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Background: Stomach adenocarcinoma (STAD) remains a major contributor to 
cancer-related mortality worldwide. Despite advances in immunotherapy, only a 
subset of STAD patients benefits from immune checkpoint inhibitors, largely due 
to tumor-intrinsic immune evasion mechanisms. Therefore, robust predictive 
biomarkers are urgently needed to guide prognosis assessment and therapeutic 
decision-making.
Methods: An integrative machine learning framework incorporating 10 
algorithms was applied to construct an immune evasion signature (IES) 
using 101 model combinations. The optimal model was selected based on 
concordance index (C-index) across validation datasets. The prognostic and 
immunological relevance of the IES was assessed via survival analyses, immune 
infiltration deconvolution, and multiple immunotherapy response metrics. Key 
genes were further validated using qPCR, immunohistochemistry, and in vitro
functional assays.
Results: A four-gene IES developed via the LASSO method demonstrated 
robust prognostic power across TCGA and multiple external cohorts. High 
IES score were associated with poor survival, reduced immune cell infiltration 
(e.g., CD8+ T cells, dendritic cells), elevated M2 macrophage abundance, and 
an immunosuppressive tumor microenvironment. Patients in the low IES score 
group exhibited favorable immunotherapy-associated features, including higher 
TMB, lower TIDE scores, and increased response rates in three independent 
immunotherapy datasets. Additionally, the IES stratified patients by sensitivity to 
chemotherapy and targeted therapies. KLF16, one of the signature genes, was 
upregulated in STAD and promoted cancer cell proliferation in vitro.
Conclusion: We established a novel IES with strong potential to predict 
prognosis and immunotherapy response in STAD. This IES may serve as a 
valuable tool for risk stratification and individualized treatment planning in 
clinical practice.
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1 Introduction

Stomach adenocarcinoma (STAD) is one of the most prevalent 
malignancies worldwide and remains a leading cause of cancer-
related mortality (Luo et al., 2022). There are around 1,089,103 
new STAD cases reported and an estimated 768,793 deaths in 
2020 globally (Sung et al., 2021). Despite significant advances in 
surgery, chemotherapy, targeted therapy, and immunotherapy, the 
prognosis for advanced STAD patients remains unsatisfactory due to 
tumor heterogeneity and resistance to treatment (Yasuda and Wang, 
2024). Recent clinical applications of immune checkpoint inhibitors 
have offered new hope, but only a subset of patients derives 
substantial benefit, largely due to tumor-intrinsic mechanisms of 
immune evasion (Guan et al., 2023).

Immune evasion refers to the ability of tumor cells to escape 
immune surveillance, often through downregulation of antigen 
presentation, overexpression of immune checkpoint molecules, 
or alterations in the tumor microenvironment that inhibit 
effective immune responses. In STAD, the immunosuppressive 
microenvironment—characterized by regulatory T cells, M2 
macrophages, and myeloid-derived suppressor cells—plays 
a pivotal role in immune escape and therapeutic resistance 
(Wang et al., 2024; Li et al., 2025). This immunosuppressive 
environment facilitates tumor immune escape, allowing cancer 
cells to evade host immune clearance. Thus, investigating genes 
associated with immune escape within the STAD immune 
microenvironment and developing corresponding models to 
forecast immunotherapy effectiveness hold significant importance 
for advancing immunotherapeutic strategies.

Given the complex interplay between immune evasion and 
immunotherapy responsiveness, there is an urgent need to develop 
robust molecular signatures that can capture immune escape 
traits and accurately predict patient prognosis and immunotherapy 
benefits. With the advent of high-throughput sequencing and 
machine learning techniques, it is now possible to integrate multi-
omics data and build predictive models with high clinical utility.

In this study, we applied an integrative machine learning 
framework to develop a novel immune evasion-related signature 
(IES) in STAD, aiming to stratify patient risk, evaluate the tumor 
immune landscape, and predict responses to immunotherapy. 
This immune evasion signature may serve as a valuable tool 
for personalized prognosis assessment and therapeutic decision-
making in STAD. 

2 Materials and methods

2.1 Data collection and preprocessing

Transcriptomic profiles and corresponding clinical information 
for STAD patients (n = 325) were downloaded from The Cancer 
Genome Atlas (TCGA) database. Additional validation cohorts were 
retrieved from the Gene Expression Omnibus (GEO), including 
GSE84437 (n = 423), GSE62254 (n = 297), GSE15459 (n = 175), 
and GSE26253 (n = 432). ComBat algorithm was used for batch 
effect correction using the “sva” package, followed by probe-to-gene 
mapping and z-score scaling to ensure comparability across datasets 
(Leek et al., 2012). In brief, we included histologically confirmed 

STAD primary tumors with available baseline transcriptomic data 
and overall survival (OS) information. We excluded samples lacking 
survival time or status, duplicate entries, and cases with OS follow-
up <90 days (deaths and censorings, 8 cases excluded in the TCGA 
STAD cohort, 12 cases excluded in the GSE84437 cohort, 6 cases 
excluded in the GSE84437 cohort, 5 cases excluded in the GSE84437 
cohort, and 8 cases excluded in the GSE84437 cohort) (Feng et al., 
2023), to ensure a minimal, clinically meaningful follow-up window. 
Additionally, three immunotherapy datasets—GSE91061 (n = 98, 
melanoma), GSE78220 (n = 28, melanoma), and the IMvigor210 
cohort (n = 298, urothelial cancer)—were utilized to evaluate the 
predictive value of the IES in determining the effectiveness of 
immunotherapy. Differentially expressed genes (DEGs) between 
STAD and normal tissues were identified using the “limma” package, 
with a threshold of |Log2FC| > 1.5 and p-value <0.05. A curated list 
of immune evasion-related genes (IRGs) was obtained from prior 
studies and public databases (Lawson et al., 2020; Wen et al., 2025), 
which are presented in Supplementary Table S1. 

2.2 Integrative machine learning 
algorithms constructed an optimal IES

To screen for prognostic IRGs, univariate Cox proportional 
hazards regression was applied to the TCGA-STAD cohort. Genes 
significantly associated with overall survival (p < 0.05) were 
retained as candidate prognostic biomarkers for subsequent model 
construction. We then subjected the identified biomarkers to 
an integrative machine learning framework to develop a robust 
prognostic IES. This framework incorporated 10 machine learning 
techniques, including random survival forests, elastic net, Lasso, 
Ridge regression, stepwise Cox regression, CoxBoost, partial least 
squares regression for Cox models, supervised principal component 
analysis, generalized boosted regression modeling, and survival 
support vector machines. Following the framework outlined in 
previous studies (Liu et al., 2022; Li Z. et al., 2023), 101 algorithmic 
combinations were evaluated in the TCGA cohort via leave-one-
out cross-validation. Each model was subsequently validated in 
GEO cohorts, and the Harrell’s concordance index (C-index) was 
calculated across all datasets. The model with the highest average 
C-index was selected as the optimal IES. 

2.3 Evaluation of the performance of IES

The optimal cut-off value for the IES score was determined 
using the “surv_cutpoint” function from the R package 
“survminer”. Patients were classified into high- and low-risk groups. 
Kaplan–Meier survival analysis and time-dependent ROC curves 
(via the “survivalROC” R package) were used to assess prognostic 
performance. We conducted both univariate and multivariate Cox 
regression analyses to identify prognostic factors in STAD patients. 
Based on these results, a prognostic nomogram was constructed 
using the “nomogramEx” R package, incorporating the IES-
derived risk score and additional clinical variables. The predictive 
performance of the nomogram was assessed by comparing the 
predicted survival probabilities with the actual outcomes, which 
was illustrated using calibration plots. 
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2.4 Immune microenvironment and 
immunotherapy evaluation

To evaluate the immune microenvironment in STAD, we 
first applied the ESTIMATE algorithm to compute immune 
and stromal scores for each patient (Yoshihara et al., 2013). 
Additionally, seven other deconvolution tools—namely TIMER, 
xCell, MCP-counter, CIBERSORT, CIBERSORT-ABS, EPIC, and 
quanTIseq—were employed to estimate the composition of immune 
cells within tumor samples, selected for their complementary 
strengths (Li et al., 2020). The expression patterns of human 
leukocyte antigen (HLA)-associated genes and immune checkpoint 
regulators were illustrated using the “ggpubr” and “ggplot2” R 
packages. Furthermore, we conducted single-sample gene set 
enrichment analysis (ssGSEA) via the “GSVA” package to quantify 
immune-related functions and the infiltration levels of specific 
immune cell types. 

2.5 Drug sensitivity evaluation

To explore the predictive capability of the IES model in 
assessing immunotherapy response, we analyzed several key 
metrics: tumor immune dysfunction and exclusion (TIDE) 
(Fu et al., 2020), immunophenoscore (IPS) (Charoentong et al., 
2017), and tumor mutation burden (TMB) (Samstein et al., 
2019). TMB score of TCGA STAD patients were calculated 
with “maftools” package. Elevated TIDE and immune escape 
scores, alongside reduced IPS and TMB values, were considered 
indicative of stronger immune evasion and diminished likelihood 
of response to immune checkpoint blockade. Drug response for 
each STAD case was predicted based on half-maximal inhibitory 
concentration (IC50) values calculated using the “oncoPredict” R 
package (Maeser et al., 2021), referencing data from the Genomics 
of Drug Sensitivity in Cancer (GDSC) database (Yang et al., 
2013). Lower IC50 values represent increased sensitivity to
therapeutic agents. 

2.6 Protein expression data from the 
human protein atlas

Protein expression levels of genes included in the IES 
were extracted from the Human Protein Atlas (https://
www.proteinatlas.org/) (Colwill et al., 2011), which integrates 
proteomic and transcriptomic data to chart protein localization 
across human tissues and tumor types. Expression profiles 
were obtained from both normal tissue and cancer-specific
datasets. 

2.7 Cell lines and gene silencing of KLF16

Normal gastric epithelial (RGM-1) and STAD cell lines 
(NCI-N87, CRL-5822, RPMI1640, BGC-823, and HGC-27) were 
acquired from the Shanghai Institute of Biochemistry and Cell 
Biology. All cells were maintained in ATCC-recommended media 
supplemented with fetal bovine serum (FBS; Gibco) and 1% 

penicillin-streptomycin (Sigma-Aldrich), and cultured at 37 °C 
in a humidified atmosphere containing 5% CO2. For gene 
silencing experiments, NCI-N87 and HGC-27 cells were transfected 
with KLF16-targeted siRNA or negative control siRNA using 
Lipofectamine 3000 (Invitrogen) according to the manufacturer’s 
instructions. 

2.8 Quantitative PCR and cell proliferation 
assays

Total RNA was isolated using TRIzol reagent (Takara Bio), 
followed by cDNA synthesis using oligo(dT) primers. Quantitative 
real-time PCR (RT-qPCR) was performed on an ABI 7900HT 
system (Thermo Fisher Scientific) with SYBR Premix Ex Taq 
(Takara Bio), and gene expression levels were normalized
to GAPDH.

For proliferation assessment, gastric cancer cells were seeded 
into 96-well plates at a density of 5,000 cells per well. At indicated 
time points, Cell Counting Kit-8 (CCK-8; Beyotime) reagent 
was added, and optical density (OD) values were measured. The 
proliferation index was calculated as the OD ratio at each time point 
relative to baseline. 

3 Results

3.1 Identification of prognostic immune 
evasion-related genes in STAD

A total of 2962 DEGs between STAD and normal tissues 
were identified (Supplementary Figure S1A). By overlapping these 
DEGs with previously defined IRGs, we obtained a subset of 
40 candidate genes (Supplementary Figure S1B). Univariate Cox 
regression analysis further revealed 8 IRGs (KLF16, ANXA5, TAP1, 
DOT1L, PRKCSH, NRP1, MARCKS, and AKR1B1) significantly 
associated with overall survival in STAD, which were considered as 
potential prognostic biomarkers (Supplementary Figure S1C). 

3.2 Development of the IES using machine 
learning

To construct a robust prognostic model, we applied ten different 
machine learning algorithms and developed 101 predictive models 
across TCGA and GEO cohorts. The model generated by the 
LASSO algorithm achieved the highest average C-index (C-index 
= 0.82) and was selected as the optimal IES (Figure 1A). In 
LASSO algorithm, four genes (KLF16, ANXA5, TAP1, and DOT1L) 
were selected from above 8 potential prognostic biomarkers for 
the construction of optimal IES. The IES score (risk score) 
was calculated with the following formula: IES score = (0.282) 
× KLF16exp + (−0.098) × ANXA5exp + (−0.125) × TAP1exp

+ (−0.035) × DOT1Lexp. Based on the optimal cut-off value 
(0.035), STAD patients were divided into high- and low-risk 
groups. Kaplan–Meier survival analysis demonstrated significantly 
poorer overall survival in the high-risk group across all validation 
cohorts (TCGA, GSE84437, GSE62254, GSE15459, and GSE26253) 
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(Figures 1B–F). The corresponding ROC curves indicated that 
the IES exhibited excellent predictive accuracy for 1-, 3-, and 5-
year survival (Figures 1G–K).

3.3 Predictive power of IES for clinical 
outcomes

We compared the prognostic performance of the IES with 
traditional clinical factors such as age, gender, and stage. The 
IES consistently demonstrated a higher C-index across all datasets 
(Figure 2A). Both univariate and multivariate Cox regression 
analyses confirmed the IES as an independent risk factor for STAD 
prognosis (Figures 2B,C). A prognostic nomogram incorporating 
the IES and clinical parameters was constructed (Figure 2D), and 
calibration plots revealed excellent concordance between predicted 
and observed survival outcomes (Figure 2E).

3.4 Immune landscape associated with IES

To investigate the immunological implications of IES, 
we assessed the immune cell infiltration profiles using seven 
deconvolution algorithms. The IES-based risk score was negatively 
correlated with immune infiltration, including CD8+ T cells and 
dendritic cells, while positively correlated with immunosuppressive 
M2 macrophages (Figures 3A–D). Patients in the low-risk group 
exhibited higher enrichment scores for immune cells and immune-
related functions, such as iDCs, mast cells, NK cells, TILs, cytolytic 
activity and T cell co-stimulation (Figures 3E,F). Moreover, they 
had significantly higher immune, stromal, and ESTIMATE scores, 
indicating a more active immune microenvironment (Figure 3G).

3.5 Association between IES and 
immunotherapy response

We further explored the role of IES in predicting 
immunotherapy benefits. Patients in the low IES group showed 
increased expression of immune checkpoint molecules and HLA 
genes (Figures 4A,B), elevated PD1 & CTLA4 immunophenoscore 
(Figure 4C), and higher TMB scores (Figure 4D). Elevated 
expression of HLA-related genes and TMB score predicted a higher 
chance of immunotherapy benefits (Lin and Yan, 2021; Hodi et al., 
2021). A stronger response to immunotherapy was indicated by 
low TIDE and immune escape scores (Fu et al., 2020; Lin et al., 
2020). Conversely, these patients had significantly lower TIDE 
scores, immune escape scores, and intra-tumor heterogeneity 
(ITH) scores (Figures 4E–G), suggesting a reduced potential for 
immune evasion. In three independent immunotherapy cohorts 
(GSE91061, GSE78220, IMvigor210), lower IES scores were 
consistently associated with better response rates and improved 
survival outcomes (Figures 4H–J). 

3.6 Drug sensitivity analysis based on IES

We evaluated the association between IES and drug 
sensitivity. Patients with low IES-based risk score exhibited 

significantly lower IC50 values for multiple chemotherapeutic 
agents (e.g., Cisplatin, Oxaliplatin, Docetaxel, Gemcitabine) 
and targeted therapies (e.g., Lapatinib, Erlotinib, Dasatinib, 
Afatinib), suggesting greater sensitivity to conventional treatments
(Figures 5A,B). 

3.7 IES and cancer-related biological 
pathways

To gain mechanistic insights, we performed functional 
enrichment analyses. High-risk patients showed enhanced 
activation of hallmark cancer pathways, including mTORC1 
signaling, hypoxia, NOTCH signaling, glycolysis, angiogenesis, 
IL2-STAT5 signaling, G2M_checkpoint, and hedgehog 
signaling, indicating a more aggressive tumor phenotype
(Figure 6). 

3.8 Validation of KLF16 expression and 
function in STAD

Among the key genes comprising the IES, KLF16 was 
selected for further validation. Immunohistochemistry confirmed 
overexpression of KLF16 in STAD tissues (Figure 7A), and 
RT-qPCR showed elevated mRNA levels of KLF16 in most 
of STAD cell lines compared to normal gastric epithelial cells 
(Figure 7B). Knockdown of KLF16 significantly inhibited the 
proliferation of STAD cells, supporting its oncogenic role
(Figure 7C). 

4 Discussion

In this study, we developed a novel IES using an integrative 
machine learning framework, capable of accurately predicting 
prognosis and immunotherapy response in STAD. The model, based 
on immune evasion-related genes, demonstrated strong prognostic 
value across multiple cohorts and outperformed traditional 
clinicopathological features.

Many prognostic signatures have been developed in STAD. 
Chang et al. developed a mitochondrial-related gene signature for 
predicting survival in STAD (Chang et al., 2023). Necroptosis-
related gene signature could predict the prognosis of STAD 
patients (Wang and Liu, 2021). Moreover, glutamine metabolism 
genes signature acted as a prognostic biomarker for STAD 
(Li H. et al., 2023). A 13-gene metabolic signature was associated 
with clinical and immune features in STAD (Ye et al., 2021). 
Zeng et al. also developed TGF-β signaling-related signature 
(Zeng et al., 2022) and anoikis- and epithelial‒mesenchymal 
transition-related signature (Zeng et al., 2025) for evaluating 
the prognosis and immunotherapy benefits in STAD. In our 
study, we developed a IES using an integrative machine 
learning framework, which have a higher C-index and AUC 
value compared with these gene signatures, suggesting the 
better performance of IES in predicting the prognosis of
STAD patients.

Frontiers in Cell and Developmental Biology 04 frontiersin.org

https://doi.org/10.3389/fcell.2025.1656367
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Xue et al. 10.3389/fcell.2025.1656367

FIGURE 1
Integrative machine learning algorithms based IES. (A) The C-index of 101 kinds prognostic models developed by 10 machine learning algorithms in 
TCGA and GEO datasets. The survival curve of STAD patients with different risk score (B–F) and their corresponding ROC curve in TCGA, GSE84437, 
GSE62254, GSE15459, and GSE26253 cohort (G–K).
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FIGURE 2
The performance of IES in predicting clinical outcome of STAD patients. (A) The C-index values for the IES, age, gender, and clinical stage for predicting 
the prognosis of STAD patients in TCGA and GEO datasets. (B,C) Risk factors for the prognosis of STAD patients identified by univariate and multivariate 
Cox regression analyses. (D,E) A predictive nomogram was developed and calibrated to assess the overall survival rates of STAD patients, providing a 
comprehensive evaluation of prognostic accuracy.

The immune evasion phenotype has increasingly been 
recognized as a critical barrier to effective cancer immunotherapy 
(Haynes et al., 2024). Our results revealed that a low IES score is 
associated with enhanced anti-tumor immunity, including increased 
CD8+ T cell and dendritic cell infiltration, elevated expression 
of HLA genes, and upregulated immune checkpoints. CD8+ T 
cells were one of most important immune cells for anti-cancer 
(Chen et al., 2024). Dendritic cells are a diverse group of specialized 
antigen-presenting cells with key roles in the initiation and 
regulation of innate and adaptive immune responses (Wculek et al., 
2020). These findings suggest that patients with low IES 
scores possess a more inflamed tumor microenvironment 

and may derive greater benefit from immune checkpoint
blockade therapies.

In contrast, high IES scores were linked to an 
immunosuppressive milieu characterized by M2 macrophage 
dominance and diminished immune activity. Higher M2 
macrophage were correlated with immunosuppressive 
microenvironment and poor clinical outcome (Chen et al., 2023). 
This immunological landscape likely contributes to resistance to 
immunotherapy and poor survival outcomes. Notably, our model 
also effectively stratified patient responses in three independent 
immunotherapy-treated cohorts, further supporting its clinical 
applicability. However, the generalizability of the IES to other 
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FIGURE 3
IES-based immune infiltration landscape in STAD. (A) Correlation between IES-based risk score and immune infiltration in STAD in the result of seven 
advanced algorithms. (B–D) Correlation between risk score and the abundance of CD8+ T cells, dendritic cells and macrophage M2. (E,F) Difference in 
the levels of immune cells and immune-related functions in different IES-based risk score groups. (G) Difference in the levels of immune score, stroma 
score, and ESTIMATE score in different IES-based risk score groups.∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001.

cancer types in our results should be considered exploratory 
and that cross-tumor validation is needed. And the absence 
of STAD-specific immunotherapy cohort or evidence is one 
of the limitations of this study.

In addition to immunological insights, our analysis revealed 
that high IES scores correlate with the activation of oncogenic 
pathways such as mTOR, glycolysis, and EMT, which are known 
to drive tumor progression and immune resistance. Angiogenesis 
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FIGURE 4
IES as a biomarker for predicting the immunotherapy response in STAD. (A,B) Difference in the level of immune checkpoints (A), HLA-related genes (B), 
PD1&CTLA4 immunophenoscore (C), TMB score (D), TIDE score (E), immune escape score (F), and ITH score (G) in different IES-based risk score 
groups. The immunotherapy response and overall rate in patients with high and low ORS score in GSE91061 (H), GSE78220 (I) and IMvigor210 (J)
datasets.∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001.

is a critical driver of tumor progression and metastasis in STAD 
(Xu et al., 2022). STAD cells undergo metabolic reprogramming, 
shifting towards glycolysis to enhance their survival and metastatic 
potential, which suggests that targeting glycolysis could be a 
promising therapeutic strategy for STAD (Zheng et al., 2023). These 

associations provide a biological rationale for the observed poor 
prognosis in high-risk patients and suggest potential combinatorial
therapeutic targets.

We further validated KLF16 as a representative gene from the 
IES. Its overexpression in STAD and functional role in promoting 
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FIGURE 5
The IC50 value of common drugs in different IES-based risk score groups. Low IES score indicated higher IC50 values for commonly used drugs in 
both chemotherapy (A) and targeted therapy (B).

FIGURE 6
The correlation between IES-based risk score and cancer related hallmarks in STAD. STAD patients with high IES-based risk score had a higher gene set 
score correlated with mTORC1 signaling, hypoxia, NOTCH signaling, glycolysis, angiogenesis, IL2-STAT5 signaling, G2M_checkpoint, and hedgehog 
signaling.

cell proliferation indicate it may serve as both a prognostic marker 
and a therapeutic target. KLF16 promotes tumor growth and 
MYC signature in prostate cancer (Zhang et al., 2020). Moreover, 
KLF16 favors the tumorigenesis and progression of breast cancer 

by activating MAGT1 (Li et al., 2022). KLF16 promotes the 
proliferation and migration in bladder cancer by regulating TGFBR3 
expression. In our study, silencing KLF16 significantly reduced 
STAD cell growth, underscoring its role in tumor biology. 
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FIGURE 7
Verification of the expression and function of KLF16. (A) Representative immunohistochemical images of KLF16. (B) the mRNA level of KLF16 in normal 
and STAD cell lines. (C) Downregulation of KLF16 inhibited the proliferation of STAD cell lines.

5 Limitations

Several limitations should be acknowledged in this study. 
First, we excluded STAD patients who died within 3 months 
of diagnosis, which may have introduced a degree of selection 
bias. Additionally, the lack of validation in an independent 
clinical or prospective cohort limits the generalizability of our 
findings. Furthermore, the LASSO-based construction of the 
IES may impose constraints on model complexity, potentially 
affecting the accuracy and robustness of the final predictive 
performance. We excluded all cases with OS follow-up<90 days, 
which may substantially distort survival distributions and model 
calibration. The role of KLF16 in the immune-evasion biology 
was not clarified in this study, which was the direction of our
subsequent research. 

6 Conclusion

Taken together, our findings underscore the importance of 
immune evasion in shaping clinical outcomes in STAD. This 
IES not only facilitates patient risk stratification but also holds 
promise for guiding immunotherapy decisions and identifying 
patients who may benefit from alternative or combination
therapies.
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