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Epitranscriptomic signatures in
blood: emerging biomarkers for
diagnosis of diabetes and its
complications
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Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences,
Prague, Czechia

Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized
by chronic hyperglycemia, insulin resistance, and progressive p-cell dysfunction.
Traditional biomarkers, such as fasting glucose and glycated hemoglobin
(HbAlc), offer diagnostic and prognostic value but have limitations in sensitivity
and predictive power for disease progression. Recent advances in molecular
biology have identified epitranscriptomic modifications as potential biomarkers
for T2DM, offering a novel layer of gene expression regulation through reversible
RNA modifications. Dysregulation of these modifications has been implicated
in insulin resistance, p-cell failure, and diabetes-related complications. Notably,
altered levels of N®-methyladenosine (m®A) and its regulatory enzymes,
including the eraser fat mass and obesity-associated protein (FTO) and the
writer methyltransferase-like 3 (METTL3), have been detected in peripheral
blood of T2DM patients, suggesting their potential as promising diagnostic
markers. Similarly, circulating levels of pseudouridine (¥) have been associated
with diabetic complications such as retinopathy and nephropathy. This review
highlights the emerging role of epitranscriptomic modifications in T2DM
pathophysiology and discusses their translational potential as biomarkers for
early detection, disease monitoring, and personalized therapeutic strategies.
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by
persistent hyperglycemia due to defects in insulin secretion, insulin action, or both.
Type 2 diabetes mellitus (T2DM), the most prevalent form, is a growing global
health challenge, with its incidence driven by increasing obesity rates, sedentary
lifestyles, and aging populations. Given its progressive nature and associated
microvascular (including nephropathy, retinopathy, and neuropathy) and macrovascular
complications (including cardiovascular disease), early and accurate diagnosis is
critical for mitigating long-term morbidity and mortality (Benak et al, 2023a).
Current diagnostic and monitoring tools, including fasting glucose, oral glucose
tolerance tests, fructosamine, glycated hemoglobin (HbAlc), and glycated albumin
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have limitations in sensitivity, specificity, and predictive power for
disease progression (Dorcely et al., 2017; Ahmed et al., 2025).
Consequently, there is an urgent need for novel biomarkers that
provide more precise risk stratification and early detection of
prediabetes and diabetes.

Recent advancements in molecular biology have expanded
biomarker research beyond conventional protein and metabolite
markers. The study of post-transcriptional modifications in RNA
- referred to as epitranscriptomics or RNA epigenetics - has
emerged as a promising frontier in diabetes research (Benak et al.,
2023a). Like classical epigenetic modifications, epitranscriptomic
modifications also regulate gene expression without altering the
nucleotide sequence, offering a dynamic and reversible layer of
control over cellular function. Aberrations in RNA modifications
have been linked to insulin resistance, p-cell dysfunction, and
chronic inflammation - hallmarks of T2DM (Benak et al., 2023a).
As such, epitranscriptomic biomarkers hold significant potential
as diagnostic and prognostic tools (Santos-Pujol et al., 2024),
offering novel insights into disease pathophysiology and paving
the way for precision medicine in diabetes management. Moreover,
their analysis is no longer limited to advanced LC-MS methods
but can often be performed using commercial quantification Kits,
making them more accessible and economically feasible for routine
diagnostic testing.

This short review explores the landscape of epitranscriptomic
modifications and their regulators, emphasizing their potential role
as biomarkers in T2DM. By integrating this emerging knowledge
into clinical practice, we may advance early detection strategies and
therapeutic interventions for DM and its complications.

2 Epitranscriptomic modifications and
their regulators

Epitranscriptomics refers to the study of chemical modifications
that occur on RNA molecules, influencing their stability, processing,
translation, and degradation (Benak et al., 2024a). Unlike genetic
mutations, these modifications are mostly dynamic and reversible,
allowing cells to rapidly adapt to physiological and environmental
cues. More than 170 distinct RNA modifications have been
identified across different RNA species, including messenger RNA
(mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and
non-coding RNAs (ncRNAs) (Cappannini et al, 2024). These
modifications play critical roles in regulating cellular metabolism,
differentiation, and stress responses — functions that are particularly
relevant in the context of DM.

This review covers the following common modifications: N°-
methyladenosine (m®A), N¢,2/ -O-dimethyladenosine (m°®Am), N'-
methyladenosine (m'A), 5-methylcytidine (m°QC), pseudouridine
(¥) and inosine (I) (Figure 1).

2.1 Reversible RNA modifications

Reversible RNA modifications are primarily regulated by three
classes of proteins: writers, readers, and erasers. Writers are enzymes
that catalyze the addition of specific modifications to RNA, while
readers are proteins that recognize and interpret these modifications,
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mediating downstream effects. Erasers, in turn, remove
modifications, creating a dynamic regulatory system (Benak et al.,
2024b). These modifications enable cells to respond rapidly and
flexibly to cellular signals and environmental changes.

One of the most prevalent RNA modifications in eukaryotic
mRNA - and consequently one of the most extensively studied
epitranscriptomic modifications — is N°-methyladenosine (m°A)
(Desrosiers et al., 1974; Semenovykh et al., 2022; Benak et al,
2025). This modification plays a crucial role in regulating mRNA
stability, splicing, and translation. In addition to mRNA, m°A
is also present in various other types of RNA (Desrosiers et al.,
1974; Dominissini et al., 2013; Meyer et al., 2012; Oerum et al.,
2021). The deposition of m®A is mediated by a multicomponent
methyltransferase complex composed of methyltransferase-like
3 (METTL3), methyltransferase-like 14 (METTL14), and Wilms’
tumor 1-associating protein (WTAP) (Wan et al., 2016; Wang et al.,
2016). Recognition of m®A is facilitated by a variety of m®A-binding
proteins, including YTH domain-containing family proteins
(YTHDF1-3) (Zaccara and Jaffrey, 2020; Lasman et al., 2020;
Wang et al., 2014; Wang et al., 2015; Shi et al., 2017), YTH domain-
containing proteins (YTHDCI1-2) (Xiao et al,, 2016; Hsu et al,
2017; Ping et al., 2014), insulin-like growth factor 2 mRNA-binding
proteins (IGF2BP1-3) (Huang et al, 2018), and heterogeneous
nuclear ribonucleoproteins (HNRNPA2B1, HNRNPC, HNRNPD,
HNRNPG) (Alarcon et al, 2015; Liu et al, 2015; Song et al.,
2019; Liu et al, 2017). The removal of m®A is carried out by
demethylases such as fat mass and obesity-associated protein (FTO)
(Jiaetal, 2011; Benak et al., 2024c) and AlkB homolog 5 (ALKBH5)
(Zheng et al., 2013; Wang et al., 2023a). Notably, dysregulation of
m°®A and its regulators has been observed in various diabetic tissues.
This topic has been reviewed in detail (Benak et al., 2023a).

N¢,2’-O-dimethyladenosine (m®Am) differs from m°A by the
presence of an additional 2'-O-methyl group. In mRNA, m®Am
is predominantly found at the mRNA cap, positioned at the
transcription start site adjacent to the 7-methylguanosine (m’G)
cap structure (Wei et al, 1975; Bokar and Grosjean, 2005). In
small nuclear RNA (snRNA), m°Am also occurs at internal sites,
where it contributes to pre-mRNA splicing (Mauer et al., 2019).
The cap-associated m®Am is introduced by phosphorylated CTD-
interacting factor 1 (PCIF1) (Akichika et al., 2019; Sun et al,
2019), whereas methyltransferase-like 4 (METTL4) catalyzes its
incorporation at internal snRNA sites (Goh et al., 2020; Chen et al.,
2020). Currently, no mﬁAm-speciﬁc readers have been identified,
and only a single eraser is known to remove its N®-methylation -
the well-characterized m®A demethylase FTO. Studies suggest that
FTO predominantly demethylates m®Am in the cytosol, whereas in
the nucleus, its primary target is m®A (Wei et al., 2018; Benak et al.,
2023b). The relationship between m°Am and diabetes remains
unclear. However, since many detection methods do not differentiate
between m°A and m®Am (Benak et al., 2023b), and the well-studied
FTO enzyme acts on both modifications (Benak et al., 2024c), m®Am
is included in this review.

Nl—methyladenosine (m'A) is predominantly found in tRNA
and rRNA, with a lower abundance in mRNA (Dunn, 1961;
Helm et al., 1999; Sharma et al., 2013; Dominissini et al., 2016).
Functionally, it influences the structure and stability of tRNA and
rRNA, while in mRNA, it plays a role in regulating translation
(Dominissini et al., 2016; Oerum et al., 2017; Shima and Igarashi,
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FIGURE 1
Common RNA modifications.

20205 Safraetal., 2017; Zhao et al., 2017). Its methylation is catalyzed
by tRNA methyltransferase 6 (TRMT6), TRMT61A, TRMT61B,
TRMTI10C, and ribosomal RNA-processing protein 8 (RRPS, also
known as NML) (Safra et al, 2017; Li et al, 2017; Chujo and
Suzuki, 2012; Bar-Yaacov et al., 2016; Waku et al.,, 2016). The
demethylation of m'A is carried out by the erasers ALKBH1 and
ALKBH3 (Dominissini et al., 2016; Liu et al., 2016; Li et al., 2016a;
Chen et al, 2019a). Additionally, FTO, primarily known as an
m°A and m®Am eraser also acts as an m'A demethylase in tRNA
(Wei et al.,, 2018). The link between m'A and diabetes remains
unclear. However, ALKBHI1, an m'A demethylase, was found to
be downregulated in pancreatic islet samples from T2DM patients
(Wu et al., 2023).

5-methylcytidine (m>C) a widely distributed RNA
modification found across multiple RNA types. It plays a crucial

is

role in regulating RNA export, ribosome biogenesis, translation,
and RNA stability (Bohnsack et al, 2019; Squires and Preiss,
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2010; Chen et al, 2021). In humans, m>C is deposited by the
NOL1/NOP2/SUN domain (NSUN) family proteins (NSUNI-
7) as well as DNA methyltransferase homolog DNMT2 (also
known as TRDMT1) (Bohnsack et al., 2019; Wang et al., 2023b).
Among the m’C-binding proteins, Aly/REF export factor (ALYREF)
facilitates nuclear-to-cytoplasmic RNA transport (Yang et al,
2017), whereas Y-box-binding protein 1 (YBX1) stabilizes its target
mRNAs by interacting with ELAVLI (Chen et al., 2019b). The
removal of m°C is mediated by ten-eleven translocation (TET)
proteins (TET1-3) and ALKBHI. The TET enzymes catalyze the
oxidation of m°C to 5-hydroxymethylcytidine (hm>C), while
ALKBHI1 specifically oxidizes m’C in mitochondrial tRNA,
generating 5-formylcytidine (f°C) (Haag et al, 2016; Fu et al,
2014). Notably, 5-methylcytosine also occurs in DNA, where it
is often referred to as 5mC. Although the regulatory mechanisms of
this modification differ between DNA and RNA, they share certain
modifying enzymes, particularly TET proteins, which have been
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extensively studied in DNA demethylation (Williams et al., 2011).
In the context of diabetes, a recent study found that m°>C-related
genes were significantly differentially expressed in T2DM and
showed strong correlations with the majority of T2DM-associated
differentially expressed genes in skeletal muscle samples (Song et al.,
2022). The m°C reader NSUN2 has been linked to diabetic
retinopathy (Wang et al., 2024) and nephropathy (Wang et al., 2025).
Additionally, increased expression of Nsun4, Nsun6, and Dnmt2
has been observed in diabetic retinopathy (Wang et al., 2023c).
Berberine, a compound known for its protective effects against
diabetic nephropathy, has been reported to suppress DNMT2
expression in diabetic nephropathy mouse models (Cai et al., 2024).
The m°C eraser TETI was downregulated in human pancreatic
islets from T2DM patients (Bacos et al, 2023) as well as in
renal tissues of diabetic nephropathy mouse models (Tan et al,
2021). Another recent study showed that proteins TET1-3 play a
critical role in de novo blood vessel formation, aiding the rescue of
diabetic ischemic skin (Mohanty et al., 2024). Finally, as previously
mentioned, ALKBH1 - a demethylase of both m'A and m°C -
was found to be downregulated in pancreatic islet samples from
T2DM patients (Li et al., 2016a).

2.2 Irreversible RNA modifications

Unlike reversible RNA modifications, irreversible modifications
lack erasers that could dynamically regulate their presence in RNA,
thereby limiting their regulation to mRNA turnover.

Pseudouridine (¥), a C5-glycoside isomer of uridine (U),
was the first RNA modification ever discovered and remains the
most abundant, detected across nearly all types of RNA (Cohn,
1951; Xue et al, 2022; Sun et al, 2023). Functionally, ¥ plays
a key role in stabilizing RNA structures while simultaneously
reducing RNA-binding protein interactions. In mRNA, its most
studied role is enhancing stop codon read-through (Sun et al,
2023; Borchardt et al., 2020). The enzymatic conversion of U
to ¥ is catalyzed by the pseudouridine synthase (PUS) family,
a diverse group of enzymes responsible for this modification
(Rintala-Dempsey and Kothe, 2017). To date, 13 PUS enzymes
have been identified in eukaryotes (Sun et al., 2023). In humans,
this family includes PUS1, PUS3, PUS7, PUS10, PUSL1, PUSL7,
TRUBI1-2 (TruB pseudouridine synthase 1-2), RPUSD1-4 (RNA
pseudouridine synthase D1-4), and DKC1 (dyskerin pseudouridine
synthase 1) (Li et al., 2016b). Currently, the only known ¥-binding
protein is the yeast RNA helicase Prp5, which interacts with snRNA
(Wu et al,, 2016; Levi and Arava, 2021). Diabetic complications,
such as diabetic retinopathy and diabetic nephropathy, have been
associated with changes in circulating ‘¥ levels (Sun et al., 2021;
Jiang et al., 2024; Mathew et al, 2024; Niewczas et al., 2017);
however, the link between W and its regulators in diabetes
remains unknown.

Inosine is a product of A-to-I editing, a conserved mechanism
that contributes to transcriptome diversity as part of the broader
RNA editing process, which also encompasses cytosine-to-uridine
conversion and nucleotide insertions and deletions (Brennicke et al.,
1999; Gott and Emeson, 2000). This modification occurs when the
CC-position of adenosine loses a hydrogen-donating amino group,
resulting in inosine, which structurally resembles guanosine and
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can influence various downstream processes. Post-transcriptionally,
A-to-I editing can alter codons, create or eliminate splice sites,
modify microRNA (miRNA) interactions, and influence RNA base
pairing with itself or other RNAs, as well as its binding to RNA-
associated proteins. In coding regions, this process can lead to amino
acid substitutions, potentially affecting protein function (Nishikura,
2016). Deamination of adenosine to inosine is performed by
enzymes belonging to the adenosine deaminase acting on RNA
(ADAR) family, which is represented by three ADAR orthologs
(ADARI1-3) in mammals. ADAR1 and ADAR?2 are widely expressed,
while ADAR3 was detected only in the brain (Ganem and Lamm,
2017; Dominis et al., 2011). Both mouse and human [-cells require
intact ADARI function, as its disruption leads to the accumulation
of endogenous double-stranded RNA (dsRNA), activation of an
interferon response, islet inflammation, and P-cell failure. These
changes closely mimic key aspects of early-stage TIDM (Kneb et al.,
2024). Interestingly, inosine supplementation has been reported to
protect against TIDM by exerting anti-inflammatory effects and
modulating immune responses (Mabley et al., 2003). However,
these effects appear to be independent of inosine’s role in RNA
editing and are instead linked to its function as a purine
metabolite.

3 Epitranscriptomic biomarkers in
diabetic patients

Epitranscriptomic modifications have emerged as potential
biomarkers for T2DM. Changes in their levels and the expression
of its regulatory enzymes in peripheral blood may reflect disease
progression and metabolic dysregulation, making them promising
candidates for novel diagnostic tools.

Decreased m®A methylation levels have been reported in RNA
isolated from the peripheral blood of T2DM patients and diabetic
rats (Shen et al.,, 2015; Onalan et al., 2022). Consistent with this, FTO
gene expression — but not ALKBHS5 - was found to be significantly
upregulated in peripheral blood from T2DM patients (Shen et al.,
2015). However, a separate study by Onalan etal. (Onalan et al,
2022) observed increased expression of both demethylases in
venous blood samples from T2DM patients. Further supporting
the role of FTO, another study confirmed its elevated expression
at both gene and protein levels, highlighting a correlation between
high FTO levels and T2DM severity (Masoud Abd El Gayed et al.,
2021). Similarly, FTO gene expression was upregulated in white
blood cells of T2DM patients compared to healthy individuals,
with its expression level positively correlated with fasting glucose
concentration (Yang etal., 2019). Apart from m°A erasers, METTL3,
a key m®A methyltransferase, was found to be downregulated in
serum samples from T2DM patients (Zha et al., 2020). Additionally,
low serum levels of IGF2BP3, an m®A reader, were associated with
a progressively higher risk of developing T2DM (Wu et al., 2023).
Collectively, these findings suggest that m®A modifications and
their regulatory proteins in peripheral blood could serve as novel
epitranscriptomic biomarkers for T2DM (Figure 2). Their potential
use in early diagnosis, disease monitoring, and risk assessment
warrants further investigation.

Additionally, ¥ has recently been identified as a circulating
biomarker related to diabetes complications. Elevated ¥ levels
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FIGURE 2

homolog 5, FTO - fat mass and obesity-associated protein, IGF2BP3 -
methyltransferase-like 3.

Schematic overview of the main m®A-related enzymes reported in blood samples from patients with type 2 diabetes mellitus (T2DM). ALKBH5 — AlkB
insulin-like growth factor 2 mRNA-binding protein 3, METTL3 -

have been associated with the occurrence of diabetic retinopathy
(Sun et al., 2021) and have been identified as an early biomarker of
diabetic kidney disease in Chinese patients with T2DM (Jiang et al.,
2024). Moreover, ¥ levels have been linked to renal function decline
and the progression to end-stage renal disease in patients with type
1 diabetes mellitus (T1DM) (Niewczas et al., 2017).

Other RNA modifications and their regulatory enzymes may
also play a role in diabetes and its complications, but they remain
largely unexplored as potential biomarkers. For example, m'A,
m°C, and inosine are among the modifications that have been
linked to diabetes-related processes but have yet to be studied
in the context of their potential as diagnostic or prognostic
biomarkers.

Importantly, circulating alterations in RNA modifications
seem unlikely to exert direct pathogenic effects themselves but
rather serve as biomarkers that mirror dysregulated processes in
tissues such as pancreatic islets, liver, or kidney. Establishing these
tissue-blood relationships will be essential for clarifying underlying
mechanisms and for translating biomarker discovery into
therapeutic strategies. To this end, integrating blood- and tissue-
level epitranscriptomic analyses could refine our understanding
of disease pathogenesis, uncover organ-specific vulnerabilities,
and guide the development of more precise interventions. Such
a dual approach carries translational potential by directly linking
biomarker discovery to drug development. Future research should
also focus on expanding the scope of epitranscriptomic biomarkers
beyond mPA to include m'A, m°C, inosine, and ¥, as their
regulatory mechanisms and clinical significance in DM remain
largely unexplored. Elucidating how these modifications influence
B-cell function, insulin resistance, and inflammation may open new
avenues for early detection, disease monitoring, and therapeutic
intervention in DM and its complications.

4 Conclusion

Epitranscriptomic  modifications represent a promising

frontier in diabetes biomarker research, providing dynamic and
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often reversible regulation of RNA metabolism. The emerging
evidence linking RNA modifications to insulin resistance
and B-cell dysfunction underscores their potential as novel
While m®A modifications

have been most extensively studied in diabetes, the broader

diagnostic and prognostic tools.

landscape of RNA modifications remains largely unexplored.
Future research should focus on validating these biomarkers
in large patient cohorts, understanding their mechanistic roles
in diabetes pathophysiology, and developing clinically feasible
detection methods. Integration of epitranscriptomic signatures
into precision medicine approaches may ultimately enhance
early diagnosis, risk stratification, and personalized therapeutic
interventions in T2DM.
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