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Epitranscriptomic signatures in 
blood: emerging biomarkers for 
diagnosis of diabetes and its 
complications

Marketa Hlavackova*† , Daniel Benak† , Kristyna Holzerova, 
Petra Alanova, Jaroslav Hrdlicka, Miloslava Chalupova, 
Barbora Opletalova, Bohuslav Ostadal and Frantisek Kolar

Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, 
Prague, Czechia

Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized 
by chronic hyperglycemia, insulin resistance, and progressive β-cell dysfunction. 
Traditional biomarkers, such as fasting glucose and glycated hemoglobin 
(HbA1c), offer diagnostic and prognostic value but have limitations in sensitivity 
and predictive power for disease progression. Recent advances in molecular 
biology have identified epitranscriptomic modifications as potential biomarkers 
for T2DM, offering a novel layer of gene expression regulation through reversible 
RNA modifications. Dysregulation of these modifications has been implicated 
in insulin resistance, β-cell failure, and diabetes-related complications. Notably, 
altered levels of N6-methyladenosine (m6A) and its regulatory enzymes, 
including the eraser fat mass and obesity-associated protein (FTO) and the 
writer methyltransferase-like 3 (METTL3), have been detected in peripheral 
blood of T2DM patients, suggesting their potential as promising diagnostic 
markers. Similarly, circulating levels of pseudouridine (Ψ) have been associated 
with diabetic complications such as retinopathy and nephropathy. This review 
highlights the emerging role of epitranscriptomic modifications in T2DM 
pathophysiology and discusses their translational potential as biomarkers for 
early detection, disease monitoring, and personalized therapeutic strategies.
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 1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by 
persistent hyperglycemia due to defects in insulin secretion, insulin action, or both. 
Type 2 diabetes mellitus (T2DM), the most prevalent form, is a growing global 
health challenge, with its incidence driven by increasing obesity rates, sedentary 
lifestyles, and aging populations. Given its progressive nature and associated 
microvascular (including nephropathy, retinopathy, and neuropathy) and macrovascular 
complications (including cardiovascular disease), early and accurate diagnosis is 
critical for mitigating long-term morbidity and mortality (Benak et al., 2023a). 
Current diagnostic and monitoring tools, including fasting glucose, oral glucose 
tolerance tests, fructosamine, glycated hemoglobin (HbA1c), and glycated albumin
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have limitations in sensitivity, specificity, and predictive power for 
disease progression (Dorcely et al., 2017; Ahmed et al., 2025). 
Consequently, there is an urgent need for novel biomarkers that 
provide more precise risk stratification and early detection of 
prediabetes and diabetes.

Recent advancements in molecular biology have expanded 
biomarker research beyond conventional protein and metabolite 
markers. The study of post-transcriptional modifications in RNA 
– referred to as epitranscriptomics or RNA epigenetics – has 
emerged as a promising frontier in diabetes research (Benak et al., 
2023a). Like classical epigenetic modifications, epitranscriptomic 
modifications also regulate gene expression without altering the 
nucleotide sequence, offering a dynamic and reversible layer of 
control over cellular function. Aberrations in RNA modifications 
have been linked to insulin resistance, β-cell dysfunction, and 
chronic inflammation – hallmarks of T2DM (Benak et al., 2023a). 
As such, epitranscriptomic biomarkers hold significant potential 
as diagnostic and prognostic tools (Santos-Pujol et al., 2024), 
offering novel insights into disease pathophysiology and paving 
the way for precision medicine in diabetes management. Moreover, 
their analysis is no longer limited to advanced LC-MS methods 
but can often be performed using commercial quantification kits, 
making them more accessible and economically feasible for routine 
diagnostic testing.

This short review explores the landscape of epitranscriptomic 
modifications and their regulators, emphasizing their potential role 
as biomarkers in T2DM. By integrating this emerging knowledge 
into clinical practice, we may advance early detection strategies and 
therapeutic interventions for DM and its complications. 

2 Epitranscriptomic modifications and 
their regulators

Epitranscriptomics refers to the study of chemical modifications 
that occur on RNA molecules, influencing their stability, processing, 
translation, and degradation (Benak et al., 2024a). Unlike genetic 
mutations, these modifications are mostly dynamic and reversible, 
allowing cells to rapidly adapt to physiological and environmental 
cues. More than 170 distinct RNA modifications have been 
identified across different RNA species, including messenger RNA 
(mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and 
non-coding RNAs (ncRNAs) (Cappannini et al., 2024). These 
modifications play critical roles in regulating cellular metabolism, 
differentiation, and stress responses – functions that are particularly 
relevant in the context of DM.

This review covers the following common modifications: N6-
methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), N1-
methyladenosine (m1A), 5-methylcytidine (m5C), pseudouridine 
(Ψ) and inosine (I) (Figure 1).

2.1 Reversible RNA modifications

Reversible RNA modifications are primarily regulated by three 
classes of proteins: writers, readers, and erasers. Writers are enzymes 
that catalyze the addition of specific modifications to RNA, while 
readers are proteins that recognize and interpret these modifications, 

mediating downstream effects. Erasers, in turn, remove 
modifications, creating a dynamic regulatory system (Benak et al., 
2024b). These modifications enable cells to respond rapidly and 
flexibly to cellular signals and environmental changes.

One of the most prevalent RNA modifications in eukaryotic 
mRNA – and consequently one of the most extensively studied 
epitranscriptomic modifications – is N6-methyladenosine (m6A) 
(Desrosiers et al., 1974; Semenovykh et al., 2022; Benak et al., 
2025). This modification plays a crucial role in regulating mRNA 
stability, splicing, and translation. In addition to mRNA, m6A 
is also present in various other types of RNA (Desrosiers et al., 
1974; Dominissini et al., 2013; Meyer et al., 2012; Oerum et al., 
2021). The deposition of m6A is mediated by a multicomponent 
methyltransferase complex composed of methyltransferase-like 
3 (METTL3), methyltransferase-like 14 (METTL14), and Wilms’ 
tumor 1-associating protein (WTAP) (Wan et al., 2016; Wang et al., 
2016). Recognition of m6A is facilitated by a variety of m6A-binding 
proteins, including YTH domain-containing family proteins 
(YTHDF1-3) (Zaccara and Jaffrey, 2020; Lasman et al., 2020; 
Wang et al., 2014; Wang et al., 2015; Shi et al., 2017), YTH domain-
containing proteins (YTHDC1-2) (Xiao et al., 2016; Hsu et al., 
2017; Ping et al., 2014), insulin-like growth factor 2 mRNA-binding 
proteins (IGF2BP1-3) (Huang et al., 2018), and heterogeneous 
nuclear ribonucleoproteins (HNRNPA2B1, HNRNPC, HNRNPD, 
HNRNPG) (Alarcón et al., 2015; Liu et al., 2015; Song et al., 
2019; Liu et al., 2017). The removal of m6A is carried out by 
demethylases such as fat mass and obesity-associated protein (FTO) 
(Jia et al., 2011; Benak et al., 2024c) and AlkB homolog 5 (ALKBH5) 
(Zheng et al., 2013; Wang et al., 2023a). Notably, dysregulation of 
m6A and its regulators has been observed in various diabetic tissues. 
This topic has been reviewed in detail (Benak et al., 2023a).

N6,2′-O-dimethyladenosine (m6Am) differs from m6A by the 
presence of an additional 2′-O-methyl group. In mRNA, m6Am 
is predominantly found at the mRNA cap, positioned at the 
transcription start site adjacent to the 7-methylguanosine (m7G) 
cap structure (Wei et al., 1975; Bokar and Grosjean, 2005). In 
small nuclear RNA (snRNA), m6Am also occurs at internal sites, 
where it contributes to pre-mRNA splicing (Mauer et al., 2019). 
The cap-associated m6Am is introduced by phosphorylated CTD-
interacting factor 1 (PCIF1) (Akichika et al., 2019; Sun et al., 
2019), whereas methyltransferase-like 4 (METTL4) catalyzes its 
incorporation at internal snRNA sites (Goh et al., 2020; Chen et al., 
2020). Currently, no m6Am-specific readers have been identified, 
and only a single eraser is known to remove its N6-methylation – 
the well-characterized m6A demethylase FTO. Studies suggest that 
FTO predominantly demethylates m6Am in the cytosol, whereas in 
the nucleus, its primary target is m6A (Wei et al., 2018; Benak et al., 
2023b). The relationship between m6Am and diabetes remains 
unclear. However, since many detection methods do not differentiate 
between m6A and m6Am (Benak et al., 2023b), and the well-studied 
FTO enzyme acts on both modifications (Benak et al., 2024c), m6Am 
is included in this review.

N1-methyladenosine (m1A) is predominantly found in tRNA 
and rRNA, with a lower abundance in mRNA (Dunn, 1961; 
Helm et al., 1999; Sharma et al., 2013; Dominissini et al., 2016). 
Functionally, it influences the structure and stability of tRNA and 
rRNA, while in mRNA, it plays a role in regulating translation 
(Dominissini et al., 2016; Oerum et al., 2017; Shima and Igarashi, 
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FIGURE 1
Common RNA modifications.

2020; Safra et al., 2017; Zhao et al., 2017). Its methylation is catalyzed 
by tRNA methyltransferase 6 (TRMT6), TRMT61A, TRMT61B, 
TRMT10C, and ribosomal RNA-processing protein 8 (RRP8, also 
known as NML) (Safra et al., 2017; Li et al., 2017; Chujo and 
Suzuki, 2012; Bar-Yaacov et al., 2016; Waku et al., 2016). The 
demethylation of m1A is carried out by the erasers ALKBH1 and 
ALKBH3 (Dominissini et al., 2016; Liu et al., 2016; Li et al., 2016a; 
Chen et al., 2019a). Additionally, FTO, primarily known as an 
m6A and m6Am eraser also acts as an m1A demethylase in tRNA 
(Wei et al., 2018). The link between m1A and diabetes remains 
unclear. However, ALKBH1, an m1A demethylase, was found to 
be downregulated in pancreatic islet samples from T2DM patients
(Wu et al., 2023).

5-methylcytidine (m5C) is a widely distributed RNA 
modification found across multiple RNA types. It plays a crucial 
role in regulating RNA export, ribosome biogenesis, translation, 
and RNA stability (Bohnsack et al., 2019; Squires and Preiss, 

2010; Chen et al., 2021). In humans, m5C is deposited by the 
NOL1/NOP2/SUN domain (NSUN) family proteins (NSUN1-
7) as well as DNA methyltransferase homolog DNMT2 (also 
known as TRDMT1) (Bohnsack et al., 2019; Wang et al., 2023b). 
Among the m5C-binding proteins, Aly/REF export factor (ALYREF) 
facilitates nuclear-to-cytoplasmic RNA transport (Yang et al., 
2017), whereas Y-box-binding protein 1 (YBX1) stabilizes its target 
mRNAs by interacting with ELAVL1 (Chen et al., 2019b). The 
removal of m5C is mediated by ten-eleven translocation (TET) 
proteins (TET1-3) and ALKBH1. The TET enzymes catalyze the 
oxidation of m5C to 5-hydroxymethylcytidine (hm5C), while 
ALKBH1 specifically oxidizes m5C in mitochondrial tRNA, 
generating 5-formylcytidine (f5C) (Haag et al., 2016; Fu et al., 
2014). Notably, 5-methylcytosine also occurs in DNA, where it 
is often referred to as 5mC. Although the regulatory mechanisms of 
this modification differ between DNA and RNA, they share certain 
modifying enzymes, particularly TET proteins, which have been 
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extensively studied in DNA demethylation (Williams et al., 2011). 
In the context of diabetes, a recent study found that m5C-related 
genes were significantly differentially expressed in T2DM and 
showed strong correlations with the majority of T2DM-associated 
differentially expressed genes in skeletal muscle samples (Song et al., 
2022). The m5C reader NSUN2 has been linked to diabetic 
retinopathy (Wang et al., 2024) and nephropathy (Wang et al., 2025). 
Additionally, increased expression of Nsun4, Nsun6, and Dnmt2
has been observed in diabetic retinopathy (Wang et al., 2023c). 
Berberine, a compound known for its protective effects against 
diabetic nephropathy, has been reported to suppress DNMT2 
expression in diabetic nephropathy mouse models (Cai et al., 2024). 
The m5C eraser TET1 was downregulated in human pancreatic 
islets from T2DM patients (Bacos et al., 2023) as well as in 
renal tissues of diabetic nephropathy mouse models (Tan et al., 
2021). Another recent study showed that proteins TET1-3 play a 
critical role in de novo blood vessel formation, aiding the rescue of 
diabetic ischemic skin (Mohanty et al., 2024). Finally, as previously 
mentioned, ALKBH1 – a demethylase of both m1A and m5C – 
was found to be downregulated in pancreatic islet samples from 
T2DM patients (Li et al., 2016a). 

2.2 Irreversible RNA modifications

Unlike reversible RNA modifications, irreversible modifications 
lack erasers that could dynamically regulate their presence in RNA, 
thereby limiting their regulation to mRNA turnover.

Pseudouridine (Ψ), a C5-glycoside isomer of uridine (U), 
was the first RNA modification ever discovered and remains the 
most abundant, detected across nearly all types of RNA (Cohn, 
1951; Xue et al., 2022; Sun et al., 2023). Functionally, Ψ plays 
a key role in stabilizing RNA structures while simultaneously 
reducing RNA-binding protein interactions. In mRNA, its most 
studied role is enhancing stop codon read-through (Sun et al., 
2023; Borchardt et al., 2020). The enzymatic conversion of U 
to Ψ is catalyzed by the pseudouridine synthase (PUS) family, 
a diverse group of enzymes responsible for this modification 
(Rintala-Dempsey and Kothe, 2017). To date, 13 PUS enzymes 
have been identified in eukaryotes (Sun et al., 2023). In humans, 
this family includes PUS1, PUS3, PUS7, PUS10, PUSL1, PUSL7, 
TRUB1-2 (TruB pseudouridine synthase 1-2), RPUSD1-4 (RNA 
pseudouridine synthase D1-4), and DKC1 (dyskerin pseudouridine 
synthase 1) (Li et al., 2016b). Currently, the only known Ψ-binding 
protein is the yeast RNA helicase Prp5, which interacts with snRNA 
(Wu et al., 2016; Levi and Arava, 2021). Diabetic complications, 
such as diabetic retinopathy and diabetic nephropathy, have been 
associated with changes in circulating Ψ levels (Sun et al., 2021; 
Jiang et al., 2024; Mathew et al., 2024; Niewczas et al., 2017); 
however, the link between Ψ and its regulators in diabetes
remains unknown.

Inosine is a product of A-to-I editing, a conserved mechanism 
that contributes to transcriptome diversity as part of the broader 
RNA editing process, which also encompasses cytosine-to-uridine 
conversion and nucleotide insertions and deletions (Brennicke et al., 
1999; Gott and Emeson, 2000). This modification occurs when the 
C6-position of adenosine loses a hydrogen-donating amino group, 
resulting in inosine, which structurally resembles guanosine and 

can influence various downstream processes. Post-transcriptionally, 
A-to-I editing can alter codons, create or eliminate splice sites, 
modify microRNA (miRNA) interactions, and influence RNA base 
pairing with itself or other RNAs, as well as its binding to RNA-
associated proteins. In coding regions, this process can lead to amino 
acid substitutions, potentially affecting protein function (Nishikura, 
2016). Deamination of adenosine to inosine is performed by 
enzymes belonging to the adenosine deaminase acting on RNA 
(ADAR) family, which is represented by three ADAR orthologs 
(ADAR1-3) in mammals. ADAR1 and ADAR2 are widely expressed, 
while ADAR3 was detected only in the brain (Ganem and Lamm, 
2017; Dominis et al., 2011). Both mouse and human β-cells require 
intact ADAR1 function, as its disruption leads to the accumulation 
of endogenous double-stranded RNA (dsRNA), activation of an 
interferon response, islet inflammation, and β-cell failure. These 
changes closely mimic key aspects of early-stage T1DM (Kneb et al., 
2024). Interestingly, inosine supplementation has been reported to 
protect against T1DM by exerting anti-inflammatory effects and 
modulating immune responses (Mabley et al., 2003). However, 
these effects appear to be independent of inosine’s role in RNA 
editing and are instead linked to its function as a purine
metabolite. 

3 Epitranscriptomic biomarkers in 
diabetic patients

Epitranscriptomic modifications have emerged as potential 
biomarkers for T2DM. Changes in their levels and the expression 
of its regulatory enzymes in peripheral blood may reflect disease 
progression and metabolic dysregulation, making them promising 
candidates for novel diagnostic tools.

Decreased m6A methylation levels have been reported in RNA 
isolated from the peripheral blood of T2DM patients and diabetic 
rats (Shen et al., 2015; Onalan et al., 2022). Consistent with this, FTO
gene expression – but not ALKBH5 – was found to be significantly 
upregulated in peripheral blood from T2DM patients (Shen et al., 
2015). However, a separate study by Onalan et al. (Onalan et al., 
2022) observed increased expression of both demethylases in 
venous blood samples from T2DM patients. Further supporting 
the role of FTO, another study confirmed its elevated expression 
at both gene and protein levels, highlighting a correlation between 
high FTO levels and T2DM severity (Masoud Abd El Gayed et al., 
2021). Similarly, FTO gene expression was upregulated in white 
blood cells of T2DM patients compared to healthy individuals, 
with its expression level positively correlated with fasting glucose 
concentration (Yang et al., 2019). Apart from m6A erasers, METTL3, 
a key m6A methyltransferase, was found to be downregulated in 
serum samples from T2DM patients (Zha et al., 2020). Additionally, 
low serum levels of IGF2BP3, an m6A reader, were associated with 
a progressively higher risk of developing T2DM (Wu et al., 2023). 
Collectively, these findings suggest that m6A modifications and 
their regulatory proteins in peripheral blood could serve as novel 
epitranscriptomic biomarkers for T2DM (Figure 2). Their potential 
use in early diagnosis, disease monitoring, and risk assessment 
warrants further investigation.

Additionally, Ψ has recently been identified as a circulating 
biomarker related to diabetes complications. Elevated Ψ levels 
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FIGURE 2
Schematic overview of the main m6A-related enzymes reported in blood samples from patients with type 2 diabetes mellitus (T2DM). ALKBH5 – AlkB 
homolog 5, FTO – fat mass and obesity-associated protein, IGF2BP3 – insulin-like growth factor 2 mRNA-binding protein 3, METTL3 – 
methyltransferase-like 3.

have been associated with the occurrence of diabetic retinopathy 
(Sun et al., 2021) and have been identified as an early biomarker of 
diabetic kidney disease in Chinese patients with T2DM (Jiang et al., 
2024). Moreover, Ψ levels have been linked to renal function decline 
and the progression to end-stage renal disease in patients with type 
1 diabetes mellitus (T1DM) (Niewczas et al., 2017).

Other RNA modifications and their regulatory enzymes may 
also play a role in diabetes and its complications, but they remain 
largely unexplored as potential biomarkers. For example, m1A, 
m5C, and inosine are among the modifications that have been 
linked to diabetes-related processes but have yet to be studied 
in the context of their potential as diagnostic or prognostic
biomarkers.

Importantly, circulating alterations in RNA modifications 
seem unlikely to exert direct pathogenic effects themselves but 
rather serve as biomarkers that mirror dysregulated processes in 
tissues such as pancreatic islets, liver, or kidney. Establishing these 
tissue–blood relationships will be essential for clarifying underlying 
mechanisms and for translating biomarker discovery into 
therapeutic strategies. To this end, integrating blood- and tissue-
level epitranscriptomic analyses could refine our understanding 
of disease pathogenesis, uncover organ-specific vulnerabilities, 
and guide the development of more precise interventions. Such 
a dual approach carries translational potential by directly linking 
biomarker discovery to drug development. Future research should 
also focus on expanding the scope of epitranscriptomic biomarkers 
beyond m6A to include m1A, m5C, inosine, and Ψ, as their 
regulatory mechanisms and clinical significance in DM remain 
largely unexplored. Elucidating how these modifications influence 
β-cell function, insulin resistance, and inflammation may open new 
avenues for early detection, disease monitoring, and therapeutic 
intervention in DM and its complications. 

4 Conclusion

Epitranscriptomic modifications represent a promising 
frontier in diabetes biomarker research, providing dynamic and 

often reversible regulation of RNA metabolism. The emerging 
evidence linking RNA modifications to insulin resistance 
and β-cell dysfunction underscores their potential as novel 
diagnostic and prognostic tools. While m6A modifications 
have been most extensively studied in diabetes, the broader 
landscape of RNA modifications remains largely unexplored. 
Future research should focus on validating these biomarkers 
in large patient cohorts, understanding their mechanistic roles 
in diabetes pathophysiology, and developing clinically feasible 
detection methods. Integration of epitranscriptomic signatures 
into precision medicine approaches may ultimately enhance 
early diagnosis, risk stratification, and personalized therapeutic
interventions in T2DM.
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