and z-score scaling to ensure comparability across datasets
(Leek et al., 2012). In brief, we included histologically confirmed
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STAD primary tumors with available baseline transcriptomic data
and overall survival (OS) information. We excluded samples lacking
survival time or status, duplicate entries, and cases with OS follow-
up <90 days (deaths and censorings, 8 cases excluded in the TCGA
STAD cohort, 12 cases excluded in the GSE84437 cohort, 6 cases
excluded in the GSE84437 cohort, 5 cases excluded in the GSE84437
cohort, and 8 cases excluded in the GSE84437 cohort) (Feng et al.,
2023), to ensure a minimal, clinically meaningful follow-up window.
Additionally, three immunotherapy datasets—GSE91061 (n = 98,
melanoma), GSE78220 (n = 28, melanoma), and the IMvigor210
cohort (n = 298, urothelial cancer)—were utilized to evaluate the
predictive value of the IES in determining the effectiveness of
immunotherapy. Differentially expressed genes (DEGs) between
STAD and normal tissues were identified using the “limma” package,
with a threshold of |Log2FC]| > 1.5 and p-value <0.05. A curated list
of immune evasion-related genes (IRGs) was obtained from prior
studies and public databases (Lawson et al., 2020; Wen et al., 2025),
which are presented in Supplementary Table S1.

2.2 Integrative machine learning
algorithms constructed an optimal IES

To screen for prognostic IRGs, univariate Cox proportional
hazards regression was applied to the TCGA-STAD cohort. Genes
significantly associated with overall survival (p < 0.05) were
retained as candidate prognostic biomarkers for subsequent model
construction. We then subjected the identified biomarkers to
an integrative machine learning framework to develop a robust
prognostic IES. This framework incorporated 10 machine learning
techniques, including random survival forests, elastic net, Lasso,
Ridge regression, stepwise Cox regression, CoxBoost, partial least
squares regression for Cox models, supervised principal component
analysis, generalized boosted regression modeling, and survival
support vector machines. Following the framework outlined in
previous studies (Liu et al., 2022; Li Z. et al., 2023), 101 algorithmic
combinations were evaluated in the TCGA cohort via leave-one-
out cross-validation. Each model was subsequently validated in
GEO cohorts, and the Harrell’s concordance index (C-index) was
calculated across all datasets. The model with the highest average
C-index was selected as the optimal IES.

2.3 Evaluation of the performance of IES

The optimal cut-off value for the IES score was determined
using the “surv_cutpoint” function from the R package
“survminer”. Patients were classified into high- and low-risk groups.
Kaplan—-Meier survival analysis and time-dependent ROC curves
(via the “survivalROC” R package) were used to assess prognostic
performance. We conducted both univariate and multivariate Cox
regression analyses to identify prognostic factors in STAD patients.
Based on these results, a prognostic nomogram was constructed
using the “nomogramEx” R package, incorporating the IES-
derived risk score and additional clinical variables. The predictive
performance of the nomogram was assessed by comparing the
predicted survival probabilities with the actual outcomes, which

was illustrated using calibration plots.
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2.4 Immune microenvironment and
immunotherapy evaluation

To evaluate the immune microenvironment in STAD, we
first applied the ESTIMATE algorithm to compute immune
and stromal scores for each patient (Yoshihara et al, 2013).
Additionally, seven other deconvolution tools—namely TIMER,
xCell, MCP-counter, CIBERSORT, CIBERSORT-ABS, EPIC, and
quanTIseq—were employed to estimate the composition of immune
cells within tumor samples, selected for their complementary
strengths (Li et al, 2020). The expression patterns of human
leukocyte antigen (HLA)-associated genes and immune checkpoint
regulators were illustrated using the “ggpubr” and “ggplot2” R
packages. Furthermore, we conducted single-sample gene set
enrichment analysis (ssGSEA) via the “GSVA” package to quantify
immune-related functions and the infiltration levels of specific
immune cell types.

2.5 Drug sensitivity evaluation

To explore the predictive capability of the IES model in
assessing immunotherapy response, we analyzed several key
metrics: tumor immune dysfunction and exclusion (TIDE)
(Fu et al, 2020), immunophenoscore (IPS) (Charoentong et al.,
2017), and tumor mutation burden (TMB) (Samstein et al,
2019). TMB score of TCGA STAD patients were calculated
with “maftools” package. Elevated TIDE and immune escape
scores, alongside reduced IPS and TMB values, were considered
indicative of stronger immune evasion and diminished likelihood
of response to immune checkpoint blockade. Drug response for
each STAD case was predicted based on half-maximal inhibitory
concentration (IC50) values calculated using the “oncoPredict” R
package (Maeser et al., 2021), referencing data from the Genomics
of Drug Sensitivity in Cancer (GDSC) database (Yang et al,
2013). Lower IC50 values represent increased sensitivity to
therapeutic agents.

2.6 Protein expression data from the
human protein atlas

Protein expression levels of genes included in the IES
(https://
www.proteinatlas.org/) (Colwill et al., 2011), which integrates

were extracted from the Human Protein Atlas
proteomic and transcriptomic data to chart protein localization
across human tissues and tumor types. Expression profiles
were obtained from both normal tissue and cancer-specific

datasets.

2.7 Cell lines and gene silencing of KLF16

Normal gastric epithelial (RGM-1) and STAD cell lines
(NCI-N87, CRL-5822, RPMI1640, BGC-823, and HGC-27) were
acquired from the Shanghai Institute of Biochemistry and Cell
Biology. All cells were maintained in ATCC-recommended media
supplemented with fetal bovine serum (FBS; Gibco) and 1%
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penicillin-streptomycin (Sigma-Aldrich), and cultured at 37°C
in a humidified atmosphere containing 5% CO,. For gene
silencing experiments, NCI-N87 and HGC-27 cells were transfected
with KLF16-targeted siRNA or negative control siRNA using
Lipofectamine 3000 (Invitrogen) according to the manufacturer’s
instructions.

2.8 Quantitative PCR and cell proliferation
assays

Total RNA was isolated using TRIzol reagent (Takara Bio),
followed by cDNA synthesis using oligo(dT) primers. Quantitative
real-time PCR (RT-qPCR) was performed on an ABI 7900HT
system (Thermo Fisher Scientific) with SYBR Premix Ex Taq
(Takara Bio), and gene expression levels were normalized
to GAPDH.

For proliferation assessment, gastric cancer cells were seeded
into 96-well plates at a density of 5,000 cells per well. At indicated
time points, Cell Counting Kit-8 (CCK-8; Beyotime) reagent
was added, and optical density (OD) values were measured. The
proliferation index was calculated as the OD ratio at each time point
relative to baseline.

3 Results

3.1 Identification of prognostic immune
evasion-related genes in STAD

A total of 2962 DEGs between STAD and normal tissues
were identified (Supplementary Figure S1A). By overlapping these
DEGs with previously defined IRGs, we obtained a subset of
40 candidate genes (Supplementary Figure S1B). Univariate Cox
regression analysis further revealed 8 IRGs (KLF16, ANXA5, TAPI,
DOTI1L, PRKCSH, NRP1, MARCKS, and AKR1B1) significantly
associated with overall survival in STAD, which were considered as
potential prognostic biomarkers (Supplementary Figure S1C).

3.2 Development of the IES using machine
learning

To construct a robust prognostic model, we applied ten different
machine learning algorithms and developed 101 predictive models
across TCGA and GEO cohorts. The model generated by the
LASSO algorithm achieved the highest average C-index (C-index
0.82) and was selected as the optimal IES (Figure 1A). In
LASSO algorithm, four genes (KLF16, ANXAS5, TAP1,and DOTI1L)
were selected from above 8 potential prognostic biomarkers for

the construction of optimal IES. The IES score (risk score)
was calculated with the following formula: IES score = (0.282)
x KLF16% + (=0.098) x ANXAS5%P + (=0.125) x TAP1®®P
+ (=0.035) x DOTIL®P. Based on the optimal cut-off value
(0.035), STAD patients were divided into high- and low-risk
groups. Kaplan-Meier survival analysis demonstrated significantly
poorer overall survival in the high-risk group across all validation
cohorts (TCGA, GSE84437, GSE62254, GSE15459, and GSE26253)
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(Figures 1B-F). The corresponding ROC curves indicated that
the IES exhibited excellent predictive accuracy for 1-, 3-, and 5-
year survival (Figures 1G-K).

3.3 Predictive power of IES for clinical
outcomes

We compared the prognostic performance of the IES with
traditional clinical factors such as age, gender, and stage. The
IES consistently demonstrated a higher C-index across all datasets
(Figure 2A). Both univariate and multivariate Cox regression
analyses confirmed the IES as an independent risk factor for STAD
prognosis (Figures 2B,C). A prognostic nomogram incorporating
the IES and clinical parameters was constructed (Figure 2D), and
calibration plots revealed excellent concordance between predicted
and observed survival outcomes (Figure 2E).

3.4 Immune landscape associated with IES

To investigate the immunological implications of IES,
we assessed the immune cell infiltration profiles using seven
deconvolution algorithms. The IES-based risk score was negatively
correlated with immune infiltration, including CD8* T cells and
dendritic cells, while positively correlated with immunosuppressive
M2 macrophages (Figures 3A-D). Patients in the low-risk group
exhibited higher enrichment scores for immune cells and immune-
related functions, such as iDCs, mast cells, NK cells, TILs, cytolytic
activity and T cell co-stimulation (Figures 3E,F). Moreover, they
had significantly higher immune, stromal, and ESTIMATE scores,
indicating a more active immune microenvironment (Figure 3G).

3.5 Association between IES and
immunotherapy response

We the of IES
immunotherapy benefits. Patients in the low IES group showed

further explored role in predicting
increased expression of immune checkpoint molecules and HLA
genes (Figures 4A,B), elevated PD1 & CTLA4 immunophenoscore
(Figure 4C), and higher TMB scores (Figure4D). Elevated
expression of HLA-related genes and TMB score predicted a higher
chance of immunotherapy benefits (Lin and Yan, 2021; Hodi et al.,
2021). A stronger response to immunotherapy was indicated by
low TIDE and immune escape scores (Fu et al., 2020; Lin et al,
2020). Conversely, these patients had significantly lower TIDE
scores, immune escape scores, and intra-tumor heterogeneity
(ITH) scores (Figures 4E-G), suggesting a reduced potential for
immune evasion. In three independent immunotherapy cohorts
(GSE91061, GSE78220, IMvigor210), lower IES scores were
consistently associated with better response rates and improved
survival outcomes (Figures 4H-]).

3.6 Drug sensitivity analysis based on IES

We evaluated the association between IES and drug
sensitivity. Patients with low IES-based risk score exhibited
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significantly lower IC50 values for multiple chemotherapeutic
agents (e.g., Cisplatin, Oxaliplatin, Docetaxel, Gemcitabine)
and targeted therapies (e.g., Lapatinib, Erlotinib, Dasatinib,
Afatinib), suggesting greater sensitivity to conventional treatments
(Figures 5A,B).

3.7 IES and cancer-related biological
pathways

To gain mechanistic insights, we performed functional

enrichment analyses. High-risk patients showed enhanced
activation of hallmark cancer pathways, including mTORCI
signaling, hypoxia, NOTCH signaling, glycolysis, angiogenesis,
IL2-STAT5 G2M_checkpoint,
signaling, indicating a more aggressive tumor phenotype

(Figure 6).

signaling, and  hedgehog

3.8 Validation of KLF16 expression and
function in STAD

Among the key genes comprising the IES, KLF16 was
selected for further validation. Immunohistochemistry confirmed
overexpression of KLF16 in STAD tissues (Figure7A), and
RT-qPCR showed elevated mRNA levels of KLF16 in most
of STAD cell lines compared to normal gastric epithelial cells
(Figure 7B). Knockdown of KLF16 significantly inhibited the
proliferation of STAD cells, supporting its oncogenic role
(Figure 7C).

4 Discussion

In this study, we developed a novel IES using an integrative
machine learning framework, capable of accurately predicting
prognosis and immunotherapy response in STAD. The model, based
on immune evasion-related genes, demonstrated strong prognostic
value across multiple cohorts and outperformed traditional
clinicopathological features.

Many prognostic signatures have been developed in STAD.
Chang et al. developed a mitochondrial-related gene signature for
predicting survival in STAD (Chang et al., 2023). Necroptosis-
related gene signature could predict the prognosis of STAD
patients (Wang and Liu, 2021). Moreover, glutamine metabolism
genes signature acted as a prognostic biomarker for STAD
(Li H. et al,, 2023). A 13-gene metabolic signature was associated
with clinical and immune features in STAD (Ye et al., 2021).
Zeng etal. also developed TGF-p signaling-related signature
(Zeng et al, 2022) and anoikis- and epithelial-mesenchymal
transition-related signature (Zeng et al, 2025) for evaluating
the prognosis and immunotherapy benefits in STAD. In our
study, we developed a IES using an integrative machine
learning framework, which have a higher C-index and AUC
value compared with these gene signatures, suggesting the
better performance of IES in predicting the prognosis of
STAD patients.
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The performance of IES in predicting clinical outcome of STAD patients. (A) The C-index values for the IES, age, gender, and clinical stage for predicting
the prognosis of STAD patients in TCGA and GEO datasets. (B,C) Risk factors for the prognosis of STAD patients identified by univariate and multivariate
Cox regression analyses. (D,E) A predictive nomogram was developed and calibrated to assess the overall survival rates of STAD patients, providing a

comprehensive evaluation of prognostic accuracy.

The immune evasion phenotype has increasingly been
recognized as a critical barrier to effective cancer immunotherapy
(Haynes et al., 2024). Our results revealed that a low IES score is
associated with enhanced anti-tumor immunity, including increased
CD8" T cell and dendritic cell infiltration, elevated expression
of HLA genes, and upregulated immune checkpoints. CD8" T
cells were one of most important immune cells for anti-cancer
(Chen et al,, 2024). Dendritic cells are a diverse group of specialized
antigen-presenting cells with key roles in the initiation and
regulation of innate and adaptive immune responses (Wculek et al.,
2020). These findings suggest that patients with low IES
scores inflamed tumor microenvironment

possess a more
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and may derive greater benefit from immune checkpoint
blockade therapies.

In high IES scores were linked to an
immunosuppressive milieu characterized by M2 macrophage
activity. Higher M2

immunosuppressive

contrast,

immune
macrophage with
microenvironment and poor clinical outcome (Chen et al.,, 2023).

dominance and diminished
were  correlated
This immunological landscape likely contributes to resistance to
immunotherapy and poor survival outcomes. Notably, our model
also effectively stratified patient responses in three independent
immunotherapy-treated cohorts, further supporting its clinical
applicability. However, the generalizability of the IES to other
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cancer types in our results should be considered exploratory
and that cross-tumor validation is needed. And the absence
of STAD-specific immunotherapy cohort or evidence is one
of the limitations of this study.
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FIGURE 3

|IES-based immune infiltration landscape in STAD. (A) Correlation between |IES-based risk score and immune infiltration in STAD in the result of seven
advanced algorithms. (B—D) Correlation between risk score and the abundance of CD8* T cells, dendritic cells and macrophage M2. (E,F) Difference in
the levels of immune cells and immune-related functions in different IES-based risk score groups. (G) Difference in the levels of immune score, stroma
score, and ESTIMATE score in different IES-based risk score groups.”p < 0.05,"*p < 0.01,"**p < 0.001.

In addition to immunological insights, our analysis revealed
that high IES scores correlate with the activation of oncogenic
pathways such as mTOR, glycolysis, and EMT, which are known
to drive tumor progression and immune resistance. Angiogenesis
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FIGURE 4

IES as a biomarker for predicting the immunotherapy response in STAD. (A,B) Difference in the level of immune checkpoints (A), HLA-related genes (B),
PD1&CTLA4 immunophenoscore (C), TMB score (D), TIDE score (E), immune escape score (F), and ITH score (G) in different IES-based risk score
groups. The immunotherapy response and overall rate in patients with high and low ORS score in GSE91061 (H), GSE78220 (I) and IMvigor210 (J)

datasets.”p < 0.05,"*p < 0.01,"**p < 0.001.

is a critical driver of tumor progression and metastasis in STAD
(Xu et al,, 2022). STAD cells undergo metabolic reprogramming,
shifting towards glycolysis to enhance their survival and metastatic
potential, which suggests that targeting glycolysis could be a
promising therapeutic strategy for STAD (Zheng et al., 2023). These
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associations provide a biological rationale for the observed poor
prognosis in high-risk patients and suggest potential combinatorial
therapeutic targets.

We further validated KLF16 as a representative gene from the
IES. Its overexpression in STAD and functional role in promoting
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cell proliferation indicate it may serve as both a prognostic marker
and a therapeutic target. KLF16 promotes tumor growth and
MYC signature in prostate cancer (Zhang et al., 2020). Moreover,
KLF16 favors the tumorigenesis and progression of breast cancer
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by activating MAGT1 (Li et al, 2022). KLF16 promotes the
proliferation and migration in bladder cancer by regulating TGFBR3

expression. In our study, silencing KLF16 significantly reduced

STAD cell growth, underscoring its role in tumor biology.
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FIGURE 7
Verification of the expression and function of KLF16. (A) Representative immunohistochemical images of KLF16. (B) the mRNA level of KLF16 in normal
and STAD cell lines. (C) Downregulation of KLF16 inhibited the proliferation of STAD cell lines.

5 Limitations

Several limitations should be acknowledged in this study.
First, we excluded STAD patients who died within 3 months
of diagnosis, which may have introduced a degree of selection
bias. Additionally, the lack of validation in an independent
clinical or prospective cohort limits the generalizability of our
findings. Furthermore, the LASSO-based construction of the
IES may impose constraints on model complexity, potentially
affecting the accuracy and robustness of the final predictive
performance. We excluded all cases with OS follow-up<90 days,
which may substantially distort survival distributions and model
calibration. The role of KLF16 in the immune-evasion biology
was not clarified in this study, which was the direction of our
subsequent research.

6 Conclusion

Taken together, our findings underscore the importance of
immune evasion in shaping clinical outcomes in STAD. This
IES not only facilitates patient risk stratification but also holds
promise for guiding immunotherapy decisions and identifying
patients who may benefit from alternative or combination
therapies.
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